首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The actinomycete Rhodococcus opacus MR11 harbors a bidirectional NAD-reducing [NiFe] hydrogenase (SH). This cytoplasmic enzyme is composed of two heterodimeric modules which catalyze distinct enzymatic activities. The hydrogenase moiety mediates H(2):benzyl viologen oxidoreductase activity and the FMN-containing diaphorase module displays NADH:benzyl viologen oxidoreductase activity. The SH of Rh. opacus resembles [NiFe] hydrogenases present in strains of the proteobacterium Ralstonia eutropha and in species of cyanobacteria. Heterologous expression of active [NiFe] hydrogenases failed in most cases due to protein-assisted maturation processes implicated in the assembly of the NiFe bimetallic site. This study reports on the construction of a recombinant plasmid harboring the four SH subunit genes hoxFUYH and the associated endopeptidase gene hoxW from Rh. opacus under the regime of the SH promoter from R. eutropha H16. The resulting recombinant plasmid restored lithoautotrophic growth in a R. eutropha mutant impaired in H(2)-oxidizing ability. The SH of Rh. opacus was functionally active in R. eutropha and displayed the typical features described for its natural host. It readily dissociated in vitro into two active subforms. Dissociation was accompanied by the loss of the H(2)-dependent NAD-reducing activity, which was partially reconstituted by addition of 5 mM MgSO(4) and 0.5 mM NiCl(2). Activity and stability of the SH from Rh. opacus were enhanced almost three-fold by co-overexpression of the SH-associated metal insertion genes hypA2B2F2 of R. eutropha. Under optimal conditions the heterologously expressed Rh. opacus SH catalyzed NAD-reduction at a specific activity of 1.7 units per mg protein, which is approximately 30% of the yield obtained for the R. eutropha SH. The results indicate that, despite an enormous phylogenetic distance of the two bacterial species, their SH proteins are highly related.  相似文献   

4.
The biosynthesis of [NiFe] hydrogenases is a complex process that requires the function of the Hyp proteins HypA, HypB, HypC, HypD, HypE, HypF, and HypX for assembly of the H(2)-activating [NiFe] site. In this study we examined the maturation of the regulatory hydrogenase (RH) of Ralstonia eutropha. The RH is a H(2)-sensing [NiFe] hydrogenase and is required as a constituent of a signal transduction chain for the expression of two energy-linked [NiFe] hydrogenases. Here we demonstrate that the RH regulatory activity was barely affected by mutations in hypA, hypB, hypC, and hypX and was not substantially diminished in hypD- and hypE-deficient strains. The lack of HypF, however, resulted in a 90% decrease of the RH regulatory activity. Fourier transform infrared spectroscopy and the incorporation of (63)Ni into the RH from overproducing cells revealed that the assembly of the [NiFe] active site is dependent on all Hyp functions, with the exception of HypX. We conclude that the entire Hyp apparatus (HypA, HypB, HypC, HypD, HypE, and HypF) is involved in an efficient incorporation of the [NiFe] center into the RH.  相似文献   

5.
Knallgas bacteria such as certain Ralstonia spp. are able to obtain metabolic energy by oxidizing trace levels of H2 using O2 as the terminal electron acceptor. The [NiFe] hydrogenases produced by these organisms are unusual in their ability to oxidize H2 in the presence of O2, which is a potent inactivator of most hydrogenases through attack at the active site. To probe the origin of this unusual O2 tolerance, we conducted a study on the membrane-bound hydrogenase from Ralstonia eutropha H16 and that of the closely related organism Ralstonia metallidurans CH34, which was purified using a new heterologous overproduction system. Direct electrochemical methods were used to determine apparent inhibition constants for O2 inhibition of H2 oxidation (K I(app)O2) for each enzyme. These values were at least 2 orders of magnitude higher than those of "standard" [NiFe] hydrogenases. Amino acids close to the active site were exchanged in the membrane-bound hydrogenase of R. eutropha H16 for those from standard hydrogenases to probe the role of individual residues in conferring O2 sensitivity. Michaelis constants for H2 (K M H2) were determined, and for some mutants these were increased more than 20-fold relative to the wild type. Mutations resulting in membrane-bound hydrogenase enzymes with increased K M H2 or decreased K I(app)O2 values were associated with impaired lithoautotrophic growth in the presence of high O2 concentrations.  相似文献   

6.
Hydrogenases, abundant proteins in the microbial world, catalyze cleavage of H2 into protons and electrons or the evolution of H2 by proton reduction. Hydrogen metabolism predominantly occurs in anoxic environments mediated by hydrogenases, which are sensitive to inhibition by oxygen. Those microorganisms, which thrive in oxic habitats, contain hydrogenases that operate in the presence of oxygen. We have selected the H2-sensing regulatory [NiFe] hydrogenase of Ralstonia eutropha H16 to investigate the molecular background of its oxygen tolerance. Evidence is presented that the shape and size of the intramolecular hydrophobic cavities leading to the [NiFe] active site of the regulatory hydrogenase are crucial for oxygen insensitivity. Expansion of the putative gas channel by site-directed mutagenesis yielded mutant derivatives that are sensitive to inhibition by oxygen, presumably because the active site has become accessible for oxygen. The mutant proteins revealed characteristics typical of standard [NiFe] hydrogenases as described for Desulfovibrio gigas and Allochromatium vinosum. The data offer a new strategy how to engineer oxygen-tolerant hydrogenases for biotechnological application.  相似文献   

7.
In proteobacteria capable of H(2) oxidation under (micro)aerobic conditions, hydrogenase gene expression is often controlled in response to the availability of H(2). The H(2)-sensing signal transduction pathway consists of a heterodimeric regulatory [NiFe]-hydrogenase (RH), a histidine protein kinase and a response regulator. To gain insights into the signal transmission from the Ni-Fe active site in the RH to the histidine protein kinase, conserved amino acid residues in the L0 motif near the active site of the RH large subunit of Ralstonia eutropha H16 were exchanged. Replacement of the strictly conserved Glu13 (E13N, E13L) resulted in loss of the regulatory, H(2)-oxidizing and D(2)/H(+) exchange activities of the RH. According to EPR and FTIR analysis, these RH derivatives contained fully assembled [NiFe] active sites, and para-/ortho-H(2) conversion activity showed that these centres were still able to bind H(2). This indicates that H(2) binding at the active site is not sufficient for the regulatory function of H(2) sensors. Replacement of His15, a residue unique in RHs, by Asp restored the consensus of energy-linked [NiFe]-hydrogenases. The respective RH mutant protein showed only traces of H(2)-oxidizing activity, whereas its D(2)/H(+)-exchange activity and H(2)-sensing function were almost unaffected. H(2)-dependent signal transduction in this mutant was less sensitive to oxygen than in the wild-type strain. These results suggest that H(2) turnover is not crucial for H(2) sensing. It may even be detrimental for the function of the H(2) sensor under high O(2) concentrations.  相似文献   

8.
The O(2)-tolerant [NiFe] hydrogenases of Ralstonia eutropha are capable of H(2) conversion in the presence of ambient O(2). Oxygen represents not only a challenge for catalysis but also for the complex assembling process of the [NiFe] active site. Apart from nickel and iron, the catalytic center contains unusual diatomic ligands, namely two cyanides (CN(-)) and one carbon monoxide (CO), which are coordinated to the iron. One of the open questions of the maturation process concerns the origin and biosynthesis of the CO group. Isotope labeling in combination with infrared spectroscopy revealed that externally supplied gaseous (13)CO serves as precursor of the carbonyl group of the regulatory [NiFe] hydrogenase in R. eutropha. Corresponding (13)CO titration experiments showed that a concentration 130-fold higher than ambient CO (0.1 ppmv) caused a 50% labeling of the carbonyl ligand in the [NiFe] hydrogenase, leading to the conclusion that the carbonyl ligand originates from an intracellular metabolite. A novel setup allowed us to the study effects of CO depletion on maturation in vivo. Upon induction of CO depletion by addition of the CO scavenger PdCl(2), cells cultivated on H(2), CO(2), and O(2) showed severe growth retardation at low cell concentrations, which was on the basis of partially arrested hydrogenase maturation, leading to reduced hydrogenase activity. This suggests gaseous CO as a metabolic precursor under these conditions. The addition of PdCl(2) to cells cultivated heterotrophically on organic substrates had no effect on hydrogenase maturation. These results indicate at least two different pathways for biosynthesis of the CO ligand of [NiFe] hydrogenase.  相似文献   

9.
10.
[NiFe] hydrogenases contain a highly conserved histidine residue close to the [NiFe] active site which is altered by a glutamine residue in the H(2)-sensing [NiFe] hydrogenases. In this study, we exchanged the respective glutamine residue of the H(2) sensor (RH) of Ralstonia eutropha, Q67 of the RH large subunit HoxC, by histidine, asparagine and glutamate. The replacement by histidine and asparagine resulted in slightly unstable RH proteins which were hardly affected in their regulatory and enzymatic properties. The exchange to glutamate led to a completely unstable RH protein. The purified wild-type RH and the mutant protein with the Gln/His exchange were analysed by continuous-wave and pulsed electron paramagnetic resonance (EPR) techniques. We observed a coupling of a nitrogen nucleus with the [NiFe] active site for the mutant protein which was absent in the spectrum of the wild-type RH. A combination of theoretical calculations with the experimental data provided an explanation for the observed coupling. It is shown that the coupling is due to the formation of a weak hydrogen bond between the protonated N(epsilon) nucleus of the histidine with the sulfur of a conserved cysteine residue which coordinates the metal atoms of the [NiFe] active site as a bridging ligand. The effect of this hydrogen bond on the local structure of the [NiFe] active site is discussed.  相似文献   

11.
For the first time, the nickel site of the hydrogen sensor of Ralstonia eutropha, the regulatory [NiFe] hydrogenase (RH), was investigated by X-ray absorption spectroscopy (XAS) at the nickel K-edge. The oxidation state and the atomic structure of the Ni site were investigated in the RH in the absence (air-oxidized, RH(ox)) and presence of hydrogen (RH(+H2)). Incubation with hydrogen is found to cause remarkable changes in the spectroscopic properties. The Ni-C EPR signal, indicative of Ni(III), is detectable only in the RH(+H2) state. XANES and EXAFS spectra indicate a coordination of the Ni in the RH(ox) and RH(+H2) that pronouncedly differs from the one in standard [NiFe] hydrogenases. Also, the changes induced by exposure to H(2) are unique. A drastic modification in the XANES spectra and an upshift of the K-edge energy from 8339.8 (RH(ox)) to 8341.1 eV (RH(+H2)) is observed. The EXAFS spectra indicate a change in the Ni coordination in the RH upon exposure to H(2). One likely interpretation of the data is the detachment of one sulfur ligand in RH(+H2) and the binding of additional (O,N) or H ligands. The following Ni oxidation states and coordinations are proposed: five-coordinated Ni(II)(O,N)(2)S(3) for RH(ox) and six-coordinated Ni((III))(O,N)(3)X(1)S(2) [X being either an (O,N) or H ligand] for RH(+H2). Implications of the structural features of the Ni site of the RH in relation to its function, hydrogen sensing, are discussed.  相似文献   

12.
The hypCD genes, encoding the counterparts of mesophilic proteins involved in the maturation of [NiFe] hydrogenases, were isolated from the hyperthermophilic archaeon Thermococcus litoralis. The deduced gene products showed 30-40% identity to the corresponding mesophilic proteins. HypC and HypD were synthesized by the T7 expression system. Heterologous complementation experiments were done in Escherichia coli and Ralstonia eutropha strains lacking functionally active hypC and hypD genes. Only the cytoplasmic hydrogenase of R. eutropha could be processed by HypD from T. litoralis. This was the first demonstration of mesophilic hydrogenase processing using a hyperthermophilic archaeal accessory protein to produce an active enzyme.  相似文献   

13.
Hydrogenases catalyze the activation or production of molecular hydrogen. Due to their potential importance for future biotechnological applications, these enzymes have been in the focus of intense research for the past decades. Bidirectional [NiFe] hydrogenases are of particular interest as they couple the reversible cleavage of hydrogen to the redox conversion of NAD(H). In this account, we review the current state of knowledge about mechanistic aspects and structural determinants of these complex multi-cofactor enzymes. Special emphasis is laid on the oxygen-tolerant NAD(H)-linked bidirectional [NiFe] hydrogenase from Ralstonia eutropha.  相似文献   

14.
15.
The regulatory Ni-Fe hydrogenase (RH) from Ralstonia eutropha functions as a hydrogen sensor. The RH consists of the large subunit HoxC housing the Ni-Fe active site and the small subunit HoxB containing Fe-S clusters. The heterolytic cleavage of H(2) at the Ni-Fe active site leads to the EPR-detectable Ni-C state of the protein. For the first time, the simultaneous but EPR-invisible reduction of Fe-S clusters during Ni-C state formation was demonstrated by changes in the UV-visible absorption spectrum as well as by shifts of the iron K-edge from x-ray absorption spectroscopy in the wild-type double dimeric RH(WT) [HoxBC](2) and in a monodimeric derivative designated RH(stop) lacking the C-terminal 55 amino acids of HoxB. According to the analysis of iron EXAFS spectra, the Fe-S clusters of HoxB pronouncedly differ from the three Fe-S clusters in the small subunits of crystallized standard Ni-Fe hydrogenases. Each HoxBC unit of RH(WT) seems to harbor two [2Fe-2S] clusters in addition to a 4Fe species, which may be a [4Fe-3S-3O] cluster. The additional 4Fe-cluster was absent in RH(stop). Reduction of Fe-S clusters in the hydrogen sensor RH may be a first step in the signal transduction chain, which involves complex formation between [HoxBC](2) and tetrameric HoxJ protein, leading to the expression of the energy converting Ni-Fe hydrogenases in R. eutropha.  相似文献   

16.
Salmonella enterica serovar Typhimurium is a Gram negative bacterial pathogen and a common cause of food-borne illness. Molecular hydrogen has been shown to be a key respiratory electron donor during infection and H(2) oxidation can be catalysed by three genetically-distinct [NiFe] hydrogenases. Of these, hydrogenases-1 (Hyd-1) and Hyd-2 have well-characterised homologues in Escherichia coli. The third, designated Hyd-5 here, is peculiar to Salmonella and is expressed under aerobic conditions. In this work, Salmonella was genetically modified to enable the isolation and characterisation of Hyd-5. Electrochemical analysis established that Hyd-5 is a H(2)-oxidising enzyme that functions in very low levels of H(2) and sustains this activity in high levels of O(2). In addition, electron paramagnetic resonance spectroscopy of the Hyd-5 isoenzyme reveals a complex paramagnetic FeS signal at high potentials which is comparable to that observed for other O(2)-tolerant respiratory [NiFe] hydrogenases. Taken altogether, Hyd-5 can be classified as an O(2)-tolerant hydrogenase that confers upon Salmonella the ability to use H(2) as an electron donor in aerobic respiration.  相似文献   

17.
Cyanobacterial NAD(P)(+)-reducing reversible hydrogenases comprise five subunits. Four of them (HoxF, HoxU, HoxY, and HoxH) are also found in the well-described related enzyme from Ralstonia eutropha. The fifth one (HoxE) is not encoded in the R. eutropha genome, but shares homology with the N-terminal part of R. eutropha HoxF. However, in cyanobacteria, HoxE contains a 2Fe-2S cluster-binding motif that is not found in the related R. eutropha sequence. In order to obtain some insights into the role of HoxE in cyanobacteria, we deleted this subunit in Synechocystis PCC6803. Three types of interaction of the cyanobacterial hydrogenase with pyridine nucleotides were tested: (a) reductive activation of the NiFe site, for which NADPH was found to be more efficient than NADH; (b) H(2) production, for which NADH appeared to be a more efficient electron donor than NADPH; and (c) H(2) oxidation, for which NAD(+) was a much better electron acceptor than NADP(+). Upon hoxE deletion, the Synechocystis hydrogenase active site remained functional with artificial electron donors or acceptors, but the enzyme became unable to catalyze H(2) production or uptake with NADH/NAD(+). However, activation of the electron transfer-independent H/D exchange reaction by NADPH was still observed in the absence of HoxE, whereas activation of this reaction by NADH was lost. These data suggest different mechanisms for diaphorase-mediated electron donation and catalytic site activation in cyanobacterial hydrogenase.  相似文献   

18.
Weyman PD  Vargas WA  Tong Y  Yu J  Maness PC  Smith HO  Xu Q 《PloS one》2011,6(5):e20126
Oxygen-tolerant [NiFe] hydrogenases may be used in future photobiological hydrogen production systems once the enzymes can be heterologously expressed in host organisms of interest. To achieve heterologous expression of [NiFe] hydrogenases in cyanobacteria, the two hydrogenase structural genes from Alteromonas macleodii Deep ecotype (AltDE), hynS and hynL, along with the surrounding genes in the gene operon of HynSL were cloned in a vector with an IPTG-inducible promoter and introduced into Synechococcus elongatus PCC7942. The hydrogenase protein was expressed at the correct size upon induction with IPTG. The heterologously-expressed HynSL hydrogenase was active when tested by in vitro H(2) evolution assay, indicating the correct assembly of the catalytic center in the cyanobacterial host. Using a similar expression system, the hydrogenase structural genes from Thiocapsa roseopersicina (hynSL) and the entire set of known accessory genes were transferred to S. elongatus. A protein of the correct size was expressed but had no activity. However, when the 11 accessory genes from AltDE were co-expressed with hynSL, the T. roseopersicina hydrogenase was found to be active by in vitro assay. This is the first report of active, heterologously-expressed [NiFe] hydrogenases in cyanobacteria.  相似文献   

19.
Within the catalytic centre of [NiFe]-hydrogenases one carbonyl and two cyanide ligands are covalently attached to the iron. To identify the metabolic origins of these ligands, the regulatory [NiFe] hydrogenase in conjunction with the indigenous Hyp maturation proteins of Ralstonia eutropha H16 were heterologously overproduced in E. coli grown in the presence of L-[ureido-(13)C] citrulline and NaH(13)CO(3). Infrared spectroscopy of purified hydrogenase provided direct evidence that only the cyanide ligands, but not the CO ligand, originate from CO(2) and carbamoylphosphate. Incorporation of label from (13)CO exclusively into the carbonyl ligand indicates that free CO is a possible precursor in carbonyl ligand biosynthesis.  相似文献   

20.
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号