首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
An enzyme from Leishmania donovani that catenates monomeric pBR322 into huge catenanes has been isolated and characterized. The enzyme also decatenates kinetoplast DNA networks into covalently closed monomeric circles and relaxes supercoiled pBR322. The catenation, decatenation and relaxation reactions do not require ATP. The formation of topological isomers of unique linking numbers suggest that the enzyme is a type II DNA topoisomerase.  相似文献   

2.
We have purified to apparent homogeneity a type II DNA topoisomerase from Xenopus laevis oocyte nuclei (germinal vesicles, or GV). The most pure preparations contain a single polypeptide of 175,000 daltons as determined by SDS-gel electrophoresis. The enzyme changes the linking number of DNA circles in steps of two and reversibly knots or catenates DNA rings. No gyrase activity is detectable and ATP is required.  相似文献   

3.
A quantitative decatenation assay for type II topoisomerases   总被引:2,自引:0,他引:2  
Type II topoisomerases catalyze decatenation of the catenated network of kinetoplast DNA [J. C. Marini, K. G. Miller, and P. T. Englund (1980) J. Biol. Chem. 255, 4976-4979]. The individual DNA circles and small catenanes produced during the decatenation reaction can be separated from the large network of substrate DNA by 5 min centrifugation at 13,000g and quantitated. The appearance of these decatenated DNA molecules which appear in the supernatant first showed a lag, whose duration depended on the enzyme concentration, and then increased linearly with time until it reached a plateau. The slope of the linear part of the kinetic curve was directly proportional to the enzyme concentration, whether a purified or crude preparation of type II topoisomerase from mammalian cells was used. These findings led us to a rapid quantitative assay of type II topoisomerases not involving electrophoresis. The method was developed with purified enzyme but was also useful for assay of the activity in crude extracts. Surprisingly, the type I topoisomerase, even when present in large excess, failed to decatenate the nicked DNA circles often present in the kinetoplast DNA. This renders the assay virtually free from interference by type I enzyme. The method is sensitive and allowed quantitative estimation of the enzyme activity present in the crude extracts corresponding to that derived from 500 to 700 cultured mammalian cells. Since various type II topoisomerases from procaryotic, eucaryotic, and viral sources decatenate kinetoplast DNA and generate similar DNA products, the assay method is likely to be generally applicable.  相似文献   

4.
Despite the likely requirement for a DNA topoisomerase II activity during synthesis of mitochondrial DNA in mammals, this activity has been very difficult to identify convincingly. The only DNA topoisomerase II activity conclusively demonstrated to be mitochondrial in origin is that of a type II activity found associated with the mitochondrial, kinetoplast DNA network in trypanosomatid protozoa [Melendy, T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083-1088; Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol. Chem.264, 4173-4178]. In the present study, we report the discovery of a type DNA topoisomerase II activity in bovine mitochondria. Identified among mtDNA replicative proteins recovered from complexes of mtDNA and protein, the DNA topoisomerase relaxes a negatively, supercoiled DNA template in vitro, in a reaction that requires Mg2+ and ATP. The relaxation activity is inhibited by etoposide and other inhibitors of eucaryotic type II enzymes. The DNA topoisomerase II copurifies with mitochondria and directly associates with mtDNA, as indicated by sensitivity of some mtDNA circles in the isolated complex of mtDNA and protein to cleavage by etoposide. The purified activity can be assigned to a approximately 150-kDa protein, which is recognized by a polyclonal antibody made against the trypanosomal mitochondrial topo II enzyme. Mass spectrometry performed on peptides prepared from the approximately 150-kDa protein demonstrate that this bovine mitochondrial activity is a truncated version of DNA topoisomerase IIbeta, one of two DNA topoisomerase II activities known to exist in mammalian nuclei.  相似文献   

5.
An activity from the yeast Saccharomyces cerevisiae, initially noted for its catalysis of aggregation of covalently closed double-stranded DNA rings in the presence of ATP, has been identified as a type II DNA topoisomerase and is designated yeast DNA topoisomerase II. The formation of the DNA aggregate, which has been shown to be a network of DNA rings that are topologically interlocked, requires the presence of a yeast DNA-binding protein in addition to the topoisomerase. In the absence of the binding protein, yeast DNA topoisomerase II catalyzes decatenation and unknotting of duplex DNA rings and the relaxation of negatively or positively supercoiled DNA. All reactions are ATP-dependent and require Mg(II). Similar to other eukaryotic and phage T4-type II DNA topoisomerases, the yeast enzyme does not catalyze DNA supercoiling under the assay conditions employed. The activity is not sensitive to the gyrase inhibitor nalidixic acid, oxolinic acid, or novobiocin. Coumermycin inhibits the activity, however, at a concentration as low as 5 microgram/ml.  相似文献   

6.
DNA topoisomerase II is an essential nuclear enzyme for proliferation of eukaryotic cells and plays important roles in many aspects of DNA processes. In this report, we have demonstrated that the catalytic activity of topoisomerase IIalpha, as measured by decatenation of kinetoplast DNA and by relaxation of negatively supercoiled DNA, was stimulated approximately 2-3-fold by the tumor suppressor p53 protein. In order to determine the mechanism by which p53 activates the enzyme, the effects of p53 on the topoisomerase IIalpha-mediated DNA cleavage/religation equilibrium were assessed using the prototypical topoisomerase II poison, etoposide. p53 had no effect on the ability of the enzyme to make double-stranded DNA break and religate linear DNA, indicating that the stimulation of the enzyme catalytic activity by p53 was not due to alteration in the formation of covalent cleavable complexes formed between topoisomerase IIalpha and DNA. The effects of p53 on the catalytic inhibition of topoisomerase IIalpha were examined using a specific catalytic inhibitor, ICRF-193, which blocks the ATP hydrolysis step of the enzyme catalytic cycle. Clearly manifested in decatenation and relaxation assays, p53 reduced the catalytic inhibition of topoisomerase IIalpha by ICRF-193. ATP hydrolysis assays revealed that the ATPase activity of topoisomerase IIalpha was specifically enhanced by p53. Immunoprecipitation experiments revealed that p53 physically interacts with topoisomerase IIalpha to form molecular complexes without a double-stranded DNA intermediary in vitro. To investigate whether p53 stimulates the catalytic activity of topoisomerase II in vivo, we expressed wild-type and mutant p53 in Saos-2 osteosarcoma cells lacking functional p53. Wild-type, but not mutant, p53 stimulated topoisomerase II activity in nuclear extract from these transfected cells. Our data propose a new role for p53 to modulate the catalytic activity of topoisomerase IIalpha. Taken together, we suggest that the p53-mediated response of the cell cycle to DNA damage may involve activation of topoisomerase IIalpha.  相似文献   

7.
It has been proposed that xanthone derivatives with anticancer potential act as topoisomerase II inhibitors because they interfere with the ability of the enzyme to bind its ATP cofactor. In order to further characterize xanthone mechanism and generate compounds with potential as anticancer drugs, we synthesized a series of derivatives in which position 3 was substituted with different polyamine chains. As determined by DNA relaxation and decatenation assays, the resulting compounds are potent topoisomerase IIα inhibitors. Although xanthone derivatives inhibit topoisomerase IIα-catalyzed ATP hydrolysis, mechanistic studies indicate that they do not act at the ATPase site. Rather, they appear to function by blocking the ability of DNA to stimulate ATP hydrolysis. On the basis of activity, competition, and modeling studies, we propose that xanthones interact with the DNA cleavage/ligation active site of topoisomerase IIα and inhibit the catalytic activity of the enzyme by interfering with the DNA strand passage step.  相似文献   

8.
L F Liu  C C Liu  B M Alberts 《Cell》1980,19(3):697-707
The T4 DNA topoisomerase is a recently discovered multisubunit protein that appears to have an essential role in the initiation of T4 bacteriophage DND replication. Treatment of double-stranded circular DNA with large amounts of this topoisomerase in the absence of ATP yields new DNA species which are knotted topological isomers of the double-stranded DNA circle. These knotted DNA circles, whether covalently closed or nicked, are converted to unknotted circles by treatment with trace amounts of the T4 topoisomerase in the presence of ATP. Very similar ATP-dependent enzyme activities capable of unknotting DNA are present in extracts of Drosophila eggs. Xenopus laevis eggs and mammalian tissue culture cells. The procaryotic enzyme, DNA gyrase, is also capable of unknotting DNA. We propose that these unknotting enzymes constitute a new general class of DNA topoisomerases (type II DNA topoisomerases). These enzymes must act via mechanisms that involve the concerted cleavage and rejoining of two opposite DNA strands, such that the DNA double helix is transiently broken. The passage of a second double-stranded DNA segment through this reversible double-strand break results in a variety of DNA topoisomerization reactions, including relaxation:super-coiling; knotting:unknotting and catenation:decatenation. In support of this type of mechanism, we demonstrate that the T4 DNA topoisomerase changes the linking number of a covalently closed double-stranded circular DNA molecule only by multiples of two. We discuss the possible roles of such enzymes in a variety of biological functions, along with their probable molecular mechanisms.  相似文献   

9.
DNA topoisomerase II uses a complex, sequential mechanism of ATP hydrolysis to catalyze the transport of one DNA duplex through a transient break in another. ICRF-193 is a catalytic inhibitor of topoisomerase II that is known to trap a closed-clamp intermediate form of the enzyme. Using steady-state and rapid kinetic ATPase and DNA transport assays, we have analyzed how trapping this intermediate by the drug perturbs the topoisomerase II mechanism. The drug has no effect on the rate of the first turnover of decatenation but potently inhibits subsequent turnovers with an IC(50) of 6.5 +/- 1 microM for the Saccharomyces cerevisiae enzyme. This drug inhibits the ATPase activity of topoisomerase II by an unusual, mixed-type mechanism; the drug is not a competitive inhibitor of ATP, and even at saturating concentrations of drug, the enzyme continues to hydrolyze ATP, albeit at a reduced rate. Topoisomerase II that was specifically isolated in the drug-bound, closed-clamp form continues to hydrolyze ATP, indicating that the enzyme clamp does not need to re-open to bind and hydrolyze ATP. When rapid-quench ATPase assays were initiated by the addition of ATP, the drug had no effect on the sequential hydrolysis of either the first or second ATP. By contrast, when the drug was prebound, the enzyme hydrolyzed one labeled ATP at the uninhibited rate but did not hydrolyze a second ATP. These results are interpreted in terms of the catalytic mechanism for topoisomerase II and suggest that ICRF-193 interacts with the enzyme bound to one ADP.  相似文献   

10.
Type II DNA topoisomerases are ATP-dependent enzymes that catalyze alterations in DNA topology. These enzymes are important targets of a variety of anti-bacterial and anti-cancer agents. We identified a mutation in human topoisomerase II alpha, changing aspartic acid 48 to asparagine, that has the unique property of failing to transform yeast cells deficient in recombinational repair. In repair-proficient yeast strains, the Asp-48 --> Asn mutant can be expressed and complements a temperature-sensitive top2 mutation. Purified Asp-48 --> Asn Top2alpha has relaxation and decatenation activity similar to the wild type enzyme, but the purified protein exhibits several biochemical alterations compared with the wild type enzyme. The mutant enzyme binds both covalently closed and linear DNA with greater avidity than the wild type enzyme. hTop2alpha(Asp-48 --> Asn) also exhibited elevated levels of drug-independent cleavage compared with the wild type enzyme. The enzyme did not show altered sensitivity to bisdioxopiperazines nor did it form stable closed clamps in the absence of ATP, although the enzyme did form elevated levels of closed clamps in the presence of a non-hydrolyzable ATP analog compared with the wild type enzyme. We suggest that the lethality exhibited by the mutant is likely because of its enhanced drug-independent cleavage, and we propose that alterations in the ATP binding domain of the enzyme are capable of altering the interactions of the enzyme with DNA. This mutant enzyme also serves as a new model for understanding the action of drugs targeting topoisomerase II.  相似文献   

11.
A mitochondrial type II DNA topoisomerase (topoIImt) has been purified to near homogeneity from the trypanosomatid Crithidia fasciculata. A rapid purification procedure has been developed based on the affinity of the enzyme for novobiocin, a competitive inhibitor of the ATP-binding moiety of type II topoisomerases. The purified enzyme is capable of ATP-dependent catenation and decatenation of kinetoplast DNA networks as well as catalyzing the relaxation of supercoiled DNA. topoIImt exists as a dimer of a 132-kDa polypeptide. Immunoblots of whole cell lysates show a single predominant band that comigrates with the 132-kDa polypeptide, indicating that the 264-kDa homodimer represents the intact form of the enzyme. Localization of the enzyme within the single mitochondrion of C. fasciculata (Melendy, T., Sheline, C., and Ray, D. S. (1988) Cell, in press) suggests an important role for topoIImt in kinetoplast DNA replication.  相似文献   

12.
DNA topoisomerase VI from the hyperthermophilic archaeon Sulfolobus shibatae is the prototype of a novel family of type II DNA topoisomerases that share little sequence similarity with other type II enzymes, including bacterial and eukaryal type II DNA topoisomerases and archaeal DNA gyrases. DNA topoisomerase VI relaxes both negatively and positively supercoiled DNA in the presence of ATP and has no DNA supercoiling activity. The native enzyme is a heterotetramer composed of two subunits, A and B, with apparent molecular masses of 47 and 60 kDa, respectively. Here wereport the overexpression in Escherichia coli and the purification of each subunit. The A subunit exhibits clusters of arginines encoded by rare codons in E.coli . The expression of this protein thus requires the co-expression of the minor E.coli arginyl tRNA which reads AGG and AGA codons. The A subunit expressed in E.coli was obtained from inclusion bodies after denaturation and renaturation. The B subunit was overexpressed in E.coli and purified in soluble form. When purified B subunit was added to the renatured A subunit, ATP-dependent relaxation and decatenation activities of the hyperthermophilic DNA topoisomerase were reconstituted. The reconstituted recombinant enzyme exhibits a specific activity similar to the enzyme purified from S.shibatae . It catalyzes transient double-strand cleavage of DNA and becomes covalently attached to the ends of the cleaved DNA. This cleavage is detected only in the presence of both subunits and in the presence of ATP or its non-hydrolyzable analog AMPPNP.  相似文献   

13.
DNA molecules isolated from bacteriophage P4 are mostly linear with cohesive ends capable of forming circular and concatemeric structures. In contrast, almost all DNA molecules isolated form P4 tailless capsids (heads) are monomeric DNA circles with their cohesive ends hydrogen-bonded. Different form simple DNA circles, such P4 head DNA circles contain topological knots. Gel electrophoretic and electronmicroscopic analyses of P4 head DNA indicate that the topological knots are highly complex and heterogeneous. Resolution of such complex knots has been studied with various DNA topoisomerases. The conversion of highly knotted P4 DNA to its simple circular form is demonstrated by type II DNA topoisomerases which catalyze the topological passing of two crossing double-stranded DNA segments [Liu, L. F., Liu, C. C. & Alberts, B. M. (1980) Cell, 19, 697-707]. The knotted P4 head DNA can be used in a sensitive assay for the detection of a type II DNA topoisomerase even in the presence of excess type I DNA topoisomerases.  相似文献   

14.
DNA topoisomerase activity detected in cell extracts of the trypanosomatid Crithidia fasciculata interlocks kinetoplast DNA duplex minicircles into huge catenane forms resembling the natural kinetoplast DNA networks found in trypanosomes. Catenation of duplex DNA circles is reversible and equilibrium is affected by ionic strength, and by spermidine. The reaction requires magnesium, is ATP dependent and is inhibited by high concentrations of novobiocin. Extensive homology between duplex DNA rings was not required for catenane formation since DNA circles with unrelated sequences could be interlocked into mixed network forms. Covalently sealed catenaned DNA circles are specifically used as substrates for decatenation. No such preference for covalently sealed duplex DNA rings was observed for catenate formation. Its catalytic properties and DNA substrate preference, suggest a potential role for this eukaryotic topoisomerase activity in the replication of kinetoplast DNA.  相似文献   

15.
16.
The catalytic activity of topoisomerase II is stimulated approximately 2-3-fold following phosphorylation by casein kinase II (Ackerman, P., Glover, C. V. C., and Osheroff, N. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3164-3168). In order to delineate the mechanism by which the activity of the enzyme is enhanced, the effects of casein kinase II-mediated phosphorylation on the individual steps of the catalytic cycle of Drosophila topoisomerase II were characterized. Phosphorylation did not affect reaction steps that preceded hydrolysis of the enzyme's high energy ATP cofactor. This included enzyme-DNA binding, pre-strand passage DNA cleavage/religation, the double-stranded DNA passage event, and post-strand passage DNA cleavage/religation. In contrast, the rate of topoisomerase II-mediated ATP hydrolysis was stimulated 2.7-fold following phosphorylation by casein kinase II. Since ATP hydrolysis is a prerequisite for enzyme turnover, it is concluded that phosphorylation modulates the overall catalytic activity of topoisomerase II by stimulating the enzyme's ATPase activity.  相似文献   

17.
DNA topoisomerase I has been purified to electrophoretic homogeneity from ovaries of the frog Xenopus laevis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction revealed a single major band at 110 kDa and less abundant minor bands centered at 62 kDa. Incubation of the most purified fraction with immobilized calf intestinal alkaline phosphatase abolished all DNA topoisomerase enzymatic activity in a time-dependent reaction. Treatment of the dephosphorylated X. laevis DNA topoisomerase I with a X. laevis casein kinase type II activity and ATP restored DNA topoisomerase activity to a level higher than that observed in the most purified fraction. In vitro labeling experiments which employed the most purified DNA topoisomerase I fraction, [gamma-32P]ATP, and the casein kinase type II enzyme showed that both the 110- and 62-kDa bands became phosphorylated in approximately molar proportions. Phosphoamino acid analysis showed that only serine residues became phosphorylated. Phosphorylation was accompanied by an increase in DNA topoisomerase activity in vitro. Dephosphorylation of DNA topoisomerase I appears to block formation of the initial enzyme-substrate complex on the basis of the failure of the dephosphorylated enzyme to nick DNA in the presence of camptothecin. We conclude that X. laevis DNA topoisomerase I is partially phosphorylated as isolated and that this phosphorylation is essential for expression of enzymatic activity in vitro. On the basis of the ability of the casein kinase type II activity to reactivate dephosphorylated DNA topoisomerase I, we speculate that this kinase may contribute to the physiological regulation of DNA topoisomerase I activity.  相似文献   

18.
The cytotoxicity and DNA damage induced by the epipodophyllotoxins and several intercalating agents appear to be mediated by DNA topoisomerase II. We have purified topoisomerase II to homogeneity both from an epipodophyllotoxin-resistant Chinese hamster ovary cell line, VpmR-5, and from the wild-type parental cell line. Immunoblots demonstrate similar topoisomerase II content in these two cell lines. The purified enzymes are dissimilar in that DNA cleavage by VpmR-5 topoisomerase II is not stimulated by VP-16 or m-AMSA. Furthermore, the VpmR-5 enzyme is unstable at 37 degrees C. Thus, the drug resistance of VpmR-5 cells appears to result from the presence of an altered topoisomerase II in these cells. Purified topoisomerase II from VPMR-5 and wild-type cells has the same monomeric molecular mass as well as equivalent catalytic activity with respect to decatenation of kinetoplast DNA. Etoposide (VP-16) inhibits the activity of both enzymes. Noncovalent DNA-enzyme complex formation, assayed by nitrocellulose filter binding, is also similar, as is protection from salt dissociation of this complex by ATP and VP-16. The data suggest a model in which the drug-resistant cell line, VpmR-5, has religation activity which is less affected by drug than that of the wild-type cells. Drug effect on DNA religation and catalytic activity are dissociated mechanistically. In addition, under certain circumstances, the "cleavable complex" observed following denaturation of a drug-stabilized DNA-enzyme complex may not adequately reflect the nature of the antecedent lesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The mechanism by which type-2A topoisomerases transport one DNA duplex through a transient double-strand break produced in another exhibits fascinating traits. One of them is the fine coupling between inter-domainal movements and ATP usage; another is their preference to transport DNA in particular directions. These capabilities have been inferred from in vitro studies but we ignore their significance inside the cell, where DNA configurations markedly differ from those of DNA in free solution. The eukaryotic type-2A enzyme, topoisomerase II, is the second most abundant chromatin protein after histones and its biological roles include the decatenation of newly replicated DNA and the relaxation of polymerase-driven supercoils. Yet, topoisomerase II is also implicated in other cellular processes such as chromatin folding and gene expression, in which the topological transformations catalysed by the enzyme are uncertain. Here, some capabilities of topoisomerase II that might be relevant to infer the enzyme performance in the context of chromatin architecture are discussed. Some aspects addressed are the importance of the DNA rejoining step to ensure genome stability, the regulation of the enzyme activity and of its putative structural role, and the selectively of DNA transport in the chromatin milieu.  相似文献   

20.
Type II topoisomerases, a family of enzymes that govern topological DNA interconversions, are essential to many cellular processes in eukaryotic organisms. Because no data are available about the functions of these enzymes in the replication of viruses that infect eukaryotic hosts, this led us to express and characterize the first topoisomerase II encoded by one of such viruses. Paramecium bursaria chlorella virus 1 (PBCV-1) infects certain chlorella-like green algae and encodes a 120-kDa protein with a similarity to type II topoisomerases. This protein was expressed in Saccharomyces cerevisiae and was highly active in relaxation of both negatively and positively supercoiled plasmid DNA, catenation of plasmid DNA, and decatenation of kinetoplast DNA networks. Its optimal activity was determined, and the omission of Mg(2+) or its replacement with other divalent cations abolished DNA relaxation. All activities of the recombinant enzyme were ATP dependent. Increasing salt concentrations shifted DNA relaxation from a normally processive mechanism to a distributive mode. Thus, even though the PBCV-1 enzyme is considerably smaller than other eukaryotic topoisomerase II enzymes (whose molecular masses are typically 160-180 kDa), it displays all the catalytic properties expected for a type II topoisomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号