首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Balagúe  M Kalla    W W Zhang 《Journal of virology》1997,71(4):3299-3306
Two adeno-associated virus (AAV) elements are necessary for the integration of the AAV genome: Rep78/68 proteins and inverted terminal repeats (ITRs). To study the contribution of the Rep proteins and the ITRs in the process of integration, we have compared the integration efficiencies of three different plasmids containing a green fluorescent protein (GFP) expression cassette. In one plasmid, no viral sequences were present; a second plasmid contained AAV ITRs flanking the reporter gene (integration cassette), and a third plasmid consisted of an integration cassette plus a Rep78 expression cassette. One day after transfection of 293 cells, fluorescent cells were sorted by flow cytometry and plated at 1 cell per well. Two weeks after sorting, colonies were monitored for stable expression of GFP. Transfection with the GFP plasmid containing no viral sequences resulted in no stable fluorescent colonies. Transfection with the plasmid containing the integration cassette alone (GFP flanked by ITRs) produced stable fluorescent colonies at a frequency of 5.3% +/- 1.0% whereas transfection with the plasmid containing both the integration cassette and Rep78 expression cassette produced stable fluorescent colonies at a frequency of 47% +/- 7.5%. Southern blot analysis indicated that in the presence of Rep78, integration is targeted to the AAVSI site in more than 50% of the clones analyzed. Some clones also showed tandem arrays of the integrated GFP cassette. Both head-to-head and head-to-tail orientations were detected. These findings indicate that the presence of AAV ITRs and the Rep78 protein enhance the integration of DNA sequences into the cellular genome and that the integration cassette is targeted to AAVS1 in the presence of Rep78.  相似文献   

2.
Herpes simplex virus type 1 (HSV-1) amplicon vectors are promising gene delivery tools, but their utility in gene therapy has been impeded to some extent by their inability to achieve stable transgene expression. In this study, we examined the possibility of improving transduction stability in cultured human cells via site-specific genomic integration mediated by adeno-associated virus (AAV) Rep and inverted terminal repeats (ITRs). A rep(-) HSV/AAV hybrid amplicon vector was made by inserting a transgene cassette flanked with AAV ITRs into an HSV-1 amplicon backbone, and a rep(+) HSV/AAV hybrid amplicon was made by inserting rep68/78 outside the rep(-) vector 3' AAV ITR sequence. Both vectors also had a pair of loxP sites flanking the ITRs. The resulting hybrid amplicon vectors were successfully packaged and compared to a standard amplicon vector for stable transduction frequency (STF) in human 293 and Gli36 cell lines and primary myoblasts. The rep(+), but not the rep(-), hybrid vector improved STF in all three types of cells; 84% of Gli36 and 40% of 293 stable clones transduced by the rep(+) hybrid vector integrated the transgene into the AAVS1 site. Due to the difficulty in expanding primary myoblasts, we did not assess site-specific integration in these cells. A strategy to attempt further improvement of STF by "deconcatenating" the hybrid amplicon DNA via Cre-loxP recombination was tested, but it did not increase STF. These data demonstrate that introducing the integrating elements of AAV into HSV-1 amplicon vectors can significantly improve their ability to achieve stable gene transduction by conferring the AAV-like capability of site-specific genomic integration in dividing cells.  相似文献   

3.
The strand-specific, site-specific endonuclease (nicking) activity of the Rep68 and Rep78 (Rep68/78) proteins of adeno-associated virus type 2 (AAV) is involved in AAV replication, and appears to be involved in AAV site-specific integration. Rep68/78 cuts within the inverted terminal repeats (ITRs) of the AAV genome and in the AAV preferred integration locus on human chromosome 19 (AAVS1). The known endonuclease cut sites are 11-16 bases away from the primary binding sites, known as Rep recognition sequences (RRSs). A linear, double-stranded segment of DNA, containing an RRS and a cut site, has previously been shown to function as a substrate for the Rep68/78 endonuclease activity. We show here that mutation of the Rep recognition sequence, within such a DNA segment derived from the AAV ITRs, eliminates the ability of this substrate to be cleaved detectably by Rep78. Rep78 nicks the RRS-containing site from AAVS1 about half as well as the linear ITR sequence. Eighteen other RRS-containing sequences found in the human genome, but outside AAVS1, are not cleaved by Rep78. These results may help to explain the specificity of AAV integration.  相似文献   

4.
Herpes simplex virus type 1 (HSV-1)-based amplicon vectors have a large transgene capacity and can efficiently infect many different cell types. One disadvantage of HSV-1 vectors is their instability of transgene expression. By contrast, vectors based on adeno-associated virus (AAV) can either persist in an episomal form or integrate into the host cell genome, thereby supporting long-term gene expression. AAV expresses four rep genes, rep68, -78, -40, and -52. Of those, rep68 or rep78 are sufficient to mediate site-specific integration of the AAV DNA into the host cell genome. The major disadvantage of AAV vectors is the small transgene capacity ( approximately 4.6 kb). In this study, we constructed HSV/AAV hybrid vectors that contained, in addition to the standard HSV-1 amplicon elements, AAV rep68, rep78, both rep68 and -78, or all four rep genes and a reporter gene that was flanked by the AAV inverted terminal repeats (ITRs). Southern blots of Hirt DNA from cells transfected with the hybrid vectors and HSV-1 helper DNA demonstrated that both the AAV elements and the HSV-1 elements were functional in the context of the hybrid vector. All hybrid vectors could be packaged into HSV-1 virions, although those containing rep sequences had lower titers than vectors that did not. Site-specific integration at AAVS1 on human chromosome 19 was directly demonstrated by PCR and sequence analysis of ITR-AAVS1 junctions in hybrid vector-transduced 293 cells. Cell clones that stably expressed the transgene for at least 12 months could easily be isolated without chemical selection. In the majority of these clones, the transgene cassette was integrated at AAVS1, and no sequences outside the ITR cassette, rep in particular, were present as determined by PCR, ITR rescue/replication assays, and Southern analysis. Some of the clones contained random integrations of the transgene cassette alone or together with sequences outside the ITR cassette. These data indicate that the long-term transgene expression observed following transduction with HSV/AAV hybrid vectors is, at least in part, supported by chromosomal integration of the transgene cassette, both randomly and site specifically.  相似文献   

5.
Adeno-associated virus (AAV) integrates very efficiently into a specific site (AAVS1) of human chromosome 19. Two elements of the AAV genome are sufficient: the inverted terminal repeats (ITRs) and the Rep78 or Rep68 protein. The incorporation of the AAV integration machinery in nonviral delivery systems is of great interest for gene therapy. We demonstrate that purified recombinant Rep68 protein is functionally active when directly delivered into human cells by using the polycationic liposome Lipofectamine, promoting the rescue-replication of a codelivered ITR-flanked cassette in adenovirus-infected cells and its site-specific integration in noninfected cells. The sequencing of cloned virus-host DNA junctions confirmed that lipofected Rep68 protein triggers site-specific integration at the same sites in chromosome 19 already characterized in cells latently infected with AAV.  相似文献   

6.
Gene therapy for hemoglobinopathies requires efficient gene transfer into hematopoietic stem cells and high-level erythroid-specific gene expression. Toward this goal, we constructed a helper-dependent adenovirus vector carrying the beta-globin locus control region (LCR) to drive green fluorescent protein (GFP) expression, whereby the LCR-GFP cassette is flanked by adeno-associated virus (AAV) inverted terminal repeats (Ad.LCR-beta-GFP). This vector possesses the adenovirus type 35 fiber knob that allows efficient infection of hematopoietic cells. Transduction and vector integration studies were performed in MO7e cells, a growth factor-dependent CD34(+) erythroleukemic cell line, and in cord blood-derived human CD34(+) cells. Stable transduction of MO7e cells with Ad.LCR-beta-GFP was more efficient and less subject to position effects and silencing than transduction with a vector that did not contain the beta-globin LCR. Analysis of integration sites indicated that Ad.LCR-beta-GFP integration in MO7e cells was not random but tethered to chromosome 11, specifically to the globin LCR. More than 10% of analyzed integration sites were within the chromosomal beta-globin LCR. None of the Ad.LCR-beta-GFP integrations occurred in exons. The integration pattern of a helper-dependent vector that contained X-chromosomal stuffer DNA was different from that of the beta-globin LCR-containing vector. Infection of primary CD34(+) cells with Ad.LCR-beta-GFP did not affect the clonogenic capacity of CD34(+) cells. Transduction of CD34(+) cells with Ad.LCR-beta-GFP resulted in vector integration and erythroid lineage-specific GFP expression.  相似文献   

7.
Adeno-associated virus type 2 (AAV2) preferentially integrates its genome into the AAVS1 locus on human chromosome 19. Preferential integration requires the AAV2 Rep68 or Rep78 protein (Rep68/78), a Rep68/78 binding site (RBS), and a nicking site within AAVS1 and may also require an RBS within the virus genome. To obtain further information that might help to elucidate the mechanism and preferred substrate configurations of preferential integration, we amplified junctions between AAV2 DNA and AAVS1 from AAV2-infected HeLaJW cells and cells with defective Artemis or xeroderma pigmentosum group A genes. We sequenced 61 distinct junctions. The integration junction sequences show the three classical types of nonhomologous-end-joining joints: microhomology at junctions (57%), insertion of sequences that are not normally contiguous with either the AAV2 or the AAVS1 sequences at the junction (31%), and direct joining (11%). These junctions were spread over 750 bases and were all downstream of the Rep68/78 nicking site within AAVS1. Two-thirds of the junctions map to 350 bases of AAVS1 that are rich in polypyrimidine tracts on the nicked strand. The majority of AAV2 breakpoints were within the inverted terminal repeat (ITR) sequences, which contain RBSs. We never detected a complete ITR at a junction. Residual ITRs at junctions never contained more than one RBS, suggesting that the hairpin form, rather than the linear ITR, is the more frequent integration substrate. Our data are consistent with a model in which a cellular protein other than Artemis cleaves AAV2 hairpins to produce free ends for integration.  相似文献   

8.
A prominent goal in gene therapy research concerns the development of gene transfer vehicles that can integrate exogenous DNA at specific chromosomal loci to prevent insertional oncogenesis and provide for long-term transgene expression. Adenovirus (Ad) vectors arguably represent the most efficient delivery systems of episomal DNA into eukaryotic cell nuclei. The most advanced recombinant Ads lack all adenoviral genes. This renders these so-called high-capacity (hc) Ad vectors less cytotoxic/immunogenic than those only deleted in early regions and creates space for the insertion of large/multiple transgenes. The versatility of hcAd vectors is been increased by capsid modifications to alter their tropism and by the incorporation into their genomes of sequences promoting chromosomal insertion of exogenous DNA. Adeno-associated virus (AAV) can insert its genome into a specific human locus designated AAVS1. Trans- and cis-acting elements needed for this reaction are the AAV Rep78/68 proteins and Rep78/68-binding sequences, respectively. Here, we describe the generation, characterization and testing of fiber-modified dual hcAd/AAV hybrid vectors (dHVs) containing both these elements. Due to the inhibitory effects of Rep78/68 on Ad-dependent DNA replication, we deployed a recombinase-inducible gene switch to repress Rep68 synthesis during vector rescue and propagation. Flow cytometric analyses revealed that rep68-positive dHVs can be produced similarly well as rep68-negative control vectors. Western blot experiments and immunofluorescence microscopy analyses demonstrated transfer of recombinase-dependent rep68 genes into target cells. Studies in HeLa cells and in the dystrophin-deficient myoblasts from a Duchenne muscular dystrophy (DMD) patient showed that induction of Rep68 synthesis in cells transduced with fiber-modified and rep68-positive dHVs leads to increased stable transduction levels and AAVS1-targeted integration of vector DNA. These results warrant further investigation especially considering the paucity of vector systems allowing permanent phenotypic correction of patient-own cell types with large DNA (e.g. recombinant full-length DMD genes).  相似文献   

9.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

10.
Recombinant adeno-associated virus (AAV) type 2 has attracted attention because it appears to have the potential to serve as a vector for human gene therapy. An interesting feature of wild-type AAV is its site-specific integration into AAVS1, a defined locus on chromosome 19. This reaction requires the presence of two viral elements: inverted terminal repeats and Rep78/68. Accordingly, current AAV vectors lacking the rep gene lack the capacity for site-specific integration. In this report, we describe the use of Cre-loxP recombination in a novel system for the regulated, transient expression of Rep78, which is potentially cytotoxic when synthesized constitutively. We constructed a plasmid in which the p5 promoter was situated downstream of the rep coding sequence; in this configuration, rep expression is silent. However, Cre circularizes the rep expression unit, directly joining the p5 promoter to the 5' end of the rep78 coding sequence, resulting in expression of Rep78. Such structural and functional changes were confirmed by detailed molecular analysis. A key feature of this system is that Rep expression was terminated when the circular molecule was linearized and integrated into the chromosome. Using this regulated expression system, we attempted site-specific integration of AAV vector plasmids. A PCR-based assay and analysis of fluorescence in situ hybridization showed that the AAV vector sequence was integrated into chromosome 19. Sequence analysis also confirmed that transient expression of Rep78 was sufficient for site-specific integration at the AAVS1 locus, as is observed with integration of wild-type AAV.  相似文献   

11.
It is of great interest for gene therapy to develop vectors that drive the insertion of a therapeutic gene into a chosen specific site on the cellular genome. Adeno-associated virus (AAV) is unique among mammalian viruses in that it integrates into a distinct region of human chromosome 19 (integration site AAVS1). The inverted terminal repeats (ITRs) flanking the AAV genome and the AAV-encoded nonstructural proteins Rep78 and/or Rep68 are the only viral elements necessary and sufficient for site-specific integration. However, it is also known that unrestrained Rep activity may cause nonspecific genomic rearrangements at AAVS1 and/or have detrimental effects on cell physiology. In this paper we describe the generation of a ligand-dependent form of Rep, obtained by fusing a C-terminally deleted Rep68 with a truncated form of the hormone binding domain of the human progesterone receptor, which does not bind progesterone but binds only its synthetic antagonist RU486. The activity of this chimeric protein, named Rep1-491/P, is highly dependent on RU486 in various assays: in particular, it triggers site-specific integration at AAVS1 of an ITR-flanked cassette in a ligand-dependent manner, as efficiently as wild-type Rep68 but without generating unwanted genomic rearrangement at AAVS1.  相似文献   

12.
BACKGROUND: There is a risk of insertional mutagenesis when techniques that facilitate random integration of exogenous DNA into the human genome are used for gene therapy. Wild-type adeno-associated virus (AAV) integrates preferentially into a specific site on human chromosome 19 (AAVS1). This is mediated by the interaction of the viral Rep68/78 proteins with Rep-binding elements in the AAV genome and AAVS1. This specificity is often lost when AAV is used as a gene therapy vector due to removal of the sequences coding for Rep. METHODS: Messenger RNA coding for the Rep68/78 proteins was prepared in vitro and co-transfected with a 21 kb DNA plasmid containing the P5 integration efficiency element (P5IEE) from AAV. Single cells were seeded in plates to establish clonal cell lines that were subsequently analysed by dual colour fluorescent in situ hybridisation (FISH) to determine whether site-specific plasmid integration had occurred on chromosome 19. RESULTS: The co-transfection of plasmid DNA with Rep68/78 mRNA gave a 2.5-fold increase in DNA integration when compared to transfection of cells with plasmid DNA alone. Rep68/78 mRNA expression facilitated site-specific plasmid integration to chromosome 19 in 30% (14/44) of all analysed integration sites, while no targeted integration events were observed following transfection of cells with plasmid DNA alone. CONCLUSIONS: These results demonstrate that transient expression of Rep protein using transfected mRNA facilitates site-specific integration of plasmid DNA. This approach allows expression of Rep for only a short time, and may circumvent the toxicity and chromosome instability associated with long-term expression of Rep.  相似文献   

13.
14.
The adeno-associated virus (AAV) is unique in its ability to target viral DNA integration to a defined region of human chromosome 19 (AAVS1). Since AAVS1 sequences are not conserved in a rodent’s genome, no animal model is currently available to study AAV-mediated site-specific integration. We describe here the generation of transgenic rats and mice that carry the AAVS1 3.5-kb DNA fragment. To test the response of the transgenic animals to Rep-mediated targeting, primary cultures of mouse fibroblasts, rat hepatocytes, and fibroblasts were infected with wild-type wt AAV. PCR amplification of the inverted terminal repeat (ITR)-AAVS1 junction revealed that the AAV genome integrated into the AAVS1 site in fibroblasts and hepatocytes. Integration in rat fibroblasts was also observed upon transfection of a plasmid containing the rep gene under the control of the p5 and p19 promoters and a dicistronic cassette carrying the green fluorescent protein (GFP) and neomycin (neo) resistance gene between the ITRs of AAV. The localization of the GFP-Neo sequence in the AAVS1 region was determined by Southern blot and FISH analysis. Lastly, AAV genomic DNA integration into the AAVS1 site in vivo was assessed by virus injection into the quadriceps muscle of transgenic rats and mice. Rep-mediated targeting to the AAVS1 site was detected in several injected animals. These results indicate that the transgenic lines are proficient for Rep-mediated targeting. These animals should allow further characterization of the molecular aspects of site-specific integration and testing of the efficacy of targeted integration of AAV recombinant vectors designed for human gene therapy.  相似文献   

15.
The adeno-associated virus type 2 (AAV-2) Rep78 and Rep68 proteins are required for replication of the virus as well as its site-specific integration into a unique site, called AAVS1, of human chromosome 19. Rep78 and Rep68 initiate replication by binding to a Rep binding site (RBS) contained in the AAV-2 inverted terminal repeats (ITRs) and then specifically nicking at a nearby site called the terminal resolution site (trs). Similarly, Rep78 and Rep68 are postulated to trigger the integration process by binding and nicking RBS and trs homologues present in AAVS1. However, Rep78 and Rep68 cleave in vitro AAVS1 duplex-linear substrates much less efficiently than hairpinned ITRs. In this study, we show that the AAV-2 Rep68 endonuclease activity is affected by the topology of the substrates in that it efficiently cleaves in vitro in a site- and strand-specific manner the AAVS1 trs only if this sequence is in a supercoiled (SC) conformation. DNA sequence mutagenesis in the context of SC templates allowed us to elucidate for the first time the AAVS1 trs sequence and position requirements for Rep68-mediated cleavage. Interestingly, Rep68 did not cleave SC templates containing RBS from other sites of the human genome. These findings have intriguing implications for AAV-2 site-specific integration in vivo.  相似文献   

16.
Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome 19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors, chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome. In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome.  相似文献   

17.
Liu Q  Perez CF  Wang Y 《Journal of virology》2006,80(4):1672-1679
We previously demonstrated that a herpes simplex virus type 1 (HSV-1)/adeno-associated virus (AAV) hybrid amplicon vector constructed by inserting the sequences of regulatory protein (rep) and inverted terminal repeats of AAV into an HSV amplicon vector resulted in the enhanced stability of transgene expression compared to the original HSV-1 amplicon vector. However, problems related to the expression of Rep compromised its therapeutic applications. We report here a new HSV/AAV hybrid amplicon vector system that not only solved problems associated with Rep expression but also markedly improved the stable transduction efficiency of this vector. This new HSV/AAV vector is designed in a way that little or no Rep would be expressed in packaging cells, but it can be expressed in transduced cells if Cre recombinase is provided. Furthermore, Rep expression will be automatically suppressed as a consequence of Rep-mediated integration. Our results showed that the new hybrid amplicon vector yielded titers comparable to those of standard amplicon vectors. When Cre-expressing 293 cells were transduced, a low level of Rep expression was detected, and stable transduction was achieved in approximately 22% of transduced cells; of those cells, approximately 70% transduction was achieved by Rep-mediated site-specific integration. In the majority of the stably transduced cells, Rep expression was no longer observed. Our results also proved that this vector system is capable of efficiently accommodating and site-specifically integrating large transgenes, such as the full-length dystrophin expression cassette. Thus, the new HSV/AAV vector demonstrated unique advantages in safe and effective delivery of long-lasting transgene expression into human cells.  相似文献   

18.
We established a method for production of recombinant adeno-associated virus type 5 (rAAV5) in insect cells by use of baculovirus expression vectors. One baculovirus harbors a transgene between the inverted terminal repeat sequences of type 5, and the second expresses Rep78 and Rep52. Interestingly, the replacement of type 5 Rep52 with type 1 Rep52 generated four times more rAAV5 particles. We replaced the N-terminal portion of type 5 VP1 with the equivalent portion of type 2 to generate infectious AAV5 particles. The rAAV5 with the modified VP1 required alpha2-3 sialic acid for transduction, as revealed by a competition experiment with an analog of alpha2-3 sialic acid. rAAV5-GFP/Neo with a 4.4-kb vector genome produced in HEK293 cells or Sf9 cells transduced COS cells with similar efficiencies. Surprisingly, Sf9-produced humanized Renilla green fluorescent protein (hGFP) vector with a 2.4-kb vector genome induced stronger GFP expression than the 293-produced one. Transduction of murine skeletal muscles with Sf9-generated rAAV5 with a 3.4-kb vector genome carrying a human secreted alkaline phosphatase (SEAP) expression cassette induced levels of SEAP more than 30 times higher than those for 293-produced vector 1 week after injection. Analysis of virion DNA revealed that in addition to a 2.4- or 3.4-kb single-stranded vector genome, Sf9-rAAV5 had more-abundant forms of approximately 4.7 kb, which appeared to correspond to the monomer duplex form of hGFP vector or truncated monomer duplex SEAP vector DNA. These results indicated that rAAV5 can be generated in insect cells, although the difference in incorporated virion DNA may induce different expression patterns of the transgene.  相似文献   

19.
Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.  相似文献   

20.
We have developed a system for site-specific DNA integration in human cells, mediated by the adeno-associated virus (AAV) Rep proteins. In its normal lysogenic cycle, AAV integrates at a site on human chromosome 19 termed AAVS1. We describe a rapid PCR assay for the detection of integration events at AAVS1 in whole populations of cells. Using this assay, we determined that the AAV Rep proteins, delivered in cis or trans, are required for integration at AAVS1. Only the large forms of the Rep protein, Rep78 and Rep68, promoted site-specific integration. The AAV inverted terminal repeats, present in cis, were not essential for integration at AAVS1, but in cells containing Rep, they increased the efficiency of integration. In the presence of the Rep proteins, the integration of a plasmid containing AAV inverted terminal repeats occurred at high frequency, such that clones containing the plasmid could be isolated without selection. In two of the five clones analyzed by fluorescence in situ hybridization, the plasmid DNA was integrated at AAVS1. In most of the clones, at least one copy of the entire plasmid was integrated in a tandem array. Detailed analysis of the integrated plasmid structure in one clone suggested a complex mechanism producing rearrangements of the flanking genomic DNA, similar to those observed with wild-type AAV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号