首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to find podocyte-expressed proteins that may interact with the tight junction protein MAGI-1, we screened a glomerulus-enriched cDNA library with a probe consisting of both WW domains of MAGI-1. One of the isolated clones contained two WW domain-binding motifs and was identified as a portion of the actin-bundling protein synaptopodin. In vitro binding assays confirmed this interaction between MAGI-1 and synaptopodin and identified the second WW domain of MAGI-1 to be responsible for the interaction. MAGI-1 and synaptopodin can also interact in vivo, as they can be immunoprecipitated together from HEK293 cell lysates. Another actin-bundling protein that is found in glomerular podocytes and shown to be mutated in an inheritable form of glomerulosclerosis is alpha-actinin-4. We show that alpha-actinin-4 is also capable of binding to MAGI-1 in in vitro binding assays and that this interaction is mediated by the fifth PDZ domain of MAGI-1 binding to the C terminus of alpha-actinin-4. Exogenously expressed synaptopodin and alpha-actinin-4 were found to colocalize along with endogenous MAGI-1 at the tight junction of Madin-Darby canine kidney cells. The interaction and colocalization of MAGI-1 with two actin-bundling proteins suggest that MAGI-1 may play a role in actin cytoskeleton dynamics within polarized epithelial cells.  相似文献   

2.
Z band alternately spliced PDZ-containing protein (ZASP) is a sarcomere Z disk protein expressed in human cardiac and skeletal muscle that is thought to be involved in a dominant familial dilated cardiomyopathy. The N-terminal PDZ domain of ZASP interacts with the C terminus of alpha-actinin-2, the major component of the Z disk, probably by forming a ternary complex with titin Z repeats. We have determined the structure of ZASP PDZ by NMR and showed that it is a classical class 1 PDZ domain that recognizes the carboxy-terminal sequence of an alpha-actinin-2 calmodulin-like domain with micromolar affinity. We also characterized the role of each component in the ternary complex ZASP/alpha-actinin-2/titin, showing that the alpha-actinin-2/ZASP PDZ interaction involves a binding surface distinct from that recognized by the titin Z repeats. ZASP PDZ structure was used to model other members of the enigma family by homology and to predict their abilities to bind alpha-actinin-2.  相似文献   

3.
Receptors for neurotransmitters require scaffolding proteins for membrane microdomain targeting and for regulating receptor function. Using a yeast two-hybrid screen, alpha-actinin-1, a major F-actin cross-linking protein, was identified as a binding partner for the C-terminal domain of metabotropic glutamate receptor type 5b (mGlu(5b) receptor). Co-expression, co-immunoprecipitation, and pull-down experiments showed a close and specific interaction between mGlu(5b) receptor and alpha-actinin-1 in both transfected HEK-293 cells and rat striatum. The interaction of alpha-actinin-1 with mGlu(5b) receptor modulated the cell surface expression of the receptor. This was dependent on the binding of alpha-actinin-1 to the actin cytoskeleton. In addition, the alpha-actinin-1/mGlu(5b) receptor interaction regulated receptor-mediated activation of the mitogen-activated protein kinase pathway. Together, these findings indicate that there is an alpha-actinin-1-dependent mGlu(5b) receptor association with the actin cytoskeleton modulating receptor cell surface expression and functioning.  相似文献   

4.
BERP, a novel ring finger protein, binds to alpha-actinin-4   总被引:2,自引:0,他引:2  
We recently identified BERP as a novel RING finger protein belonging to the RBCC protein family. It contains an N-terminal RING finger, followed by a B-box zinc finger and a coiled-coil domain. BERP interacts with the tail domain of the class V myosins through a beta-propeller structure in the BERP C-terminal. To identify other proteins interacting with BERP, the yeast two-hybrid strategy was employed, using the RBCC domain as bait. Screening of a rat brain cDNA library identified alpha-actinin-4 as a specific binding partner for the N-terminus of BERP. This actinin isoform could be immunoprecipitated together with BERP from HEK 293 cells transfected with expression constructs for BERP and alpha-actinin-4. These proteins could also be colocalized immunohistochemically in the cytoplasm of differentiated PC12 cells. We suggest that BERP may anchor class V myosins to particular cell domains via its interaction with alpha-actinin-4.  相似文献   

5.
The use of recombinant "bait" proteins to capture protein-binding partners, followed by identification of protein interaction networks by mass spectrometry (MS), has gained popularity and widespread acceptance. We have developed an approach using recombinant PDZ protein interaction modules of the membrane-associated guanylate kinase (MAGUK) protein zonula occludens-1 (ZO-1) to pull-down and screen for proteins that interact with these modules via their PDZ domain binding motifs. Identification of proteins by MS of pull-down material was achieved using a vacuum-based chromatography sample preparation device designed for matrix-assisted laser desorption/ionization (MALDI) MS. MS analysis of tryptic fragments in pull-down material revealed a number of potential ZO-1 interacting candidates, including the presence of peptides corresponding to the cortical membrane scaffolding protein alpha-actinin-4. Interaction of alpha-actinin-4 with ZO-1 was confirmed by coimmunoprecipitation of these two proteins from cultured cells, as well as from brain, liver, and heart, and by immunoblot detection of alpha-actinin-4 after pull-down with the first PDZ domain of ZO-1. In contrast, the highly homologous alpha-actinin family member, alpha-actinin-1, displayed no association with ZO-1. Immunofluorescence showed colocalization of alpha-actinin-4 with ZO-1 in cultured HeLa and C6 glioma cells, as well as in a variety of tissues in vivo, including brain, heart, liver, and lung. This study demonstrates the utility of MS-based functional proteomics for identifying cellular components of the ZO-1 scaffolding network. Our finding of the interaction of ZO-1 with alpha-actinin-4 provides a mechanism for linking the known protein recruitment and signaling activities of ZO-1 with alpha-actinin-4-associated plasma membrane proteins that have regulatory activities at cell-cell and cell-extracellular matrix contacts.  相似文献   

6.
ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed fibers in vivo. In C2C12 cells, ADAM12 is expressed at low levels in undifferentiated myoblasts and is transiently up-regulated at the onset of differentiation when myoblasts fuse into multinucleated myotubes, whereas other ADAMs, such as ADAMs 9, 10, 15, 17, and 19, are expressed at all stages of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence in the membrane-proximal region of ADAM12 cytoplasmic tail; a second binding site was identified in the membrane-distal region. Co-immunoprecipitation experiments confirm the in vivo association of ADAM12 cytoplasmic domain with alpha-actinin-2. Overexpression of the entire cytosolic ADAM12 tail acted in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function.  相似文献   

7.
We have cloned and characterized a novel striated muscle-restricted protein (Cypher) that has two mRNA splice variants, designated Cypher1 and Cypher2. Both proteins contain an amino-terminal PDZ domain. Cypher1, but not Cypher2, contains three carboxyl-terminal LIM domains and an amino acid repeat sequence that exhibits homology to a repeat sequence found in the largest subunit of RNA polymerase II. cypher1 and cypher2 mRNAs exhibited identical expression patterns. Both are exclusively expressed in cardiac and striated muscle in embryonic and adult stages. By biochemical assays, we have demonstrated that Cypher1 and Cypher2 bind to alpha-actinin-2 via their PDZ domains. This interaction has been further confirmed by immunohistochemical studies that demonstrated co-localization of Cypher and alpha-actinin at the Z-lines of cardiac muscle. We have also found that Cypher1 binds to protein kinase C through its LIM domains. Phosphorylation of Cypher by protein kinase C has demonstrated the functional significance of this interaction. Together, our data suggest that Cypher1 may function as an adaptor in striated muscle to couple protein kinase C-mediated signaling, via its LIM domains, to the cytoskeleton (alpha-actinin-2) through its PDZ domain.  相似文献   

8.
9.
Two PDZ domain-containing proteins, NHERF and E3KARP are necessary for cAMP-dependent inhibition of Na(+)/H(+) exchanger 3 (NHE3). In this study, we demonstrate a specific role of E3KARP, which is not duplicated by NHERF, in Ca(2+)-dependent inhibition of NHE3 activity. NHE3 activity is inhibited by elevation of intracellular Ca(2+) ([Ca(2+)](i)) in PS120 fibroblasts stably expressing E3KARP but not those expressing NHERF. In addition, this Ca(2+)-dependent inhibition requires Ca(2+)-dependent association between alpha-actinin-4 and E3KARP. NHE3 is indirectly connected to alpha-actinin-4 in a protein complex through Ca(2+)-dependent interaction between alpha-actinin-4 and E3KARP, which occurs through the actin-binding domain plus spectrin repeat domain of alpha-actinin-4. Elevation of [Ca(2+)](i) results in oligomerization and endocytosis of NHE3 as well as in inhibition of NHE3 activity. Overexpression of alpha-actinin-4 potentiates the inhibitory effect of ionomycin on NHE3 activity by accelerating the oligomerization and endocytosis of NHE3. In contrast, overexpression of the actin-binding domain plus spectrin repeat domain acts as a dominant-negative mutant and prevents the inhibitory effect of ionomycin on NHE3 activity as well as the oligomerization and internalization of NHE3. From these results, we propose that elevated Ca(2+) inhibits NHE3 activity through oligomerization and endocytosis of NHE3, which occurs via formation of an NHE3-E3KARP-alpha-actinin-4 complex.  相似文献   

10.
Alpha-actinin-4 is required for normal podocyte adhesion   总被引:5,自引:0,他引:5  
Mutations in the alpha-actinin-4 gene ACTN4 cause an autosomal dominant human kidney disease. Mice deficient in alpha-actinin-4 develop a recessive phenotype characterized by kidney failure, proteinuria, glomerulosclerosis, and retraction of glomerular podocyte foot processes. However, the mechanism by which alpha-actinin-4 deficiency leads to glomerular disease has not been defined. Here, we examined the effect of alpha-actinin-4 deficiency on the adhesive properties of podocytes in vivo and in a cell culture system. In alpha-actinin-4-deficient mice, we observed a decrease in the number of podocytes per glomerulus compared with wild-type mice as well as the presence of podocyte markers in the urine. Podocyte cell lines generated from alpha-actinin-4-deficient mice were less adherent than wild-type cells to glomerular basement membrane (GBM) components collagen IV and laminin 10 and 11. We also observed markedly reduced adhesion of alpha-actinin-4-deficient podocytes under increasing shear stresses. This adhesion deficit was restored by transfecting cells with alpha-actinin-4-GFP. We tested the strength of the integrin receptor-mediated linkages to the cytoskeleton by applying force to microbeads bound to integrin using magnetic pulling cytometry. Beads bound to alpha-actinin-4-deficient podocytes showed greater displacement in response to an applied force than those bound to wild-type cells. Consistent with integrin-dependent alpha-actinin-4-mediated adhesion, phosphorylation of beta1-integrins on alpha-actinin-4-deficient podocytes is reduced. We rescued the phosphorylation deficit by transfecting alpha-actinin-4 into alpha-actinin-4-deficient podocytes. These results suggest that alpha-actinin-4 interacts with integrins and strengthens the podocyte-GBM interaction thereby stabilizing glomerular architecture and preventing disease.  相似文献   

11.
通过RT-PCR从人外周血白细胞中钓取血管生成素(angiogenin,Ang)cDNA,构建诱饵蛋白载体pAS-2-1-Ang,对其自身转录激活活性进行鉴定后,通过酵母双杂交系统筛选人肝细胞cDNA文库,获得两个双阳性克隆.序列分析和同源检索表明所获候选蛋白分别为人上皮细胞素和λ晶体蛋白.构建Ang及候选蛋白标签融合表达载体并共转染COS-7细胞,利用免疫共沉淀和蛋白质印迹方法在哺乳动物细胞中验证了Ang与候选蛋白间的相互作用.为阐明Ang促血管新生的分子机制创造了条件.  相似文献   

12.
Dendritic calcium/calmodulin-dependent protein kinase II (CaMKII) is dynamically targeted to the synapse. We show that CaMKIIalpha is associated with the CaMKII-binding proteins densin-180, the N-methyl-D-aspartate receptor NR2B subunit, and alpha-actinin in postsynaptic density-enriched rat brain fractions. Residues 819-894 within the C-terminal domain of alpha-actinin-2 constitute the minimal CaMKII-binding domain. Similar amounts of Thr286-autophosphorylated CaMKIIalpha holoenzyme [P-T286]CaMKII bind to alpha-actinin-2 as bind to NR2B (residues 1260-1339) or to densin-180 (residues 1247-1495) in glutathione-agarose cosedimentation assays, even though the CaMKII-binding domains share no amino acid sequence similarity. Like NR2B, alpha-actinin-2 binds to representative splice variants of each CaMKII gene (alpha, beta, gamma, and delta), whereas densin-180 binds selectively to CaMKIIalpha. In addition, C-terminal truncated CaMKIIalpha monomers can interact with NR2B and alpha-actinin-2, but not with densin-180. Soluble alpha-actinin-2 does not compete for [P-T286]CaMKII binding to immobilized densin-180 or NR2B. However, soluble densin-180, but not soluble NR2B, increases CaMKII binding to immobilized alpha-actinin-2 by approximately 10-fold in a PDZ domain-dependent manner. A His6-tagged NR2B fragment associates with GST-densin or GST-actinin but only in the presence of [P-T286]CaMKII. Similarly, His6-tagged densin-180 or alpha-actinin fragments associate with GST-NR2B in a [P-T286]CaMKII-dependent manner. In addition, GST-NR2B and His6-tagged alpha-actinin can bind simultaneously to monomeric CaMKII subunits. In combination, these data support a model in which [P-T286]CaMKIIalpha can simultaneously interact with multiple dendritic spine proteins, possibly stabilizing the synaptic localization of CaMKII and/or nucleating a multiprotein synaptic signaling complex.  相似文献   

13.
Angiogenin transiently depresses the cAMP level of rat aortic smooth muscle cells. The dose response is similar to angiogenin activation of the inositol-specific phospholipase C in this cell line [Moore, F. & Riordan, J.F. (1989) Biochemistry. Submitted]. The time course showed a maximal depression (28%) in cAMP at 2 min, followed by a return to that of unstimulated cells by 3.5 min. Angiogenin also inhibited isoproterenol stimulated cAMP formation, but the percentage depression in cAMP (9%) was less than that in cells treated with angiogenin alone (28%). In contrast angiogenin enhanced forskolin stimulation of adenylate cyclase, an effect previously linked with agonist activation of protein kinase C. The effect of angiogenin on cellular cAMP was abolished by pre-incubation with pertussis toxin. Angiogenin had no effect on cellular cGMP. These results are consistent with activation of adenylate cyclase Gi following exposure of the cells to angiogenin and provide further evidence for interaction between cellular signalling pathways.  相似文献   

14.
Nephrin is a crucial podocyte molecule in the kidney glomerular filtration barrier and it is also expressed in Langerhans islet beta cells of the pancreas. Recently, genetic mapping of proteinuric kidney disease genes and animal models have revealed further important molecules for the kidney filtration function including alpha-actinin-4, podocin, FAT, and NEPH1. This study was addressed to explore the pancreatic expression of the podocyte molecules podocin, FAT, alpha-actinin-4, NEPH1, NEPH2, filtrin/NEPH3, synaptopodin and CD2 associated protein (CD2AP). The mRNA and protein expressions were studied by RT-PCR and immunoblotting, and localization in the pancreas was investigated by immunofluorescence. Of the nephrin-associated podocyte proteins, filtrin/NEPH3, FAT, and alpha-actinin-4 were found to be expressed in the pancreas at the gene and protein level and localized to Langerhans islets. Immunoreactivity with the podocin antibody was detected mostly in the exocrine pancreas. NEPH1 and synaptopodin expression was detected only at the mRNA level. Further studies are needed to unravel the functional role of these podocyte-associated molecules in the pancreatic Langerhans islets.  相似文献   

15.
The human skeletal muscle yeast two-hybrid cDNA library was screened with the carboxyl-terminal region (the last 200 amino acids) of dystrophin. Two interacting clones were identified corresponding to alpha-actinin-2 and actin. Interactions between alpha-actinin, actin, and dystrophin were confirmed by the ligand-blotting technique, by colocalization of dystrophin and alpha-actinin-2 to the isolated skeletal muscle sarcolemmal vesicles and to the plasma membranes isolated from C2C12 myoblasts, and by indirect immunolocalization of dystrophin and alpha-actinin-2 in skeletal muscle cells. This is the first identification of a direct interaction between alpha-actinin, actin, and the carboxyl-terminal region of dystrophin. We propose that dystrophin forms lateral, multicontact association with actin and that binding of alpha-actinin-2 to the carboxyl-terminus of dystrophin is the communication link between the integrins and the dystrophin/dystrophin-glycoprotein complex.  相似文献   

16.
Physical forces including pressure, strain, and shear can be converted into intracellular signals that regulate diverse aspects of cell biology. Exposure to increased extracellular pressure stimulates colon cancer cell adhesion by a beta(1)-integrin-dependent mechanism that requires an intact cytoskeleton and activation of focal adhesion kinase (FAK) and Src. alpha-Actinin facilitates focal adhesion formation and physically links integrin-associated focal adhesion complexes with the cytoskeleton. We therefore hypothesized that alpha-actinin may be necessary for the mechanical response pathway that mediates pressure-stimulated cell adhesion. We reduced alpha-actinin-1 and alpha-actinin-4 expression with isoform-specific small interfering (si)RNA. Silencing of alpha-actinin-1, but not alpha-actinin-4, blocked pressure-stimulated cell adhesion in human SW620, HT-29, and Caco-2 colon cancer cell lines. Cell exposure to increased extracellular pressure stimulated alpha-actinin-1 tyrosine phosphorylation and alpha-actinin-1 interaction with FAK and/or Src, and enhanced FAK phosphorylation at residues Y397 and Y576. The requirement for alpha-actinin-1 phosphorylation in the pressure response was investigated by expressing the alpha-actinin-1 tyrosine phosphorylation mutant Y12F in the colon cancer cells. Expression of Y12F blocked pressure-mediated adhesion and inhibited the pressure-induced association of alpha-actinin-1 with FAK and Src, as well as FAK activation. Furthermore, siRNA-mediated reduction of alpha-actinin-1 eliminated the pressure-induced association of alpha-actinin-1 and Src with beta(1)-integrin receptor, as well as FAK-Src complex formation. These results suggest that alpha-actinin-1 phosphorylation at Y12 plays a crucial role in pressure-activated cell adhesion and mechanotransduction by facilitating Src recruitment to beta(1)-integrin, and consequently the association of FAK with Src, to enhance FAK phosphorylation.  相似文献   

17.
18.
Angiogenin is an angiogenic factor involved in tumorigenesis. However, the mechanism of angiogenin's action remains elusive. In the present study, we identified fibulin 1, an extracellular matrix and plasma glycoprotein, as an angiogenin-interacting molecule by yeast two-hybrid screening. This interaction was further confirmed by two different approaches. First, fibulin 1 was co-immunoprecipitated with angiogenin by anti-angiogenin monoclonal antibody in vitro , suggesting angiogenin binds with fibulin 1 directly. Then fluorescence resonance energy transfer analysis showed that fibulin 1 interacted with angiogenin in COS-7 cells, showing that the binding could occur in a cellular context. As fibulin 1 plays an important role in cell proliferation, migration, adhesion, and stabilizes new-forming blood vessel wall, the interaction between fibulin 1 and angiogenin might underline one possible mechanism of angiogenin in angiogenesis and/or tumorigenesis.  相似文献   

19.
Nephrin, podocin, CD2AP, and alpha-actinin-4 are important podocyte proteins that help maintain the integrity of the slit diaphragm and prevent proteinuria. Studies have shown that angiotensin-converting enzyme inhibitors, glucocorticoids, and all-trans retinoic acid (ATRA) have antiproteinuric effects. However, it is still unclear whether these drugs, with different pharmacological mechanisms, lead to a reduction in proteinuria by changing the expression and distribution of these important podocyte proteins. In this study, changes in the expression and distribution of nephrin, podocin, CD2AP, and alpha-actinin-4 were dynamically detected in Adriamycin-induced nephrotic (ADR) rats treated with three different drugs: lisinopril, prednisone, and ATRA. Nephropathy was induced by an intravenous injection of Adriamycin. After Adriamycin injection, rats received lisinopril, prednisone, and ATRA treatment, respectively. Renal tissues were collected at Days 3, 7, 14, and 28. The distribution and the expression of messenger RNA and protein of nephrin, podocin, CD2AP, and alpha-actinin-4 were detected by indirect immunofluorescence, real-time polymerase chain reaction, and Western blotting, respectively. With the intervention of lisinopril, prednisone, and ATRA, changes in the expression of nephrin, podocin, and CD2AP were diverse, which was different from that detected in ADR rats. After lisinopril and prednisone intervention, podocin exhibited prominent earlier changes compared with those of nephrin and CD2AP, whereas CD2AP showed more prominent changes after ATRA intervention. There was no change in the expression of alpha-actinin-4 molecule. In summary, we conclude that the antiproteinuric effects of lisinopril, prednisone, and ATRA were achieved by changes in the expression and distribution of the important podocyte molecules nephrin, podocin, CD2AP, and alpha-actinin-4. The pattern in the change of podocyte molecules after lisinopril and prednisone intervention was similar, but the pattern in the change of podocyte molecules after ATRA intervention was different from that of lisinopril or prednisone intervention.  相似文献   

20.
A method for obtaining authentic human angiogenin utilizing an Escherichia coli recombinant expression system is described. A synthetic gene encoding angiogenin was placed into a vector for direct expression under the control of a modified E. coli trp promoter. The protein was produced by the bacteria in an insoluble form and purified to homogeneity by cation-exchange and reversed-phase HPLC following reduction/solubilization and reoxidation. The protein isolated was identified as Met-(-1) angiogenin by amino acid analysis and tryptic peptide mapping; the latter demonstrated that all three disulfide bonds had formed correctly. Both the enzymatic and angiogenic activities of the Met-(-1) protein were equivalent to those of native angiogenin. A Met-(-1) Leu-30 derivative of angiogenin was also isolated and found to be fully active. Conversion of Met-(-1) angiogenin to the authentic less than Glu-1 protein was achieved by treatment with Aeromonas aminopeptidase under conditions in which the new N-terminal glutamine readily cyclizes nonenzymatically. This aminopeptidase treatment may have more general applicability for removal of undesirable N-terminal methionine residues from foreign proteins expressed in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号