首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Human DNA contains 300 nucleotide interspersed repeated sequences which mostly belong to a single family of sequences called the Alu family. This work examines the evolution of this family of sequences in primates. Bonnet monkey (Macaque radiata) DNA contains a predominant family of 300 nucleotide repeats which has nearly the same restriction map as the human Alu family and which hybridizes to human Alu family repeats under Southern blotting conditions. Prosimian (Galago crassicaudatus pangeniesis) DNA also contains a prominent group of 300 nucleotide long repeated sequences which does not have the same restriction sites as the human Alu family but which does hybridize to the human Alu family under reduced stringency conditions.  相似文献   

3.
T Shimada  M J Chen  A W Nienhuis 《Gene》1984,31(1-3):1-8
A dihydrofolate reductase (DHFR) pseudogene, hDHFR-psi 3 has been isolated from a human genomic DNA fragment library. Sequence analysis of this gene revealed a lack of introns and the presence of a tract of nine adenines, 90 bp downstream from the end of the coding sequence. These features suggest that hDHFR-psi 3 was derived from a processed RNA molecule that has been converted into DNA and inserted into a chromosome, analogous to the origin of three intronless human DHFR genes previously described. An interesting feature of hDHFR-psi 3 is the presence of a member of the Alu moderately repetitive DNA sequence family within the DHFR coding region. This Alu element is flanked by a 16 bp directly repeated DNA segment derived from DHFR coding sequences. The Alu element apparently has been inserted into the intronless DHFR pseudogene and thus, there have been two insertions at a single chromosomal locus. The hDHFR-psi 3 contains only the 3' half of the DHFR coding sequence. Immediately upstream from the directly repeated sequence before the Alu element is an adenine-rich tract. The DNA farther upstream is moderately repetitive and is related to neither DHFR nor Alu DNA sequence. Therefore, it seems possible that a third insertion has occurred at the same site further disrupting the hDHFR coding sequences.  相似文献   

4.
We report the identification and characterization of a family of repeated restriction fragments whose molecular organization is apparently specific to the human X chromosome. This fragment, identified as an ethidium bromide-staining 2.0 kilobase (kb) band in BamHI-digested DNA from a Chinese hamster-human somatic cell hybrid containing a human X chromosome, has been cloned into pBR325 and characterized. The 2.0 kb repeated family has been assigned to the Xp11 leads to Xq12 region on the X by Southern blot analysis of somatic cell hybrids and is predominantly arranged in tandem clusters of up to seven 2.0 kb monomers. Homologous DNA sequences, not organized as 2.0 kb BamHI fragments, are found elsewhere on the X chromosome and on at least some autosomes, but are not found on the Y chromosome. From a dosing experiment using various amounts of the cloned repeat, we estimate that there are 5,000-7,500 copies of the 2.0 kb BamHI repeat per haploid genome. Since the vast majority, if not all, of these are confined to the X chromosome, this repeated DNA family must account for 5-10% of all X chromosome DNA and must constitute the major sequence component of the pericentromeric region of the X.  相似文献   

5.
The analysis of a recombinant human Y-enriched Hind III total digest phage library prepared from the DNA of flow sorted human Y chromosomes is described. Out of 43 phage inserts from the library thus far mapped, 25 revealed hybridization with Y chromosomal DNA. These inserts may be divided into five groups according to their degree of Y specific hybridization: inserts that hybridize with one single copy or slightly repeated Y-specific DNA sequence, Y-specific repeated sequences of various restriction fragment lengths, Y-chromosomal DNA sequence(s) shared by a sequence on the X and/or on autosomes, Y-specific DNA sequences in addition to multiple X and/or autosomal sequences, or Y-specific repeated DNA in addition to multiple X and/or autosomal sequences. Application of probes from this library for diagnostic purposes is shown in two 46,XY patients with gonadal dysgenesis and small deletions of the Y short arm.  相似文献   

6.
Isolation of a repeated DNA sequence from Bordetella pertussis   总被引:8,自引:0,他引:8  
A repeated DNA sequence in the genome of Bordetella pertussis has been demonstrated. At least 20 copies of this sequence could be observed in either BamHI or EcoRI restriction enzyme digests of chromosomal DNA; fragments carrying the repeated DNA sequence ranged in size from about 1.5 to 20 kbp. The repeated DNA sequence was cloned from two separate regions of the B. pertussis genome, as shown by restriction enzyme site maps of the two clones and by hybridization studies. A small number of differences in the pattern of hybridization of the repeated DNA sequence to chromosomal DNA from several strains of B. pertussis was observed. No repeated DNA sequences were observed in one strain each of B. parapertussis and B. bronchiseptica, and there was no hybridization of B. pertussis DNA to Escherichia coli chromosomal DNA. The repeated DNA sequence was subcloned on a 2.54 kbp BamHI fragment from one of the two original clones. Restriction enzyme digests and hybridization studies showed that the repeated DNA sequence was about 1 kbp in size and had a single, internal ClaI site.  相似文献   

7.
A new class of lowly repetitive DNA sequences has been detected in the primate genome. The renaturation rate of this sequence class is practically indistinguishable from the renaturation rate of single-copy sequences. Consequently, this lowly repetitive sequence class has not been previously observed in DNA renaturation rate studies. This new sequence class is significant in that it might occupy a major fraction of the primate genome.Based on a study of the thermal stabilities of DNA heteroduplexes constructed from human DNA and either bonnet monkey or galago DNAs, we are able to compare the relative mutation rates of repetitive and single-copy sequences in the primate genome. We find that the mutation rate of short, interspersed repetitive sequences is either less than or approximately equal to the mutation rate of single-copy sequences. This implies that the base sequence of these repetitive sequences is important to their biological function.We also find that numerous mutations have accumulated in interspersed repeated sequences since the divergence of galago and human. These mutations are only recognizable because they occur at specific sites in the repeated sequence rather than at random sites in the sequence. Although interspersed repetitive sequences from human and galago can readily cross-hybridize, these site-specific mutations identify them as being two distinct classes. In contrast, far fewer site-specific mutations have occurred since the divergence of human and monkey.  相似文献   

8.
Base sequence studies of 300 nucleotide renatured repeated human DNA clones   总被引:117,自引:0,他引:117  
A band of 300 nucleotide long duplex DNA is released by treating renatured repeated human DNA with the single strand-specific endonuclease S1. Since many of the interspersed repeated sequences in human DNA are 300 nucleotides long, this band should be enriched in such repeats. We have determined the nucleotide sequences of 15 clones constructed from these 300 nucleotide S1-resistant repeats. Ten of these cloned sequences are members of the Alu family of interspersed repeats. These ten sequences share a recognizable consensus sequence from which individual clones have an average divergence of 12.8%. The 300 nucleotide Alu family consensus sequence has a dimeric structure and was evidently formed from a head to tail duplication of an ancestral monomeric sequence. Three of the remaining clones are variations on a simple pentanucleotide sequence previously reported for human satellite III DNA. Two of the 15 clones have distinct and complex sequences and may represent other families of interspersed repeated sequences.  相似文献   

9.
In situ hybridization of male human meiotic material has been used to elucidate the molecular organization of the centromeric region of human chromosome 9. The use of two cloned DNA sequences has shown that the centromere and the secondary constriction of this chromosome contain two separate repeated DNA families. The secondary constriction organizes into "paramere" bodies during pachytene. The individual parameres are comprised of one family of repeated DNA sequences.  相似文献   

10.
11.
A new class of human interspersed repeated sequences distinct from the AluI family was found by screening a human gene library with a mouse ribosomal gene non-transcribed spacer probe (rDNA NTS). A member of this sequence family was localized to a 251 bp segment between the human delta and beta globin genes: a region previously judged to be devoid of repeated DNA. The complete nucleotide sequence of this segment revealed a tandem block of 17 TG dinucleotides, a feature hypothesized by others to be a recombination hot spot responsible for gene conversion in the gamma globin locus region. When the genomes of Xenopus, pigeon, slime mold and yeast were examined, reiterated sequences homologous to both the mouse rDNA NTS and human globin repeat were found in every case. The discovery of this extraordinarily conserved repeated sequence family appears to have depended upon not using salmon sperm DNA during hybridization. The use of eucaryotic carrier DNA may bias the search for repeated sequences against any which may be highly conserved during eucaryotic evolution.  相似文献   

12.
An unusually long repeated DNA sequence was identified in cloned DNA, three kb 3' to the human beta-globin gene. Other members of this repeated sequence family were isolated from a human genomic DNA library and characterized by Southern blotting techniques, electron microscopy, and solution hybridization. The copy located next to the beta-globin gene was found to be 6.4 +/- 0.2 kb long and continuous over that length. This repeated sequence family comprises about 1% of the human genome and contains 3000-4800 copies of moderate sequence divergence which are interspersed with other less-highly repeated DNA. The 6.4 kb repeated unit does not appear to be composed of any smaller tandemly repeated subunits, nor is it expressed at a high level in bone marrow cell RNA.  相似文献   

13.
The distribution of UV-induced repair-replicated DNA patches among reiterated and unique murine and human DNA has been studied by molecular reassociation. DNA-DNA renaturation was employed to fractionate labeled repair-replicated and normal cellular DNA sequences according to their reiteration frequencies. Results indicate that repair replicated DNA patches are distributed uniformly within highly repeated, moderately repeated and single copy DNA sequences. This could be due to the random localization of UV-induced lesions and repairs in the cultured murine and human cells.  相似文献   

14.
Dispersed, highly repeated DNA sequences were found within and near the Syrian hamster gene coding for the multifunctional protein CAD. Most of the repeated sequences were homologous to each other and had similar properties. They hybridized to many cytoplasmic polyadenylated RNAs and to 7S and 4.5S cytoplasmic non-polyadenylated RNAs. Cloned DNA fragments containing repeated sequences were transcribed in vitro by RNA polymerase III. The repeated sequences from Syrian hamsters share many properties with the Alu family of repetitive DNA from humans. The hamster sequences were homologous to total repetitive human DNA but only very weakly homologous to two cloned members of the human Alu family.  相似文献   

15.
Structure and polymorphism of human telomere-associated DNA   总被引:69,自引:0,他引:69  
We have analyzed the DNA sequences associated with four different human telomeres. Two are members of distinct repeated sequence families which are located mainly but not exclusively at telomeres. Two are unique in the genome, one deriving from the long arm telomere of chromosome 7 and the other from the pseudoautosomal telomere. One telomere-associated repeated sequence has a polymorphic distribution among the chromosome ends, being present at a different combination of ends in different individuals. These data thus identify a new source of human genetic variation and indicate that the canonical features of the organization of telomere-associated DNA are widely conserved in evolution.  相似文献   

16.
The distribution of UV-induced repair replicated DNA sequences among highly reiterated, moderately reiterated, and single copy human DNA has been investigated by molecular reassociation at various UV doses. Results indicate that repair replicated DNA patches are uniformly distributed within highly repeated, moderately repeated, and single copy DNA sequences at every dose of UV radiation.  相似文献   

17.
Chromosome-specific organization of human alpha satellite DNA   总被引:23,自引:3,他引:20       下载免费PDF全文
Restriction endonuclease analysis of human genomic DNA has previously revealed several prominent repeated DNA families defined by regularly spaced enzyme recognition sites. One of these families, termed alpha satellite DNA, was originally identified as tandemly repeated 340- or 680-base pair (bp) EcoRI fragments that hybridize to the centromeric regions of human chromosomes. We have investigated the molecular organization of alpha satellite DNA on individual human chromosomes by filter hybridization and in situ hybridization analysis of human DNA and DNA from rodent/human somatic cell hybrids, each containing only a single human chromosome. We used as probes a cloned 340-bp EcoRI alpha satellite fragment and a cloned alpha satellite-containing 2.0-kilobase pair (kbp) BamHI fragment from the pericentromeric region of the human X chromosome. In each somatic cell hybrid DNA, the two probes hybridized to a distinct subset of DNA fragments detected in total human genomic DNA. Thus, alpha satellite DNA on each of the human chromosomes examined--the X and Y chromosomes and autosomes 3, 4, and 21--is organized in a specific and limited number of molecular domains. The data indicate that subsets of alpha satellite DNA on individual chromosomes differ from one another, both with respect to restriction enzyme periodicities and with respect to their degree of sequence relatedness. The results suggest that some, and perhaps many, human chromosomes are characterized by a specific organization of alpha satellite DNA at their centromeres and that, under appropriate experimental conditions, cloned representatives of alpha satellite subfamilies may serve as a new class of chromosome-specific DNA markers.  相似文献   

18.
M Hollis  J Hindley 《Gene》1986,46(2-3):153-160
Representatives of the Sau3A family of short human repeated sequences [Meneveri et al., J. Mol. Biol. 186 (1985) 483-489] have been isolated from the small polydisperse circular DNA (spcDNA) of peripheral human lymphocytes. The prototype repeat is a 72-bp element which is at least partially tandemly repeated in spcDNA and human genomic DNA. In comparison with three major families of human repeated DNA, the Sau3A repeats are enriched in spcDNA. The function of spcDNA in normal and transformed eukaryotic cells is not understood and most studies have attempted to resolve this problem by molecular analysis of circular DNA isolated from cells in culture [see Rush and Misra, Plasmid 14 (1985) 177-191 for references]. We have studied the spcDNA present in normal uncultured human lymphocytes and present data pointing to the selective accumulation of the Sau3A family of repeated DNA within this population. The sequences of twelve of these repeats, the consensus sequence for this family and the sequence of a genomic repeat, are presented.  相似文献   

19.
We reported that several DNA sequences homologous to mitochondrial DNA (mtDNA) are present in the human nuclear genome (Tsuzuki et al. (1983) Gene 25, 223-229). Detailed Southern blot analyses revealed that one of such sequences is interrupted by a repetitive sequence about 1.8 kb long, and that the insert is one member of the dispersed repeated DNA sequences of the KpnI 1.8 kb family. Nucleotide sequence analysis showed that the KpnI 1.8 kb DNA is flanked with imperfect 15-base pair (bp) direct repeats of mtDNA. This KpnI 1.8 kb DNA has an A-rich sequence at its 3'-end, and has a considerable homology with one of the published cDNA sequences homologous to one of the human KpnI families and also to one of the African green monkey KpnI families, KpnI-LS1. These structural features suggest that the KpnI 1.8 kb DNA is a movable element and is inserted within the mtDNA-like sequence by an RNA-mediated process.  相似文献   

20.
A molecular basis for discrete size variation in human ribosomal DNA.   总被引:9,自引:1,他引:8  
The tandemly repeated human ribosomal RNA (rRNA) genes contain a region of size heterogeneity that is present in the nontranscribed spacer of every individual examined. This heterogeneity has been previously examined by Southern analysis of BamHI-digested human DNA. Using a ribosomal DNA (rDNA) probe specific for the 3' end of the 28S rRNA gene, at least four discrete sizes of BamHI fragments were seen in human populations. Molecular analysis of the cloned DNA from this region reveals tandem duplication of a segment of spacer rDNA located 388 base pairs (bp) 3' to the end of the 28S ribosomal RNA gene. Five hundred fifty bp of DNA, flanked on either side by a 150-bp repeated element, is either duplicated or deleted to produce a series of spacers that differ in size by 850 bp. These duplications/deletions appear to be the product of unequal homologous exchange, mediated by the small repeated element. Thus, human rDNA fragments cloned in lambda vectors and propagated in E. coli generate the same apparent size variation seen in genomic DNA. This study suggests that unequal homologous exchange is the molecular basis for the observed length heterogeneity in the spacer rDNA and may be a common mechanism for the generation of human genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号