首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, 809 uterine flushes and 454 embryo transfers performed in mares over a 4-yr interval were examined to evaluate the effects of: (1) the day of embryo collection on recovery rates; (2) the degree of synchrony between donor and recipient mares on pregnancy rates; (3) the recipient day post ovulation on pregnancy rates; and (4) the age of the embryo at recovery on pregnancy rates at 60 days. Uterine flushes were performed on Days 6, 7, 8, 9, and 10 (Day 0 = ovulation) and embryos were transferred to recipients with degrees of synchrony varying between +1 to −6 (recipient ovulated 1 day before through 6 days after the donor). Recipient mares ranged from 2 to 8 days post ovulation. Embryo recovery rates were similar for flushes performed on Day 7 (61%), Day 8 (66%), Day 9 (59%), and Day 10 (56%), but the embryo recovery rate was lower (P < 0.03) for flushes performed on Day 6 (42%) compared with all other days. Pregnancy rates for various degrees of synchrony were as follows: +1 (71%), 0 (77%), −1 (68%), −2 (63%), −3 (66%), −4 (76%), −5 (61%), and −6 (27%). The −6 day of degree of synchrony had the lowest (P < 0.05) pregnancy rate compared with all other days, but there was no significant difference among +1 to −5 days. There was a lower (P < 0.05) pregnancy rate for embryos transferred to recipient mares on Day 2 (33%) compared with mares on Day 3 (66%), Day 4 (66%), Day 5 (62%), Day 6 (55%), Day 7 (58%), and Day 8 (56%). Pregnancy rate was higher (P < 0.05) for Day 7 (76%) embryos compared with Day 6 (50%), Day 8 (64%), and Day 9 (44%) embryos; Day 9 embryos resulted in lower (P < 0.05) pregnancy rates than Days 7 or 8 embryos. In conclusion, this study demonstrated that: (1) embryo recovery rates between Days 7 and 10 were similar and acceptable (e.g., 63% 488/771); (2) the degree of synchrony between donor and recipient mares does not need to be as restricted as previously reported in horses. Acceptable pregnancy rates (e.g., 70%, 99/142) were obtained even when recipient mares ovulated 4 to 5 days after the donors; (3) similar pregnancy rates were obtained when recipient mares received embryos within a large range of days post ovulation (Days 3 to 8); and (4) Day 7 embryos produced higher pregnancy rates when compared with Days 8 and 9 embryos. In clinical terms, the application of these new findings will be beneficial to large equine embryo transfer operations in producing more pregnancies per season.  相似文献   

2.
Ball BA  Miller PG  Daels PF 《Theriogenology》1992,38(6):1055-1063
The influence of exogenous progesterone on the development of equine oviductal embryos was determined based upon the recovery of Day-7 uterine blastocysts from treated mares (n=13) that were given 450 mg progesterone daily between Days 0 and 6 and from untreated control mares (n=13). Daily administration of 450 mg progesterone in oil significantly (P<0.02) increased serum progesterone concentrations in the treated mares. There was no significant difference in the recovery rate of Day-7 embryos between treated and control mares (8/13 versus 6/13, respectively). Embryonic development, assessed by morphologic evaluation, embryo diameter, and number of cell nuclei was not significantly different for embryos from treated and from control mares. The results of this study indicate that administration of progesterone beginning on the day of ovulation does not affect the embryo recovery rate or embryonic development, based on evaluation of uterine blastocysts recovered at Day 7 after ovulation.  相似文献   

3.
Transrectal ultrasonography was used to test the hypothesis that prostaglandin E(2) (PGE(2)) would increase the uterine transport of simulated embryonic vesicles in mares. Uterine transport of PGE(2)-releasing (PGE) vesicles, vehicle-releasing (sham) vesicles, and equine embryos was contrasted on Day 12 or Day 13 post ovulation. In Experiment 1, there was no difference (P>0.10) in transport of PGE vesicles, sham vesicles, Day-12 embryos, and Day-12 embryos after cervical manipulation (n = 3 per group). In Experiments 2 and 3, respectively, transport of PGE and sham vesicles was contrasted with transport of Day-13 embryos after the vesicles (1 vesicle per mare) were placed into the uterine lumen with the embryo, (n = 7 per group). In Experiment 2, PGE vesicles were transported less often (P<0.05) from horn to body and from segment to segment than Day-13 embryos before vesicle insertion. In Experiment 3, sham vesicles were transported less often from horn to body (P<0.10) and from segment to segment (P<0.01) than Day-13 embryos before vesicle insertion. However, there was no difference (P>0.10) in the transport of PGE vesicles and embryos (Experiment 2) or sham vesicles and embryos (Experiment 3) together in the uterine lumen. In Experiment 4, transport of PGE and sham vesicles was contrasted by placing them together into the uterine lumen of nonpregnant mares on Day 13 (n = 7). There was no difference (P>0.10) in the transport of PGE and sham vesicles together in the uterine lumen. These results do not support the hypothesis that PGE(2) increases uterine transport of simulated embryonic vesicles. In addition, these results do not support the hypothesis that equine embryos stimulate uterine transport.  相似文献   

4.
Embryo recovery per ovulation has been shown to be lower in superovulated mares than in untreated controls. The objectives of this study were to 1) determine whether follicles stimulated with superovulatory treatment ovulate or luteinize without ovulation, 2) determine fertilization rates of oocytes in oviducts of superovulated and control mares, and 3) evaluate viability of early stage embryos from superovulated and control mares when cultured in equine oviductal cell-conditioned medium. Cyclic mares were randomly assigned to 1 of 2 groups (n=14 per group) on the day of ovulation (Day 0): Group 1 received 40 mg of equine pituitary extract (EPE; i.m.) daily beginning on Day 5 after ovulation; mares assigned to Group 2 served as untreated controls. All mares were given 10 mg PGF(2alpha) on Day 5 and Day 6, and 3,300 IU of human chorionic gonadotropin (hCG) were administered intravenously once mares developed 2 follicles >/=35 mm in diameter (Group 1) or 1 follicle >/=35 mm in diameter (Group 2). Mares in estrus were inseminated daily with 1 x 10(9) progressively motile spermatozoa once a >/=35 mm follicle was obtained. Two days after the last ovulation the ovaries and oviducts were removed. Ovaries were examined for ovulatory tracts to confirm ovulation, while the oviducts were trimmed and flushed with Dulbeccos PBS + 10% FCS to recover fertilized oocytes. All fertilized oocytes (embryos) recovered were cultured in vitro for 5 d using TCM-199 conditioned with equine oviductal cells. Ninety-two percent of the CL's from EPE mares resulted from ovulations compared with 94% for mares in the control group (P>0.05). The percentages of ovulations resulting in embryos were 57.1 and 62.5% for EPE-treated and control mares, respectively (P>0.05). Eighty-eight (Group 1) and 91% (Group 2) of the freshly ovulated oocytes recovered were fertilized (P>0.05). After 5 d of culture, 46.4 and 40.0% of the embryos from EPE-treated and control mares developed to the morula or early blastocyst stage (P>0.05). In summary, the CL's formed in superovulated mares were from ovulations not luteinizations. Although embryo recovery was less than expected, fertilization rates and embryo development were similar (P>0.05) between superovulated and control mares.  相似文献   

5.
The aim of the present study was, to investigate the effects of oxytocin administration on Day 7 post-ovulation on progesterone secretion, pregnancy rate and embryonic growth in mares. Endogenous stimulation of oxytocin release was compared to the administration of native oxytocin or the long-acting oxytocin analogue carbetocin. At Day 7 after ovulation, mares had to undergo four treatments in a crossover design: (a) control, (b) oxytocin (10 IU i.v.), (c) carbetocin (280 microg i.m.) and (d) cervical dilation. On Day 13, all mares (8 of 8 mares) were pregnant on groups control, oxytocin and carbetocin and only 6 of 8 mares on group dilation. In one mare uterine fluid accumulation and uterine edema from Day 6 to 13 and early embryonic death by Day 11 occurred during dilation treatment. Another mare, which did not become pregnant during dilation treatment, developed uterine fluid accumulation and uterine edema from Day 10 to 14. Mean growth rates of the conceptuses did not differ among treatment groups and individual growth rates varied in a wide range from -0.1 to 0.8 cm per day. At Day 13, mean diameters of conceptuses yielded 1.4+/-0.1 cm in control group, 1.5+/-0.1 in oxytocin and carbetocin group and 1.3+/-0.2 cm in dilation group. Secretion of progesterone was not affected by treatments. Administration of oxytocin and carbetocin caused similar maximum plasma concentrations of oxytocin, but onset and duration of peaks differed. Maximum concentrations after intramuscular application of carbetocin were obtained almost 20 min later when compared to intravenous administration of oxytocin. Duration of peaks after injection of the long-acting oxytocin analogue was more than three-fold longer than after administration of native oxytocin. In conclusion, the present study showed that single administration of oxytocin or its long-acting analogue carbetocin at Day 7 after ovulation did not affect progesterone secretion, pregnancy rate and embryonic growth. Two possible scenarios concerning the effects of cervical dilation were observed: In the majority of mares, dilation of the caudal half to two-third of the cervical lumen up to a diameter of 4.5 cm had no negative consequences on progesterone secretion and pregnancy outcome. However, cervical dilation caused uterine inflammation and subsequent luteolysis in two mares and early embryonic death in one of them. Thus, manipulation of the cervix itself seems not to have negative impact on success rates of transcervical transfer of embryos in the mare.  相似文献   

6.
Embryos were recovered from the uteri of mares 5 d after ovulation. Six embryos, all morulae, were placed singly in 200-ul droplets of Ham's F-12 with 10% fetal calf serum and cultured at 37 degrees C in a 5% CO(2) atmosphere. The embryos expanded to form blastocysts by the third day of culture. The blastocysts hatched from their zona pellucida, rather than the zona thinning and flaking off, as occurs in vivo. Hatching from the zona pellucida began on the third day of culture and was complete in five of six embryos by the sixth day. The embryonic capsule, normally present in equine embryos after Day 6, was not seen in the cultured embryos. The blastocysts continued to expand until 15 to 17 d of age (10 to 12 d in culture), reaching an average diameter (+/- SD) of 2052 +/- 290 um, after which time they either collapsed or contracted. These results demonstrate that equine embryos can be maintained in long-term culture in vitro, exhibiting continued growth and expansion in the absence of the embryonic capsule.  相似文献   

7.
Twenty-one pregnant pony mares were assigned to one of the following groups: 1) controls, 2) ovariectomy at Day 12, 3) ovariectomy at Day 12 plus daily progesterone treatment on Days 12 to 40, 4) PGF(2alpha) on Day 12, 5) PGF(2alpha) on Day 21, and 6) PGF(2alpha) on Day 30. Based on daily examinations by ultrasound, the embryonic vesicle was maintained to Day 40 in all control mares and in mares that were ovariectomized on Day 12 and given progesterone. The embryonic vesicle was lost in all mares of the other four groups. Administration of progesterone prevented the embryonic loss associated with ovariectomy at Day 12, indicating that progesterone may be the only ovarian substance required for survival of the early embryo. The mean number of days to embryonic loss was greater for mares treated with PGF(2alpha) on Day 12 (6.8 days) than for mares ovariectomized on Day 12 (3.0 days). In the PGF(2alpha)-treated group, the vesicles did not become fixed at the expected time (Day 15), and mobility continued until the day of loss. In the mares treated with PGF(2alpha) on Day 21 and in one of the mares treated on Day 30, the vesicle was lost within one to three days without prior indication. Loss may have occurred by expulsion through the cervix, since the cervix was patent on the day of loss in these mares and in the mares ovariectomized or treated with PGF(2alpha) on Day 12. In the remaining mares treated on Day 30, the intact embryonic vesicle was dislodged on Day 31 or 32. The dislodged vesicle was mobile within the uterus and was frequently found in the uterine body. The fluid volume of the dislodged vesicle gradually decreased, and the fluid was no longer detected by Day 38 to 42. Some of the placental fluids may have been eliminated by resorption since the cervix remained closed while the fluid volume decreased.  相似文献   

8.
The viability of embryos before flushing from donor mares (n = 5) and after transfer to recipient mares (n = 7) was monitored in mare serum by detecting early pregnancy factor (EPF) using the rosette inhibition test (RIT). The EPF activity was measured in donor mares before and after natural mating at natural estrus; after ovulation on Days 2, 5 and 8; and after embryo flushing (Day 8) on Days 8, 9, 10 and 13 after ovulation. The collected embryos were transferred immediately after flushing. The EPF activity in recipient mares were measured on the day of transfer and after embryo transfer on Days 1, 2, 3 and 5. Pregnancy was confirmed on Day 12 to 14 after embryo transfer. The mean EPF activity of donor mares was increased to the pregnant level (> an RI titer score of 10) on Day 2 after ovulation. Two days after flushing the embryos, the EPF activity of donor mares had decreased to the nonpregnant level. Among the 7 recipient mares, 3 mares were diagnosed pregnant on Day 12 after embryo transfer with ultrasound. The EPF activity of the pregnant recipient mares was increased above the minimum level observed in pregnant mares on Days 2 to 3 after transfer. However, among the nonpregnant recipient mares after embryo transfer, the EPF activity of 3 mares remained at the pregnant level only 2 to 3 d and then declined to the nonpregnant level. In one recipient mare, EPF activity did not reach the pregnant level throughout the sample collection. The results of this study indicated that equine EPF can be detected in serum of pregnant mares as early as Day 2 after ovulation. From our observation, we conclude that the measurement of EPF activity is useful for monitoring the in vivo viability of equine embryos and early detection of embryonic death.  相似文献   

9.
A completely randomized experimental design was used to investigate the effect of supplemental progesterone on pregnancy rates of recipient mares. Every other recipient mare received daily 200 mg progesterone in oil beginning the day of surgical embryo transfer and lasting until either Day 120 of pregnancy or until pregnancy failure was confirmed by ultrasound. Progesterone supplementation did not affect pregnancy rate (P > 0.05). Overall, embryos that did not result in pregnancy were of greater mean diameter than embryos that resulted in pregnancy (P < 0.05). Pregnancy rates tended (P < 0.1) to be greater in recipients that were detected to be ovulating the same day or prior to that of the donor and that had been supplemented with progesterone (75 %) as opposed to untreated control mares of the same synchrony group (40 %). Progesterone supplementation did not affect the incidence of embryonic loss; however, there was a slightly higher loss of pregnancies between Day 15 and 30 in treated versus untreated recipients. There was no effect (P > 0.05) of treatment on pregnancy rate for embryos recovered from fertile versus subfertile donor mares. However, overall, there tended (P < 0.1) to be fewer pregnancies with embryos recovered from subfertile (50 %) as compared to fertile donors (75 %). It was concluded that supplemental progesterone at the dosage and frequency described was not beneficial in improving pregnancy rates in cyclic recipient mares after surgical embryo transfer.  相似文献   

10.
The purposes of this experiment were 1) to test the hypothesis that placing rabbit embryos into the mare's uterus would hasten oviduct transport and 2) to determine if placing fluid into the uterus of bred mares on Day 4 and/or Day 5 would subsequently disrupt the mare's pregnancy. The hypothesis that placing rabbit embryos into the mare's uterus would hasten oviduct transport was not supported, since the uterine recovery rate of equine embryos on Day 5 was not significantly higher (P>0.05) for mares receiving rabbit embryos on Day 4 than for mares receiving no uterine infusion on Day 4 (1 10 vs 0 10 , respectively). However, placing fluid into the mare's uterus on Day 4 was apparently responsible for hastened oviduct transport, since mares with media infused into the uterus on Day 4 had a significantly higher (P<0.05) recovery rate of equine embryos on Day 5 than did mares receiving either rabbit embryos or no uterine infusion on Day 4 post ovulation (5 10 vs 1 10 or 0 10 , respectively). The Day-14 pregnancy rate was significantly higher (P<0.05) for mares receiving no uterine infusion on Day 4 or Day 5 than for mares receiving uterine infusion on Day 5 or uterine infusion on both Days 4 and 5 (9 10 vs 4 10 , 2 10 and 0 10 , respectively).  相似文献   

11.
The metabolism of radiolabelled glucose and glutamine was measured in individual cattle embryos produced by in vitro maturation and fertilization of oocytes, and culture with bovine oviductal epithelial cells. Metabolism of glucose through the pentose-phosphate pathway increased almost 15 times and the total metabolism of glucose 30 times, during development from the two-cell to the expanded blastocyst stage. The first marked increase in glucose metabolism did not occur until between the eight- and 16-cell stages, the time of activation of the embryonic genome. Conversely, the metabolism of glutamine was high in two- and four-cell embryos and then decreased to reach a minimum at the compacted morula to blastocyst stage, possibly because of degradation of maternally derived enzymes. Blastocyst expansion was accompanied by significant increases in the metabolism of glucose and glutamine, presumably reflecting the increased energy demands of Na(+)-K+ ATPase necessary for formation and maintenance of the blastocoel.  相似文献   

12.
Luteal progesterone was removed by an injection of prostaglandin F(2alpha) or bilateral ovariectomy on Day 12 of pregnancy in pony mares. The embryonic vesicle remained mobile in the uterus until loss occurred on Days 13, 13, 15, or 19 in four prostaglandin-treated mares and Days 15, 17, 19, or 26 in four ovariectomized mares. Exogenous progesterone given daily, starting on Day 12, maintained pregnancy until Day 40 in five of five prostaglandin-treated and three of four ovariectomized mares. During two-hour mobility trials on Day 14, embryonic vesicles in mares without luteal or exogenous progesterone (n = 9) moved to a different uterine segment less frequently (mean number of location changes per two-hour trial: 7.2 +/-1.0 vs 10.4 +/-1.1, P < 0.05) and were observed more often in the uterine body (14.9 +/-2.9 vs 8.9 +/-1.3, P < 0.10) compared to vesicles in mares with a progesterone influence (n = 15). Of mares that still had a vesicle present on Day 18, fixation occurred by Day 17 in all (12 12 ) mares under the influence of luteal or exogenous progesterone but failed to occur in the three mares that were not under progesterone influence. Progesterone replacement was started on Day 16 in three mares that received prostaglandin F(2alpha) on Day 12 and still had a vesicle on Day 16. The vesicle was maintained and continued to develop in all three mares, indicating that the vesicles were viable four days after PGF(2alpha) treatment. However, fixation tended to be delayed (P < 0.15) and orientation of the embryo proper was altered (P < 0.005) compared to mares that were continuously under the influence of progesterone. The results demonstrated the importance of luteal progesterone to mobility, fixation, orientation, and survival of the embryonic vesicle.  相似文献   

13.
Immunosuppressive activity was assessed in uterine flushings (UF) and uterine vein serum and plasma from nonpregnant and early-pregnant cows, and in media from the short-term culture of Day 18 bovine embryos. The preparations were tested for their ability to inhibit [3H] thymidine (3H-TdR) incorporation into phytohemagglutinin-stimulated bovine lymphocytes. On Days 2-3 (called Day 3), Days 9-10 (called Day 10), and Days 17-19 (called Day 18) of the estrous cycle (estrus = Day 0) and pregnancy, untreated and superovulated cows were anesthesized and jugular vein and uterine vein blood was collected. The uteri were removed and flushed to obtain UF and embryos. Uterine flushings were concentrated and tested for immunosuppressive activity at 400 micrograms uterine protein/ml culture fluid. Uterine flushings from both Day 18 pregnant and Day 18 nonpregnant cows were immunosuppressive (8/8), whereas Day 10 UF were usually not immunosuppressive (7/10). Day 3 UF were usually stimulatory or only marginally suppressive (8/8). Uterine vein serum and plasma from Day 18 cows were not suppressive when compared to jugular vein serum or plasma from the same cow; neither were Day 18 uterine vein serum or plasma suppressive when compared to those same samples taken from Day 3 cows. Embryo culture media obtained from the 48-h culture of Day 18 embryos was consistently suppressive. The activity was lost after dialysis in 1000-Mr cut-off tubing, removed by charcoal, and reduced by protease digestion. These results suggest two mechanisms whereby the embryo could escape immune rejection: 1) the progesterone-induced secretion of a uterine immunosuppressive substance(s) and 2) the production by the embryo of a low molecular weight immunosuppressive substance(s).  相似文献   

14.
Pouch young were removed from lactating tammars to terminate embryonic diapause. Uterine metabolism was assessed at periods afterwards by incubating endometrial explants with [3H]leucine, and measuring the incorporation into acid-soluble material. Blastocysts were incubated with [3H]uridine to assess uptake and incorporation into acid-soluble material. Uterine reactivation, shown by an increase in the rate of leucine incorporation into secreted protein, was evident by Day 4 after removal of pouch young and was significantly more in both secreted and tissue protein by Day 6. Both continued to increase in gravid and non-gravid uteri up to Day 12. By the end of pregnancy (Day 26) uterine metabolism in the gravid uterus produced 2-3 times more secreted protein than in the non-gravid uterus, demonstrating a local feto-placental influence on the uterus. Tissue incorporation had declined in endometrium of gravid and non-gravid uteri by Day 26. Day 5 embryos were metabolically more active than in quiescence, although expansion of the embryos was not seen until Day 9. The early reactivation of the uterus and embryo from diapause suggests that it is not triggered by the previously described peaks of progesterone and oestradiol in plasma at Day 5, although there may be an earlier, increased sensitivity to these steroids which allows uterine reactivation to precede changes in peripheral plasma concentration.  相似文献   

15.
The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.  相似文献   

16.
Embryo autotransfer is defined as the collection of an embryo from and the transfer of this embryo into the same animal. The objectives of this study were to: 1) test the hypothesis that oviduct transport of the equine embryo from the oviduct into the uterus is not dependent on a unilateral embryo-corpus luteum interaction, 2) develop an embryo autotransfer technique for the mare and 3) compare the success rates of Day 4 embryos surgically autotransferred from the oviduct ipsilateral to ovulation to either the oviduct (n=10 mares) or the uterine horn (n=10 mares) contralateral to ovulation. Seventy percent (7 10 ) of the Day 4 embryos which were autotransferred to the oviduct contralateral to ovulation were transported through the oviduct and subsequently developed into embryonic vesicles detectable by ultrasonography between 10 and 21 days postovulation. This finding supported the hypothesis that oviductal embryo transport is not dependent upon the ipsilateral corpus luteum. Overall, sixty percent (12 20 ) of the autotransfers were successful. The success rate of uterine-transferred embryos was not significantly less (P>0.3) than that of oviductal-transferred embryos (5 10 vs 7 10 , respectively). Therefore, the Day 4 equine embryos were apparently mature enough to survive in the mare's uterus.  相似文献   

17.
Prostaglandin E2 hastens oviductal transport of equine embryos.   总被引:1,自引:0,他引:1  
The hypothesis that treatment of pregnant mares with prostaglandin E2 (PGE2) hastens the oviductal transport of equine embryos was tested by treating bred mares with PGE2 on Day 3 after ovulation and subsequently measuring the rate of hastened oviductal transport (estimated by the uterine embryo recovery rate on Day 4 after ovulation). In a preliminary, noncontrolled experiment, oviductal transport was apparently not hastened after intramuscular, intrauterine, or intraperitoneal PGE2 administration to bred mares (0/6, 0/3, and 0/3 mares, respectively). Oviductal transport appeared to be hastened in 1/13 mares after a single intraoviductal administration of PGE2, and in 2/2 mares after continuous intraoviductal administration of PGE2. In a subsequent, controlled experiment, treatment with a continuous intraoviductal infusion of PGE2 hastened oviductal transport in significantly more (p less than 0.01) mares versus a continuous intraoviductal infusion of vehicle or no treatment (6/11 vs. 0/11 or 0/11 mares, respectively). Unfertilized oocytes and oviductal masses were also recovered from mare uteri after continuous intraoviductal PGE2 administration, but were not recovered after vehicle administration or no treatment. These results support the hypothesis that PGE2 treatment hastens the oviductal transport of equine embryos, and suggest a role for embryonic PGE2 in the initiation of selective oviductal transport in the mare.  相似文献   

18.
《Theriogenology》1996,46(1):85-95
The influence of grazing endophyte-infected tall fescue on endometrial cup formation and function, progestogen production, and embryonic and fetal development were examined in pregnant mares between Day 21 and Day 300 of gestation. Total immunoreactive progestogens and equine chorionic gonadotropin (eCG) concentrations were compared between untreated controls (endophyte-free, n = 12) and treated mares (endophyte-infected, n = 12). There were no differences in endometrial cup formation or function, as determined by eCG concentrations at Days 45, 60, 75, 90 and 120 (P > 0.05) between mares grazing endophyte-infected and endophyte-free tall fescue. Mares grazing the endophyte-infected tall fescue had lower total progestogen concentrations (P < 0.01) from Days 90 to 120 than the mares grazing endophyte-free tall fescue. Embryonic development based on mean vesicle height was not affected by endophyte exposure. No pregnancies were lost by mares in either treatment group during the trial period. The results of this study indicate that grazing endophyte-infected tall fescue between Day 21 and Day 300 does not alter endometrial cup formation and function, or result in increased pregnancy losses during this period. Lower progestogen concentrations between Days 90 and 120 with exposure to endophyte-infected tall fescue could reflect decreased luteal progesterone production.  相似文献   

19.
Ovariectomized mares treated with progesterone have established and maintained pregnancy after embryo transfer. This study evaluated the ability of ovariectomized embryo transfer recipients to successfully undergo parturition, raise a foal, and return to a useful reproductive status. Periparturient events in three ovariectomized embryo transfer recipient mares and three intact mares were compared. All mares foaled normally. Mammary scores were similar for both groups and all mares produced sufficient colostrum and milk to allow normal growth of healthy foals. Plasma progesterone levels decreased to < 5 ng/ml by Day 4 post partum in both groups. Progesterone concentrations continued to decrease and remained at <1 ng/ml in ovariectomized mares, but increased after the first postpartum ovulation (Day 9 to 15) in intact mares. Endometrial involution as determined by histological evaluation was complete in ovariectomized mares by Day 10 post partum and in intact mares by Day 11 post partum. As assessed by palpation per rectum and clearance of bacteria from the uterus, uterine involution was similar in all mares. The three ovariectomized mares subsequently received embryos by transcervical transfer and two of them established pregnancy. These results indicate that normal parturition, lactation, maternal behavior and uterine involution are independent of ovarian function.  相似文献   

20.
Prostaglandin E2 secretion by oviductal transport-stage equine embryos.   总被引:1,自引:0,他引:1  
This study was conducted to identify embryonic products whose secretion was temporally associated with the oviductal transport period of the mare. Chemicals secreted by oviductal-transport-stage equine embryos were identified by incubating Day 6 or Day 7 early uterine embryos with 35S-methionine/cysteine, 3H-progesterone, or 3H-arachidonic acid for 24 h, and subsequently identifying radioactively labeled proteins (SDS-PAGE; n = 3 embryos), steroids (HPLC; n = 3 embryos), or prostaglandins (HPLC; n = 3 embryos) in the culture medium. Early uterine embryos secreted 116.1 +/- 45.5 pg of prostaglandin (PG) E2/embryo, 1.0 +/- 0.2 pg of 17 alpha-hydroxy progesterone/embryo, 4.8 +/- 0.6 pg of androstenedione/embryo, and 11.5 +/- 4.5 pg of PGF2 alpha/embryo. They did not secrete detectable quantities of protein, testosterone, or estradiol-17 beta. A second experiment was conducted to measure temporal changes in embryonic PGE2 secretion during the oviductal and early uterine period. Day 3, Day 4, Day 5, and Day 6 embryos (n = 8 embryos/day) were incubated with 3H-arachidonic acid for 24 h, and the concentration of 3H-PGE2 in the culture medium was subsequently measured by HPLC. Embryos did not secrete detectable amounts of PGE2 prior to the expected time of oviductal transport (Day 3 and Day 4). They secreted 5.7 +/- 1.0 pg of PGE2/embryo immediately before and during the expected time of oviductal transport (Day 5), and they secreted significantly of PGE2/embryo immediately before and during the expected time of oviductal transport (Day 5), and they secreted significantly (p less than 0.01) higher amounts (42.0 +/- 11.5 pg) of PGE2/embryo immediately after uterine entry (Day 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号