首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Key insight into the complexities of apoptosis may be gained from the study of its evolution in lower metazoans. In this study we describe two genes from a cnidarian, Aiptasia pallida, that are homologous to key genes in the apoptotic pathway from vertebrates. The first is a novel ancient caspase, acasp, that displays attributes of both initiator and executioner caspases and includes a caspase recruitment domain (CARD). The second, a Bcl-2 family member, abhp, contains a BH1 and BH2 domain and shares structural characteristics and phylogenetic affinity with a group of antiapoptotic Bcl-2s including A1 and Bcl-2L10. The breadth of occurrence of other invertebrate homologues across the phylogenetic trees of both genes suggests that the complexity of apoptotic pathways is an ancient trait that predates the evolution of vertebrates and higher invertebrates such as nematodes and flies. This paves the way for establishing new lower metazoan model systems for the study of apoptosis. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Stuart Newfeld]  相似文献   

2.
We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.  相似文献   

3.
Yamashita M  Hirayoshi K  Nagata K 《Gene》2004,336(2):207-218
A shift from 28 to 37 degrees C in the incubation temperature of a culture of the platyfish fibroblast cell line, EHS cells (platyfish fibroblast cell line), induced a set of stress proteins. A two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analysis showed that the cells expressed three genetically distinct forms of heat-shock protein 70 (HSP70) family proteins: heat-inducible forms of HSP70, the constitutively expressed heat-shock cognate protein 70 (HSC70) and its phosphorylated isoform, and the glucose-regulated protein 78 (GRP78). Three different clones encoding two major isoforms of heat-inducible HSP70, platyfish HSP70-1 and HSP70-2, and of the HSC70 were isolated from a platyfish cDNA library. We compared the deduced amino acid sequences of the platyfish HSP70 and HSC70 proteins with those of other vertebrates. Phylogenetic analysis showed that vertebrate HSP70 could be classified into four cluster groups: (a) fish HSP70, with two isoforms of heat-inducible HSP70 in fish, fish HSP70-1 and HSP70-2; (b) the mammalian testis-specific HSP70-related protein HST70; (c) the mammalian heat-inducible HSP70B'; and (d) the mammalian major histocompatibility complex (MHC)-linked HSP70, including the MHC-linked heat-inducible HSP70 and the testis-specific HSP70-related protein. These findings suggest that vertebrate HSP70 was derived from a single ancestral HSP70 gene during vertebrate evolution and that multiple copies of heat-inducible HSP70 were probably evolved during genetic divergence in fish and higher vertebrates.  相似文献   

4.
5.
Tetsuya Miyamoto 《Fly》2017,11(3):218-223
Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects—and possibly in some vertebrates—gluconeogenesis may be used as a means of neuronal signaling.  相似文献   

6.
A large number of two-component signal transduction systems (TCSTS) including 59 putative sensory histidine kinases (HK) and 55 response regulators (RR) were identified from the Desulfovibrio vulgaris genome. In this study, the structural and phylogenetic analyses of all putative TCSTSs in D. vulgaris were performed. The results showed that D. vulgaris contained 21 hybrid-type HKs, implying that multiple-step phosphorelay may be a common signal transduction mechanism in D. vulgaris. Despite the low sequence similarity that restricted the resolution of the phylogenetic analyses, most TCSTS components of D. vulgaris were found clustered into several subfamilies previously recognized in Escherichia coli and Bacillus subtilis. An attempt was made in this investigation to identify the possible cognate HK-RR pairs not linked on the chromosome in D. vulgaris based on similar expression patterns in response to various environmental and genetic changes. Expression levels of all HK and RR genes were measured using whole-genome microarrays. Five groups of HK-RR genes not linked on the chromosome were identified as possible cognate pairs in D. vulgaris. The results provided a preliminary list of possible cognate HK-RR pairs and constitute a basis for further exploration of interaction and physiological function of TCSTSs in D. vulgaris. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Gail Simmons]  相似文献   

7.
8.
Polymorphic analysis of the three MHC-linked HSP70 genes   总被引:10,自引:0,他引:10  
Three genes encoding members of the M r 70 000 heat shock protein family (HSP70) are known to lie in the class III region of the human major histocompatibility complex. IN order to determine whether these genes or their protein products exhibit any polymorphism the three genes have been specifically amplified from genomic DNA and sequenced. The HSP70-1 and HSP70-2 genes encode the major heat-inducible HSP70. A comparison of the nucleotide sequences of these genes from B8, SC01, DR3, B18, F1C30, DR3, and B7, SC30, DR2 haplotypes has revelad only very limited sequence variation which is not associated with any amino acid polymorphism. The HSP70-Hom gene encodes a protein that is highly related to HSP70-1, but which is not heat-inducible. Nucleotide sequence analysis of this gene from different haplotypes has revealed a Met Thr amino acid substitution at residue 493 in a number of the haplotypes tested. This variable amino acid lies in the proposed peptide-binding site of the HSP70-Hom protein. Address correspondence and offprint requests to: R. D. Campbell.  相似文献   

9.
A cell line derived from the tailfin of the marine teleost yellowtail fish Seriola quinqueradiata was established to examine cellular temperature regulation in an ectothermic animal. Three cytosolic members of the HSP70 family, heat-shock cognate proteins HSC70-1, HSC70-2 and heat-shock protein HSP70, were isolated from cultured yellowtail cells as stress-responsive biomarkers. Expression of hsp70 was heat-inducible, in contrast to the hsc70-1 gene product, which was expressed constitutively. In addition, expression of hsc70-2 was only induced under severe heat-shock conditions. Subcellular fractionation and immunocytochemistry showed localization of HSC70/HSP70 in the lysosomes, indicating that chaperone-mediated autophagy is induced by heat shock. Thus, chaperone-mediated autophagy is assisted by HSC70/HSP70, and heat-inducible expression of the genes encoding these proteins may be responsible for survival and adaptation under heat-shock conditions in fish cells.  相似文献   

10.
Conflicting phylogenetic signals at the base of the metazoan tree   总被引:6,自引:0,他引:6  
A phylogenetic framework is essential for under-standing the origin and evolution of metazoan development. Despite a number of recent molecular studies and a rich fossil record of sponges and cnidarians, the evolutionary relationships of the early branching metazoan groups to each other and to a putative outgroup, the choanoflagellates, remain uncertain. This situation may be the result of the limited amount of phylogenetic information found in single genes and the small number of relevant taxa surveyed. To alleviate the effect of these analytical factors in the phylogenetic recons-truction of early branching metazoan lineages, we cloned multiple protein-coding genes from two choanoflagellates and diverse sponges, cnidarians, and a ctenophore. Comparisons of sequences for alpha-tubulin, beta-tubulin, elongation factor 2, HSP90, and HSP70 robustly support the hypothesis that choanoflagellates are closely affiliated with animals. However, analyses of single and concatenated amino acid sequences fail to resolve the relationships either between early branching metazoan groups or between Metazoa and choano-flagellates. We demonstrate that variable rates of evolution among lineages, sensitivity of the analyses to taxon selection, and conflicts in the phylogenetic signal contained in different amino acid sequences obscure the phylogenetic associations among the early branching Metazoa. These factors raise concerns about the ability to resolve the phylogenetic history of animals with molecular sequences. A consensus view of animal evolution may require investigations of genome-scale characters.  相似文献   

11.
Mitochondrial genomes have recently become widely used in animal phylogeny, mainly to infer the relationships between vertebrates and other bilaterians. However, only 11 of 723 complete mitochondrial genomes available in the public databases are of early metazoans, including cnidarians (Anthozoa, mainly Scleractinia) and sponges. Although some cnidarians (Medusozoa) are known to possess atypical linear mitochondrial DNA, the anthozoan mitochondrial genome is circular and its organization is similar to that of other metazoans. Because the phylogenetic relationships among Anthozoa as well as their relation to other early metazoans still need to be clarified, we tested whether sequencing the complete mitochondrial genome of Savalia savaglia, an anthozoan belonging to the order Zoantharia (=Zoanthidea), could be useful to infer such relationships. Compared to other anthozoans, S. savaglia’s genome is unusually long (20,766 bp) due to the presence of several noncoding intergenic regions (3691 bp). The genome contains all 13 protein coding genes commonly found in metazoans, but like other Anthozoa it lacks most of the tRNAs. Phylogenetic analyses of S. savaglia mitochondrial sequences show Zoantharia branching closely to other Hexacorallia, either as a sister group to Actiniaria or as a sister group to Actiniaria and Scleractinia. The close relationships suggested between Zoantharia and Actiniaria are reinforced by strong similarities in their gene order and the presence of similar introns in the COI and ND5 genes. Our study suggests that mitochondrial genomes can be a source of potentially valuable information on the phylogeny of Hexacorallia and may provide new insights into the evolution of early metazoans. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Axel Meyer]  相似文献   

12.
The phylogenetic and systematic position of all species of Acer section Acer from North America, East Asia, and western Eurasia are evaluated using various splits-based networks (distance networks, bipartition networks), ITS motif analysis, and morphology. Molecular analyses are based on 276 ITS clones obtained from 101 specimens collected mainly from natural stands. The large sample size ensures to cover sufficiently inter- and intraspecific ITS variability of this group. Formerly recognised species are generally supported by ITS data and morphology; the combination of molecular (ITS) and morphological criteria allows defining seven (supraspecific) taxonomic groups prior to a phylogenetic reconstruction. Phylogenetic signals captured in modern ITS sequences are partly incompatible but clearly suggest that Acer section Acer underwent three major radiations. Horizontal gene flow is indicated between ancestors of extant taxa that are isolated at present times. The level of ITS derivation can be estimated and corresponds to levels of morphological differentiation and (palaeo-) biogeographical patterns. Based on our results we question the potential of cladistic approaches to infer low-level evolution in an adequate manner and demonstrate that speciation in members of Acer section Acer is not generally linked to cladogenesis. The data and methodologies provided here allow to trace pathways of low-level evolution and to analyse such data sets with a less restricted (non-dichotomous) dynamic concept. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

13.
The genome sequences of Caenorhabditis elegans and Drosophila melanogaster reveal a diversity of cysteine-loop ligand-gated ion channels (Cys-loop LGICs) not found in vertebrates. To better understand the evolution of this gene superfamily, I compared all Cys-loop LGICs from rat, the primitive chordate Ciona intestinalis, Drosophila, and C. elegans. There are two clades of GABA receptor subunits that include both verterbate and invertebrate orthologues. In addition, I identified nine clades of anion channel subunits found only in invertebrates, including three that are specific to C. elegans and two found only in Drosophila. One well-defined clade of vertebrate cation channel subunits, the α7 nicotinic acetylcholine receptor subunits (nAChR), includes invertebrate orthologues. There are two clades of invertebrate nAChRs, one of α-type subunits and one of non-α subunits, that are most similar to the two clades of vertebrate neuronal and muscle α and non-α subunits. There is a large group of divergent C. elegans nAChR-like subunits partially resolved into clades but no orthologues of 5HT3-type serotonin receptors in the invertebrates. The topology of the trees suggests that most of the invertebrate-specific Cys-loop LGIC clades were present in the common ancestor of chordates and ecdysozoa. Many of these disappeared from the chordates. Subsequently, selected subunit genes expanded to form large subfamilies. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

14.
Aminoacyl-tRNA synthetases catalyze a fundamental reaction for the flow of genetic information from RNA to protein. Their presence in all organisms known today highlights their important role in the early evolution of life. We investigated the evolutionary history of aminoacyl-tRNA synthetases on the basis of sequence data from more than 200 Archaea, Bacteria, and Eukaryota. Phylogenetic profiles are in agreement with previous observations that many genes for aminoacyl-tRNA synthetases were transferred horizontally between species from all domains of life. We extended these findings by a detailed analysis of the history of leucyl-tRNA synthetases. Thereby, we identified a previously undetected case of horizontal gene transfer from Bacteria to Archaea based on phylogenetic profiles, trees, and networks. This means that, finally, the last subfamily of aminoacyl-tRNA synthetases has lost its exceptional position as the sole subfamily that is devoid of horizontal gene transfer. Furthermore, the leucyl-tRNA synthetase phylogenetic tree suggests a dichotomy of the archaeal/eukaryotic-cytosolic and bacterial/eukaryotic-mitochondrial proteins. We argue that the traditional division of life into Prokaryota (non-chimeric) and Eukaryota (chimeric) is favorable compared to Woese’s trichotomy into Archaea/Bacteria/Eukaryota. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

15.
Two genes belonging to the heat shock protein 70 gene family have been cloned from the colonial protochordateBotryllus schlosseri. The two intronless genes(HSP70.1 andHSP70.2) exhibit 93.6% sequence identity within the predicted coding region, and 83.3% and 81.7% sequence identity in the 5′ and 3′ flanking regions, respectively. The predicted amino acid sequences are 95% identical and contain several signatures characteristic of cytoplasmic eukaryoticHSP70 genes (Gupta et al. 1994; Rensing and Maier 1994). Northern blotting and sequence analysis suggest that both genes are heat-inducible merebees of theHSP70 gene family. Given these characteristics,HSP70.1 andHSP70.2 appear to be good candidates for protochordate homologues of the major histocompatibility complex-linkedHSP70 genes of human, mouse, and rat (Milner and Campbell 1990; Walter et al. 1994). Further experiments to determine whether there is functional evidence for such similarity are in progress. The nucleotide sequence data reported in this paper have been submitted to the EMBL/GenBank nucleotide sequence databases and have been assigned the accession numbers US 1901 (HSP70.1) and US 1902 (HSP70.2)  相似文献   

16.
We carried out a comprehensive survey of small subunit ribosomal RNA sequences from archaeal, bacterial, and eukaryotic lineages in order to understand the general patterns of thermal adaptation in the rRNA genes. Within each lineage, we compared sequences from mesophilic, moderately thermophilic, and hyperthermophilic species. We carried out a more detailed study of the archaea, because of the wide range of growth temperatures within this group. Our results confirmed that there is a clear correlation between the GC content of the paired stem regions of the 16S rRNA genes and the optimal growth temperature, and we show that this correlation cannot be explained simply by phylogenetic relatedness among the thermophilic archaeal species. In addition, we found a significant, positive relationship between rRNA stem length and growth temperature. These correlations are found in both bacterial and archaeal rRNA genes. Finally, we compared rRNA sequences from warm-blooded and cold-blooded vertebrates. We found that, while rRNA sequences from the warm-blooded vertebrates have a higher overall GC content than those from the cold-blooded vertebrates, this difference is not concentrated in the paired regions of the molecule, suggesting that thermal adaptation is not the cause of the nucleotide differences between the vertebrate lineages. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

17.
Members of cytochrome P450 subfamily 1A (CYP1As) are involved in detoxification and bioactivation of common environmental pollutants. Understanding the functional evolution of these genes is essential to predicting and interpreting species differences in sensitivity to toxicity caused by such chemicals. The CYP1A gene subfamily comprises a single ancestral representative in most fish species and two paralogs in higher vertebrates, including birds and mammals. Phylogenetic analysis of complete coding sequences suggests that mammalian and bird paralog pairs (CYP1A1/2 and CYP1A4/5, respectively) are the result of independent gene duplication events. However, comparison of vertebrate genome sequences revealed that CYP1A genes lie within an extended region of conserved fine-scale synteny, suggesting that avian and mammalian CYP1A paralogs share a common genomic history. Algorithms designed to detect recombination between nucleotide sequences indicate that gene conversion has homogenized most of the length of the chicken CYP1A genes, as well as the 5′ end of mammalian CYP1As. Together, these data indicate that avian and mammalian CYP1A paralog pairs resulted from a single gene duplication event and that extensive gene conversion is responsible for the exceptionally high degree of sequence similarity between CYP1A4 and CYP1A5. Elevated nonsynonymous/synonymous substitution ratios within a putatively unconverted stretch of ∼250 bp suggests that positive selection may have reduced the effective rate of gene conversion in this region, which contains two substrate recognition sites. This work significantly alters our understanding of functional evolution in the CYP1A subfamily, suggesting that gene conversion and positive selection have been the dominant processes of sequence evolution. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

18.
The immunologically important major histocompatibility complex (MHC) harbors some of the most polymorphic genes in vertebrates. These genes presumably evolve under parasite‐mediated selection and frequently show inconsistent allelic genealogies, where some alleles are more similar between species than within species. This phenomenon is thought to arise either from convergent evolution under parallel selection or from the preservation of ancient allelic lineages beyond speciation events (trans‐species polymorphism, TSP). Here, we examine natural populations of two sympatric stickleback species (Gasterosteus aculeatus and Pungitius pungitius) to investigate the contribution of these two mechanisms to the evolution of inconsistent allelic genealogies at the MHC. Overlapping parasite taxa between the two host species in three different habitats suggest contemporary parallel selection on the MHC genes. Accordingly, we detected a lack of species‐specific phylogenetic clustering in the immunologically relevant antigen‐binding residues of the MHC IIB genes which contrasted with the rest of the coding and noncoding sequence. However, clustering was not habitat‐specific and a codon‐usage analysis revealed patterns of similarity by descent. In this light, common descent via TSP, in combination with intraspecies gene conversion, rather than convergent evolution is the more strongly supported scenario for the inconsistent genealogy at the MHC.  相似文献   

19.
Five cDNAs (pDidact2–pDidact6), representing different actin genes, were isolated from a Diphyllobothrium dendriticum cDNA library, and the DNA as well as the putative amino acid sequences were determined. The corresponding Didact2 and Didact4 genes code for peptides 376 amino acids long, with molecular weights 41,772 and 41,744 Da, respectively, while the deduced Didact3 protein is 377 amino acids long and weighs 41,912 Da. The pDidact5 and -6 cDNAs lack nucleotides corresponding to three to six amino acids at the amino-terminus. Two of the five cDNAs contain the conventional AATAAA as the putative polyadenylation signal, one has the common variant ATTAAA, whereas the hexanucleotide AATAGA is found 15 and 18 nucleotides, respectively, upstream of the poly(A) site in two of the cDNAs. Phylogenetic studies including 102 actin protein sequences revealed that there are at least four different types of cestode actins. In this study three of these types were found to be expressed in the adult D. dendriticum tapeworm. Structurally the cestode actin groupings differ from each other to an extent seen only among the metazoan actins between the vertebrate muscle and cytoplasmic isoforms. In the phylogenetic trees constructed, cestode actins were seen to map to two different regions, one on the border of the metazoan actins and the other within this group. It is, however, difficult to say whether the cestode actins branched off early in the metazoan evolution or if this position in the phylogenetic tree only reflects upon differences in evolutionary rate. Received: 19 June 1996 / Accepted: 20 August 1996  相似文献   

20.
Why bacteria matter in animal development and evolution   总被引:1,自引:0,他引:1  
While largely studied because of their harmful effects on human health, there is growing appreciation that bacteria are important partners for invertebrates and vertebrates, including man. Epithelia in metazoans do not only select their microbiota; a coevolved consortium of microbes enables both invertebrates and vertebrates to expand the range of diet supply, to shape the complex immune system and to control pathogenic bacteria. Microbes in zebrafish and mice regulate gut epithelial homeostasis. In a squid, microbes control the development of the symbiotic light organ. These discoveries point to a key role for bacteria in any metazoan existence, and imply that beneficial bacteria‐host interactions should be considered an integral part of development and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号