首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117°C) and surface seawater (29.9°C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82°C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84°C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84°C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.  相似文献   

2.
Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76 degrees C) and river water (14 degrees C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82 degrees C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84 degrees C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84 degrees C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.  相似文献   

3.
Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained.  相似文献   

4.
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments.  相似文献   

5.
The environmental distribution and phylogeny of "Korarchaeota," a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9 degrees N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.  相似文献   

6.
7.
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.  相似文献   

8.
Temporal and spatial archaeal colonization of hydrothermal vent deposits   总被引:2,自引:0,他引:2  
Thermocouple arrays were deployed on two deep-sea hydrothermal vents at Guaymas Basin (27 degrees 0.5'N, 111 degrees 24.5'W) in order to measure in situ temperatures at which microorganisms colonize the associated mineral deposits. Intact sections of three structures that formed around the arrays were collected after 4 and 72 day deployments (named BM4, BM72 and TS72). Archaeal diversity associated with discreet subsamples collected across each deposit was determined by polymerase chain reaction amplification of 16S rRNA genes. Spatial differences in archaeal diversity were observed in all deposits and appeared related to in situ temperature. In BM4, no 16S rRNA genes were detected beyond about 1.5 cm within the sample (> 200 degrees C). Phylotypes detected on the outside of this deposit belong to taxonomic groups containing mesophiles and (hyper)thermophiles, whereas only putative hyperthermophiles were detected 1.5 cm inside the structure (approximately 110 degrees C). In contrast, the more moderate thermal gradient recorded across TS72 was associated with a deeper colonization (2-3 cm inside the deposit) of putative hyperthermophilic phylotypes. Although our study does not provide a precise assessment of the highest temperature for the existence of microbial habitats inside the deposits, archaeal 16S rRNA genes were detected directly next to thermocouples that measured 110 degrees C (Methanocaldococcus spp. in BM4) and 116 degrees C (Desulfurococcaceae in TS72). The successive array deployments conducted at the Broken Mushroom (BM) site also revealed compositional differences in archaeal communities associated with immature (BM4) and mature chimneys (BM72) formed by the same fluids. These differences suggest a temporal transition in the primary carbon sources used by the archaeal communities, with potential CO(2)/H(2) methanogens prevalent in BM4 being replaced by possible methylotroph or acetoclastic methanogens and heterotrophs in BM72. This study is the first direct assessment of in situ conditions experienced by microorganisms inhabiting actively forming hydrothermal deposits at different stages of structure development.  相似文献   

9.
The temporal variation in archaeal diversity in vent fluids from a midocean ridge subseafloor habitat was examined using PCR-amplified 16S rRNA gene sequence analysis and most-probable-number (MPN) cultivation techniques targeting hyperthermophiles. To determine how variations in temperature and chemical characteristics of subseafloor fluids affect the microbial communities, we performed molecular phylogenetic and chemical analyses on diffuse-flow vent fluids from one site shortly after a volcanic eruption in 1998 and again in 1999 and 2000. The archaeal population was divided into particle-attached (>3-microm-diameter cells) and free-living fractions to test the hypothesis that subseafloor microorganisms associated with active hydrothermal systems are adapted for a lifestyle that involves attachment to solid surfaces and formation of biofilms. To delineate between entrained seawater archaea and the indigenous subseafloor microbial community, a background seawater sample was also examined and found to consist only of Group I Crenarchaeota and Group II Euryarchaeota, both of which were also present in vent fluids. The indigenous subseafloor archaeal community consisted of clones related to both mesophilic and hyperthermophilic Methanococcales, as well as many uncultured Euryarchaeota, some of which have been identified in other vent environments. The particle-attached fraction consistently showed greater diversity than the free-living fraction. The fluid and MPN counts indicate that while culturable hyperthermophiles represent less than 1% of the total microbial community, the subseafloor at new eruption sites does support a hyperthermophilic microbial community. The temperature and chemical indicators of the degree of subseafloor mixing appear to be the most important environmental parameters affecting community diversity, and it is apparent that decreasing fluid temperatures correlated with increased entrainment of seawater, decreased concentrations of hydrothermal chemical species, and increased incidence of seawater archaeal sequences.  相似文献   

10.
The abundance, diversity and composition of bacterial and archaeal communities in the microbial mats at deep-sea hydrothermal fields were investigated, using culture-independent 16S rRNA and functional gene analyses combined with mineralogical analysis. Microbial mats were collected at two hydrothermal areas on the ridge of the back-arc spreading centre in the Southern Mariana Trough. Scanning electron microscope and energy dispersive X-ray spectroscopic (SEM-EDS) analyses revealed that the mats were mainly composed of amorphous silica and contained numerous filamentous structures of iron hydroxides. Direct cell counting with SYBR Green I staining showed that the prokaryotic cell densities were more than 108 cells g−1. Quantitative polymerase chain reaction (Q-PCR) analysis revealed that Bacteria are more abundant than Archaea in the microbial communities. Furthermore, zetaproteobacterial cells accounted for 6% and 22% of the prokaryotic cells in each mat estimated by Q-PCR with newly designed primers and TaqMan probe. Phylotypes related to iron-oxidizers, methanotrophs/methylotrophs, ammonia-oxidizers and sulfate-reducers were found in the 16S rRNA gene clone libraries constructed from each mat sample. A variety of unique archaeal 16S rRNA gene phylotypes, several pmoA , dsrAB and archaeal amoA gene phylotypes were also recovered from the microbial mats. Our results provide insights into the diversity and abundance of microbial communities within microbial mats in deep-sea hydrothermal fields.  相似文献   

11.
The phylogenetic diversity was determined for a microbial community obtained from an in situ growth chamber placed on a deep-sea hydrothermal vent on the Mid-Atlantic Ridge (23 degrees 22' N, 44 degrees 57' W). The chamber was deployed for 5 days, and the temperature within the chamber gradually decreased from 70 to 20 degrees C. Upon retrieval of the chamber, the DNA was extracted and the small-subunit rRNA genes (16S rDNA) were amplified by PCR using primers specific for the Archaea or Bacteria domain and cloned. Unique rDNA sequences were identified by restriction fragment length polymorphisms, and 38 different archaeal and bacterial phylotypes were identified from the 85 clones screened. The majority of the archaeal sequences were affiliated with the Thermococcales (71%) and Archaeoglobales (22%) orders. A sequence belonging to the Thermoplasmales confirms that thermoacidophiles may have escaped enrichment culturing attempts of deep-sea hydrothermal vent samples. Additional sequences that represented deeply rooted lineages in the low-temperature eurarchaeal (marine group II) and crenarchaeal clades were obtained. The majority of the bacterial sequences obtained were restricted to the Aquificales (18%), the epsilon subclass of the Proteobacteria (epsilon-Proteobacteria) (40%), and the genus Desulfurobacterium (25%). Most of the clones (28%) were confined to a monophyletic clade within the epsilon-Proteobacteria with no known close relatives. The prevalence of clones related to thermophilic microbes that use hydrogen as an electron donor and sulfur compounds (S(0), SO(4), thiosulfate) indicates the importance of hydrogen oxidation and sulfur metabolism at deep-sea hydrothermal vents. The presence of sequences that are related to sequences from hyperthermophiles, moderate thermophiles, and mesophiles suggests that the diversity obtained from this analysis may reflect the microbial succession that occurred in response to the shift in temperature and possible associated changes in the chemistry of the hydrothermal fluid.  相似文献   

12.
In order to facilitate the evaluation of archaeal community diversity and distribution in high-temperature environments, 14 16S rRNA oligonucleotide probes were designed. Adequate hybridization and wash conditions of the probes encompassing most known hyperthermophilic Archaea, members of the orders Thermococcales, Desulfurococcales and Sulfolobales, of the families Methanocaldococcaceae, Pyrodictiaceae and Thermoproteaceae, of the genera Archaeoglobus, Methanopyrus and Ignicoccus, and of the as yet uncultured lineages Korarchaeota, Crenarchaeota marine group I, deep-sea hydrothermal vent euryarchaeotic group 2 (DHVE 2), and deep-sea hydrothermal vent euryarchaeotic group 8 (DHVE 8) were determined by dot-blot hybridization from target and non-target reference organisms and environmental clones. The oligonucleotide probes were also used to evaluate the archaeal community composition in nine deep-sea hydrothermal vent samples. All probes, except those targeting members of Sulfolobales, Thermoproteaceae, Pyrodictiaceae and Korarchaeota, gave positive hybridization signals when hybridized against 16S rDNA amplification products obtained from hydrothermal DNA extracts. The results confirmed the widespread occurrence of Thermococcales, Desulfurococcales, Methanocaldococcaceae and Archaeoglobus in deep-sea hydrothermal vents, and extended the known ecological habitats of uncultured lineages. Despite their wide coverage, the probes were unable to resolve the archaeal communities associated with hydrothermally influenced sediments, suggesting that these samples may contain novel lineages. This suite of oligonucleotide probes may represent an efficient tool for rapid qualitative and quantitative characterization of archaeal communities. Their application would help to provide new insights in the future into the composition, distribution and abundance of Archaea in high-temperature environments.  相似文献   

13.
The temporal variation in archaeal diversity in vent fluids from a midocean ridge subseafloor habitat was examined using PCR-amplified 16S rRNA gene sequence analysis and most-probable-number (MPN) cultivation techniques targeting hyperthermophiles. To determine how variations in temperature and chemical characteristics of subseafloor fluids affect the microbial communities, we performed molecular phylogenetic and chemical analyses on diffuse-flow vent fluids from one site shortly after a volcanic eruption in 1998 and again in 1999 and 2000. The archaeal population was divided into particle-attached (>3-μm-diameter cells) and free-living fractions to test the hypothesis that subseafloor microorganisms associated with active hydrothermal systems are adapted for a lifestyle that involves attachment to solid surfaces and formation of biofilms. To delineate between entrained seawater archaea and the indigenous subseafloor microbial community, a background seawater sample was also examined and found to consist only of Group I Crenarchaeota and Group II Euryarchaeota, both of which were also present in vent fluids. The indigenous subseafloor archaeal community consisted of clones related to both mesophilic and hyperthermophilic Methanococcales, as well as many uncultured Euryarchaeota, some of which have been identified in other vent environments. The particle-attached fraction consistently showed greater diversity than the free-living fraction. The fluid and MPN counts indicate that while culturable hyperthermophiles represent less than 1% of the total microbial community, the subseafloor at new eruption sites does support a hyperthermophilic microbial community. The temperature and chemical indicators of the degree of subseafloor mixing appear to be the most important environmental parameters affecting community diversity, and it is apparent that decreasing fluid temperatures correlated with increased entrainment of seawater, decreased concentrations of hydrothermal chemical species, and increased incidence of seawater archaeal sequences.  相似文献   

14.
The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm fluids (pH>11; T<95 °C), harbored a singular archaeal diversity mostly composed of unaffiliated Methanosarcinales. The archaeal communities associated with the recently discovered Ashadze 1 site, one of the deepest active hydrothermal fields known (4100 m depth), showed significant differences between the two different vents analyzed and were characterized by putative extreme halophiles. Sequences related to the rarely detected Nanoarchaeota phylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled by hydrothermal fluids highly enriched in methane and hydrogen.  相似文献   

15.
Tramway Ridge, located near the summit of Mount Erebus in Antarctica, is probably the most remote geothermal soil habitat on Earth. Steam fumaroles maintain moist, hot soil environments creating extreme local physicochemical differentials. In this study a culture-independent approach combining automated rRNA intergenic spacer analysis (ARISA) and a 16S rRNA gene library was used to characterize soil microbial (Bacterial and Archaeal) diversity along intense physicochemical gradients. Statistical analysis of ARISA data showed a clear delineation between bacterial community structure at sites close to fumaroles and all other sites. Temperature and pH were identified as the primary drivers of this demarcation. A clone library constructed from a high-temperature site led to the identification of 18 novel bacterial operational taxonomic units (OTUs). All 16S rRNA gene sequences were deep branching and distantly (85–93%) related to other environmental clones. Five of the signatures branched with an unknown group between candidate division OP10 and Chloroflexi . Within this clade, sequence similarity was low, suggesting it contains several yet-to-be described bacterial groups. Five archaeal OTUs were obtained and exhibited high levels of sequence similarity (95–97%) with Crenarchaeota sourced from deep-subsurface environments on two distant continents. The novel bacterial assemblage coupled with the unique archaeal affinities reinvigorates the hypotheses that Tramway Ridge organisms are relics of archaic microbial lineages specifically adapted to survive in this harsh environment and that this site may provide a portal to the deep-subsurface biosphere.  相似文献   

16.
The bacterial and archaeal communities of three deep-sea hydrothermal vent systems located on the Mid-Atlantic Ridge (MAR; Rainbow, Logatchev and Broken Spur) were investigated using an integrated culture-dependent and independent approach. Comparative molecular phylogenetic analyses, using the 16S rRNA gene and the deduced amino acid sequences of the alpha and beta subunits of the ATP citrate lyase encoding genes were carried out on natural microbial communities, on an enrichment culture obtained from the Broken Spur chimney, and on novel chemolithoautotrophic bacteria and reference strains originally isolated from several different deep-sea vents. Our data showed that the three MAR hydrothermal vent chimneys investigated in this study host very different microbial assemblages. The microbial community of the Rainbow chimney was dominated by thermophilic, autotrophic, hydrogen-oxidizing, sulfur- and nitrate-reducing Epsilonproteobacteria related to the genus Caminibacter. The detection of sequences related to sulfur-reducing bacteria and archaea (Archaeoglobus) indicated that thermophilic sulfate reduction might also be occurring at this site. The Logatchev bacterial community included several sequences related to mesophilic sulfur-oxidizing bacteria, while the archaeal component of this chimney was dominated by sequences related to the ANME-2 lineage, suggesting that anaerobic oxidation of methane may be occurring at this site. Comparative analyses of the ATP citrate lyase encoding genes from natural microbial communities suggested that Epsilonproteobacteria were the dominant primary producers using the reverse TCA cycle (rTCA) at Rainbow, while Aquificales of the genera Desulfurobacterium and Persephonella were prevalent in the Broken Spur chimney.  相似文献   

17.
The microbial community and its diversity in production water from a high-temperature, water-flooded petroleum reservoir of an offshore oilfield in China were characterized by 16S rRNA gene sequence analysis. The bacterial and archaeal 16S rRNA gene clone libraries were constructed from the community DNA and, using sequence analysis, 388 bacterial and 220 archaeal randomly selected clones were clustered with 60 and 28 phylotypes, respectively. The results showed that the 16S rRNA genes of bacterial clones belonged to the divisions Firmicutes, Thermotogae, Nitrospirae and Proteobacteria, whereas the archaeal library was dominated by methanogen-like rRNA genes (Methanothermobacter, Methanobacter, Methanobrevibacter and Methanococcus), with a lower percentage of clones belonging to Thermoprotei. Thermophilic microorganisms were found in the production water, as well as mesophilic microorganisms such as Pseudomonas and Acinetobacter-like clones. The thermophilic microorganisms may be common inhabitants of geothermally heated specialized subsurface environments, which have been isolated previously from a number of high-temperature petroleum reservoirs worldwide. The mesophilic microorganisms were probably introduced into the reservoir as it was being exploited. The results of this work provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs at offshore oilfields.  相似文献   

18.
To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back‐arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture‐independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on‐ and off‐ridge of the back‐arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide‐oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron‐oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust.  相似文献   

19.
The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.  相似文献   

20.
To evaluate possible compositional changes in archaeal communities at a deep-sea hydrothermal vent field scale, we examined five different samples obtained after deploying in situ collectors for different times on three spatially separated venting sulphide structures on the East Pacific Rise (13 degrees N). Direct cell counts and whole-cell hybridizations with fluorescently labelled 16S rRNA-based oligonucleotide probes revealed that the relative abundance of archaeal populations represented from 14 to 33% of the prokaryotic community. 16S rDNA sequence analysis of the archaeal clone libraries indicated that a large percentage of clones were closely related to known archaeal isolates recovered from similar habitats. Among the 24 different phylotypes identified, Thermococcales-related sequences were dominant in all the libraries that also included representative genera of orders Methanopyrales, Methanococcales, Archaeoglobales and Desulfurococcales. The presence of most of these phylogenetic groups was confirmed in enrichment cultures performed at temperatures from 60 to 90 degrees C. Additional sequences with no known cultivated relatives grouped with the Marine group I Crenarchaeota, Korarchaeota and Deep-sea Hydrothermal Vent Euryarchaeota (DHVE) within which a novel lineage was identified. Furthermore, the archaeal community composition was distinct from vent to vent within the same vent field and varied within short time scales. This study provides new insights into microbial diversity and distribution at deep-sea hydrothermal vents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号