首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoisomerization of the membrane-bound light receptor protein rhodopsin leads to an energy-rich photostate called bathorhodopsin, which may be trapped at temperatures of 120 K or lower. We recently studied bathorhodopsin by low-temperature solid-state NMR, using in situ illumination of the sample in a purpose-built NMR probe. In this way we acquired 13C chemical shifts along the retinylidene chain of the chromophore. Here we compare these results with the chemical shifts of the dark state chromophore in rhodopsin, as well as with the chemical shifts of retinylidene model compounds in solution. An earlier solid-state NMR study of bathorhodopsin found only small changes in the 13C chemical shifts upon isomerization, suggesting only minor perturbations of the electronic structure in the isomerized retinylidene chain. This is at variance with our recent measurements which show much larger perturbations of the 13C chemical shifts. Here we present a tentative interpretation of our NMR results involving an increased charge delocalization inside the polyene chain of the bathorhodopsin chromophore. Our results suggest that the bathochromic shift of bathorhodopsin is due to modified electrostatic interactions between the chromophore and the binding pocket, whereas both electrostatic interactions and torsional strain are involved in the energy storage mechanism of bathorhodopsin.  相似文献   

2.
It is generally believed that the electrostatic field arising from the dipolar charge distribution in alpha helices is important for protein structure and function. We report a calculation of the electrostatic potential and field at the amino terminus of an alpha helix in water, obtained from a finite difference solution to the Poisson-Boltzmann equation. This method takes into account the detailed helix shape and charge distribution, as well as solvent, and generalized ionic strength effects. The calculated potential and field are found to be in good agreement with the experimentally observed helix-induced Stark effect and pKa shifts of a probe at the N-terminus of a stable, monomeric alpha-helical peptide (Lockhart and Kim, 1992, 1993). Ionic screening effects are reproduced at low salt concentrations. Deviations at higher salt concentrations may result from specific ion effects (specific ion-solute and/or ion-solvent interactions). The FDPB method was used to analyze the contributions from each residue, charged side chains, and solvent to the helix potential and field. Backbone contributions come primarily from the first one to two helical turns. Charged side chains contribute to helix-induced pKa shifts for certain probe-peptide combinations, even at relatively large distances from the probe (> 14 A).  相似文献   

3.
4.
Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer’s disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.  相似文献   

5.
R. Meloni  G. Tiana 《Proteins》2017,85(4):753-763
With the help of molecular‐dynamics simulations, we studied the effect of urea and guanidine chloride on the thermodynamic and structural properties of the helical fragment of protein GB1, comparing them with those of its second beta hairpin. We showed that the helical fragment in different solvents populates an ensemble of states that is more complex than that of the hairpin, and thus the associated experimental observables (circular‐dichroism spectra, secondary chemical shifts, m values), that we back‐calculated from the simulations and compared with the actual data, are more difficult to interpret. We observed that in the case of both peptides, urea binds tightly to their backbone, while guanidine exerts its denaturing effect in a more subtle way, strongly affecting the electrostatic properties of the solution. This difference can have consequences in the way denaturation experiments are interpreted. Proteins 2017; 85:753–763. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The long-term experience in controlling the electric field distribution in the discharge gaps of plasma accelerators and thrusters with closed electron drift and the key ideas determining the concepts of these devices and tendencies of their development are analyzed. It is shown that an electrostatic mechanism of ion acceleration in plasma by an uncompensated space charge of the cloud of magnetized electrons “kept” to the magnetic field takes place in the acceleration zones and that the electric field distribution can be controlled by varying the magnetic field in the discharge gap. The role played by the space charge makes the mechanism of ion acceleration in this type of thrusters is fundamentally different from the acceleration mechanism operating in purely electrostatic thrusters.  相似文献   

7.
Antibody pharmacokinetics and pharmacodynamics are often governed by biological processes such as binding to antigens and other cognate receptors. Emphasis must also be placed, however, on fundamental physicochemical properties that define antibodies as complex macromolecules, including shape, size, hydrophobicity, and charge. Electrostatic interactions between anionic cell membranes and the predominantly positive surface charge of most antibodies can influence blood concentration and tissue disposition kinetics in a manner that is independent of antigen recognition. In this context, the deliberate modification of antibodies by chemical means has been exploited as a valuable preclinical research tool to investigate the relationship between net molecular charge and biological disposition. Findings from these exploratory investigations may be summarized as follows: (I) shifts in isoelectric point of approximately one pI unit or more can produce measurable changes in tissue distribution and kinetics, (II) increases in net positive charge generally result in increased tissue retention and increased blood clearance, and (III) decreases in net positive charge generally result in decreased tissue retention and increased whole body clearance. Understanding electrostatic interactions between antibodies and biological matrices holds relevance in biotechnology, especially with regard to the development of immunoconjugates. The guiding principles and knowledge gained from preclinical evaluation of chemically modified antibodies will be discussed and placed in the context of therapeutic antibodies that are currently marketed or under development, with a particular emphasis on pharmacokinetic and disposition properties.  相似文献   

8.
Summary Contemporary theoretical models used in describing electrostatic properties of amino acids in polypeptides rely usually on atomic point charges. Recently noted defects of such models in reproducing protein folding originate from the inadequate representation of the electrostatic term, in particular inability of atomic charges to account for local anisotropy of molecular charge distribution. Such defects could be corrected by multicenter multipole moments derived directly from any high quality quantum chemical wavefunctions. This is illustrated by comparison of monopole and multipole electrostatic interactions between some amino acids within glutathione S-transferase.High quality Point Charge Models (PCM) can be derived analytically from multipole moment databases. Preliminary results suggest that torsional potentials are controlled by electrostatic interactions of atomic multipoles.Examples illustrating various uses of multicenter multipole moment databases of protein building blocks in modeling various properties of amino acids and polypeptides have been described, including calculation of molecular electrostatic potentials, electric fields, interactions between amino acid residues, estimates of pKa shifts and changes in catalytic activity induced by amino acid substitutions in mutated enzymes.  相似文献   

9.
The functional properties of the anion-selective porin Omp32 from the bacterium Delftia acidovorans, formerly Comamonas acidovorans, are determined by the particularly narrow channel constriction and the electrostatic field inside and outside the pore. A cluster of arginines (Arg 38, Arg 75, and Arg 133) determines the electrostatic field close to the constriction zone. Stacked amino acids carrying charges are prone to drastic pK(a) shifts. However, optimized calculations of the titration behavior of charged groups, based on the finite-difference Poisson-Boltzmann technique, suggest that all the arginines are charged at physiological pH. Protonation of the clustered arginines is stabilized by one buried glutamate residue (Glu 58), which is strongly interacting with Arg 75 and Arg 38. This functional arrangement of three charged amino acid residues is of general significance because it is found in the constriction zones of all known 16-stranded porins from the alpha-, beta-, and gamma-proteobacteria.  相似文献   

10.
Electron paramagnetic resonance (EPR) and, more recently, solid-state nuclear magnetic resonance (NMR) have been employed to study photosynthetic processes, primarily related to the light-induced charge separation. Information obtained on the electronic structure, the relative orientation of the cofactors, and the changes in structure during these reactions should help to understand the efficiency of light-induced charge separation. A short introduction to the observables derived from magnetic resonance experiments is given. The relation of these observables to the electronic structure is sketched using the nitroxide group of spin labels as a simple example.  相似文献   

11.
Nuclear magnetic resonance (NMR) chemical shifts are experimental observables that are available during the first stage of the protein structure determination process. Recently, some methodologies for building structural models of proteins using only these experimental data have been implemented. To assess the potential of these methods for modeling metalloproteins (generally considered a challenging benchmark), we determined the structures of the yeast copper chaperone Atx1 and the CuA domain of Thermus thermophilus cytochrome c oxidase starting from the available chemical shift data. The metal centers were modeled using molecular dynamics simulations with molecular mechanics potentials. The results obtained are evaluated and discussed.  相似文献   

12.
Harris TK  Turner GJ 《IUBMB life》2002,53(2):85-98
In protein and RNA macromolecules, only a limited number of different side-chain chemical groups are available to function as catalysts. The myriad of enzyme-catalyzed reactions results from the ability of most of these groups to function either as nucleophilic, electrophilic, or general acid-base catalysts, and the key to their adapted chemical function lies in their states of protonation. Ionization is determined by the intrinsic pKa of the group and the microenvironment created around the group by the protein or RNA structure, which perturbs its intrinsic pKa to its functional or apparent pKa. These pKa shifts result from interactions of the catalytic group with other fully or partially charged groups as well as the polarity or dielectric of the medium that surrounds it. The electrostatic interactions between ionizable groups found on the surface of macromolecules are weak and cause only slight pKa perturbations (<2 units). The sum of many of these weak electrostatic interactions helps contribute to the stability of native or folded macromolecules and their ligand complexes. However, the pKa values of catalytic groups that are found in the active sites of numerous enzymes are significantly more perturbed (>2 units) and are the subject of this review. The magnitudes of these pKa perturbations are analyzed with respect to the structural details of the active-site microenvironment and the energetics of the reactions that they catalyze.  相似文献   

13.
Acridine orange (AO), dinitrobenzoic acid (DNB), bromocresol green (BCG), bromophenol blue (BPB), and methylene blue (MB) were chosen as model aromatic compounds of different polarity, charge, and solubility in water to examine the effects of solute properties on hydrophobic adsorption. These compounds show strict structural similarities to some herbicides and other potential xenobiotic pollutants and exhibit distinct absorption maxima in the visible region, which allows for their easy determination. A well-decomposed peat (medisaprist) at four different stages of drying was used to determine compound adsorption/desorption influences based on the degree of hydrophobicity and charge density of an organic surface. Adsorption and desorption isotherms were investigated using the batch equilibration method and determining the concentration of free chemicals by UV-Vis spectrophotometry. AO had a high tendency of adsorption and was strongly sorbed on peat samples that had been air-dried for 12 months. The lower Freundlich coefficient values found for MB when compared with AO at all the drying stages of the peat indicated that electrostatic attraction has a secondary contribution to sorption. On the contrary, the higher energy that must be spent to break solute-solvent interactions in the case of charged or polar molecules is one of the main factors in determining the position of the equilibrium. For a given solute, Kf values varied with the degree of hydrophobicity and the charge density of the surface, but again solute-solvent interactions appear to be much more important in the overall energy balance of hydrophobic pollutants than the electrostatic sorbate-sorbent interactions. A change in the solution pH does not improve the adsorption of the relatively polar DNB molecule, but sorption increases strongly for BCG and BPB when these molecules are in non-dissociated forms. The larger increase in BPB sorption observed on H+ saturated peat suggests that the degree of interaction increases with the suppression of the negative charge, but charge repulsion has a small effect in preventing adsorption of molecules bearing hydrophobic groups such as BCG. Desorption results differed depending on the chemical structure of the compound examined. For example, with AO there was no desorption from the more hydrophobic peat surfaces. A negative hysteresis was observed for DNB; the magnitude of hysteresis, evaluated using the ratio of Freundlich coefficients for adsorption and desorption, increased with the drying stage of the sorbent and was larger on oven-dried samples.  相似文献   

14.
We have measured the ionic strength dependence of the rate constants for electron transfer from the semiquinone of Clostridium pasteurianum flavodoxin to 12 c-type cytochromes and several inorganic oxidants using stopped-flow methodology. The experimental data were fit quite well by an electrostatic model that represents the interaction domains as parallel disks with a point charge equal to the charge within this region of the protein. The analysis provides an evaluation of the electrostatic interaction energy and the rate constant at infinite ionic strength (k affinity). The electrostatic charge on the oxidant within the interaction site can be obtained from the electrostatic energy, and for most of those reactants for which structures are available, the results are in good agreement with expectation. The k affinity values were found to correlate with redox potential differences, as expected from the theory of adiabatic (or nonadiabatic) outer-sphere electron-transfer reactions. Deviations from the theoretical curves are interpreted in terms of the influence of surface topology on reaction rate constants. In general, we find that electrostatic effects, steric influences, and redox potential all exert a much larger effect on reaction rate constants for the flavodoxin-cytochrome system than has been previously observed for free flavin-cytochrome interactions. The implications of this for determining biological specificity are discussed.  相似文献   

15.
We describe an alternate approach for studying protein structure using the detection of ultraviolet (UV) absorbance peak shifts of aromatic amino acid side chains induced by the presence of salts. The method is based on the hypothesis that salt cations (Li+, Na+, and Cs+) of varying sizes can differentially diffuse through protein matrices and interact with benzyl, phenyl, and indole groups through cation-pi interactions. We have investigated the potential of this method to probe protein dynamics by measuring high resolution second-derivative UV spectra as a function of salt concentration for eight proteins of varying physical and chemical properties and the N-acetylated C-ethyl esterified amino acids to represent totally exposed side chains. We show that small shifts in the wavelength maxima for Phe, Tyr, and Trp in the presence of high salt concentrations can be reliably measured and that the magnitude and direction of the peak shifts are influenced by several factors, including protein size, charge, and the local environment and solvent accessibility of the aromatic groups. Evaluating the empirical UV spectral data in light of known protein structural information shows that probing cation-pi interactions in proteins reveals unique information about the influence of structure on aromatic side chain spectroscopic behavior.  相似文献   

16.
Wei Y  Lin J  Frey PA 《Biochemistry》2001,40(37):11279-11287
UDP-galactose 4-epimerase contains the coenzyme NAD+ bound tightly at the active site. NAD+ functions as the coenzyme for the interconversion of UDP-galactose and UDP-glucose by reversibly mediating their dehydrogenation to the common intermediate UDP-4-ketohexopyranoside. The epimerase structure and spectrophotometric data indicate that NAD+ may engage in electrostatic interactions with amino acid side chains that may regulate the reactivity of NAD+. In this work, we carried out NMR studies of [nicotinamide-4-13C]NAD+ bound to wild-type epimerase and epimerases mutated at amino acid residues in contact with NAD+. The 4-13C NMR chemical shifts revealed the following: The 4-13C chemical shift in wild-type epimerase is 149.9 ppm; mutation of Ser 124 to Ala changes it slightly by 0.2 ppm to 150.1 ppm; mutation of Tyr 149 to Phe results in a downfield perturbation of 2.7 ppm to 152.6 ppm; and the simultaneous mutation of Ser 124 to Ala and Tyr 149 to Phe also causes a downfield perturbation of 2.8 ppm to 152.7 ppm. Mutation of Lys 153 to Met results in a 13C chemical shift of 150.8 ppm, which is 0.9 ppm downfield from that of wild type and 1.8 ppm upfield from that of Y149F-epimerase. The 13C chemical shifts of nicotinamide C4 of NAD+ in these epimerases are correlated with their respective reactivities with NaBH3CN. In addition, reactivity of NAD+ in wild-type and S124A-epimerases displays pH dependence, with higher rates at lower pH where Tyr 149 in these two enzymes is protonated. The results support an electrostatic model in which repulsion between positively charged Lys 153 and N1 of the nicotinamide ring increases the reactivity of NAD+, while the phenolate of Tyr 149 opposes the positive electrostatic field and attenuates the reactivity of NAD+. Ser 124 has very little effect on the electron distribution within the nicotinamide ring or the reactivity of NAD+. The effects of binding the substrate analogue P1-uridyl-P2-methyl diphosphate (Me-UDP) on the 4-13C chemical shifts are opposite to those induced by the mutations. MeUDP perturbs the 4-13C chemical shift 2.9 ppm downfield in the wild-type and S124A-epimerases but has little or no effect in the cases of Y149F- or K153M-epimerases. The results support the postulate that NAD+ activation induced by uridine nucleotides is brought about by a conformational change of epimerase that repositions Tyr 149 at an increased distance from nicotinamide N1 of NAD+ while maintaining the electrostatic repulsion between Lys 153 and nicotinamide N1 of NAD+.  相似文献   

17.
David R. Koes  John K. Vries 《Proteins》2017,85(10):1944-1956
NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1H, 15N, and 13Ca atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields.  相似文献   

18.
Accurately predicting the structural properties of phospholipid with a fully atomistic molecular model is critical for the study of pure phospholipid bilayers, mixed bilayer systems and bilayers containing proteins. The general amber force field (GAFF) has traditionally required the presence of a surface tension parameter to correctly model phospholipid bilayer properties such as area per lipid and order parameters. In this work, the GAFF partial charges for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphochiline (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) were re-parameterised utilising high-level ab initio calculations and the restrained electrostatic potential method. Simulations of pure POPA, POPC and POPG bilayers using the charge-modified GAFF and no applied surface tension are compared with available experimental data, the original GAFF model and the recent Lipid14 variant. The results indicate a significant improvement in the accuracy of the lipid model for reproducing experimental observables without the need for a surface tension parameter. The successful application of modifying the lipid charge distributions represents an alternative to the use of a surface tension parameter within GAFF, and highlights the importance of the partial charge calculations when modelling lipid bilayers.  相似文献   

19.
Calculated and experimental (1)H, (13)C and (19)F chemical shifts were compared in BKM-824, a cyclic bradykinin antagonist mimic, c[Ava(1)-Igl(2)-Ser(3)-DF5F(4)-Oic(5)-Arg(6)] (Ava=5-aminovaleric acid, Igl=alpha-(2-indanyl)glycine, DF5F=pentafluorophenylalanine, Oic=(2S,3aS,7aS)-octahydroindole-2-carboxylic acid). The conformation of BKM-824 has been studied earlier by NMR spectroscopy (M. Miskolzie et al., J. Biomolec. Struct. Dyn. 17, 947-955 (2000)). All NMR structures have qualitatively the same backbone structure but there is considerable variation in the side chain conformations. We have carried out quantum mechanical optimization for three representative NMR structures at the B3LYP/6-31G* level, constraining the backbone dihedral angles at their NMR structure values, followed by NMR chemical shift calculations at the optimized structures with the 6-311G** basis set. There is an intramolecular hydrogen bond at Ser(3) in the optimized structures. The experimental (13)C chemical shifts at five C(alpha) positions as well as at the Cbeta, Cgamma and Cdelta position of Ava(1), which forms part of the backbone, are well reproduced by the calculations, confirming the NMR backbone structure. A comparison between the calculated and experimental H(beta) chemical shifts in Igl(2) shows that the dominant conformation at this residue is gauche. Changes of proton chemical shifts with the scan of the chi(1) angle in DF5F(4) suggest that chi(1)180 degrees. The calculated (1)H and (13)C chemical shifts are in good agreement with experiment at the rigid residue Oic(5). None of the models gives accurate results for Arg(6), presumably because of its positive charge. Our study indicates that calculated NMR shifts can be used as additional constraints in conjunction with NMR data to determine protein conformations. However, to be computationally effective, a database of chemical shifts in small peptide fragments should be precalculated.  相似文献   

20.
For some enzymes, virtually every substrate molecule that encounters the entrance to the active site proceeds to reaction, at low substrate concentrations. Such diffusion-limited enzymes display high apparent bimolecular rate constants ((kcat/KM)), which depend strongly upon solvent viscosity. Some experimental studies provide evidence that acetylcholinesterase falls into this category. Interestingly, the asymmetric charge distribution of acetylcholinesterase, apparent from the crystallographic structure, suggests that its electrostatic field accelerates the encounter of its cationic substrate, acetylcholine, with the entrance to the active site. Here we report simulations of the diffusion of substrate in the electrostatic field of acetylcholinesterase. We find that the field indeed guides the substrate to the mouth of the active site. The computed encounter rate constants depend upon the particular relative geometries of substrate and enzyme that are considered to represent successful encounters. With loose reaction criteria, the computed rates exceed those measured experimentally, but the rate constants vary appropriately with ionic strength. Although more restrictive reaction criteria lower the computed rates, they also lead to unrealistic variation of the rate constants with ionic strength. That these simulations do not agree well with experiment suggests that the simple diffusion model is incomplete. Structural fluctuations in the enzyme or events after the encounter may well contribute to rate limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号