首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of the ability of phenobarbital, testosterone and their combination to induce the liver microsomal monooxygenase system after 9-day administration of these compounds to intact male and female rats was carried out. It was shown that administration of testosterone does not increase the level of cytochromes P450 and b5 in the livers of male and female rats. However, after a combined administration of the two compounds testosterone significantly enhances the inducing effects of phenobarbital (i. e. superinduction) in female rats; no such effect was observed in the livers of male rats. The rates of oxidation of hexobarbital, ethylmorphine and testosterone by liver microsomes are also increased after a combined administration of the two inducers. However, the additive effects of the two substances on substrate oxidation are observed when the latter was calculated per mole of cytochrome P450. An administration of testosterone to male rats does not result in an increase of the rate of hexobarbital and testosterone oxidation by isolated liver microsomes.  相似文献   

2.
The effect of liver monooxygenase system substrates upon the rate of cytochrome P-450 isoform degradation was investigated by measuring the half-life of liver microsomal proteins in C57BL/6 mice injected with phenobarbital and then 24 hours later with aminopyrine every 6 hours. The rate of phenobarbital-induced degradation of cytochrome P-450 isoform (mol weight 56000 daltons) was shown to be increased two-fold.  相似文献   

3.
The sensitive fluorimetric assay for hydroxy-3-benzpyrene (3-OH-BP) described by Dehnen et al., was used to study the effect of microsomal membrane concentration of the benzpyrene hydroxylase activity. Microsomes from phenobarbital (PB) and methyl-3-cholanthrene (3-MC)-treated rats were used in comparison with the microsomal fraction from control animals. At very low protein concentration, benzpyrene hydroxylase follows as Michaelis--Menten type kinetics. When the concentration of microsomal membrane is higher than a minimal value (+/- 6 mug protein/ml) the Km increases with increasing concentration of protein due to competitive inhibition by reversible and non-specific binding of the substrate. The Ki's for such a binding have been calculated. Pretreatment of rats with 3-MC selectively shortens the time linearity, decreases the Ks value, and has no effect on Vmax, while the administration of PB prolongs the time linearity, decreases Vmax and does not modify the Ks. 3-MC and PB specifically act on cytochrome P-450 and do not modify the physico-chemical properties of the microsomal membrane as measured by the non-specific binding of benzpyrene (BP).  相似文献   

4.
Inhibition studies were used to investigate the identity of the microsomal enzyme(s) responsible for the NADPH-dependent N-hydroxylation of 2-amino-6-nitrotoluene. The N-hydroxylation reaction was inhibited by several cytochrome P-450 inhibitors as well as by methimazole, a substrate for flavin-containing monooxygenase. Heat inactivation of flavin-containing monooxygenase had no effect on the rate of the reaction but abolished the inhibition by methimazole. These results indicate that the flavin-containing monooxygenase-mediated metabolism of methimazole produced an inhibitor of the cytochrome P-450-catalyzed N-hydroxylation reaction. When glutathione was included in the incubation the inhibition by methimazole was abolished, presumably due to the reduction of oxygenated metabolites of methimazole. These results show that methimazole inhibition does not necessarily implicate flavin-containing monooxygenase in microsomal N-hydroxylation reactions.  相似文献   

5.
1. The detergent Triton X-100 activates UDP glucuronyltransferase from rat liver in vitro six- to seven-fold with p-nitrophenol as substrate. The enzyme activity when measured in the presence of Triton X-100 is increased significantly by pretreatment of male rats with phenobarbital for 4 days (90mg/kg each day intraperitoneally). If no Triton X-100 is applied in vitro such an increase could not be shown. In all further experiments the enzyme activity was measured after activation by Triton X-100. 2. The K(m) of the enzyme for the substrate p-nitrophenol does not change on phenobarbital pretreatment. 3. When the microsomal fraction from the liver of untreated rats is subfractionated on a sucrose density gradient, 47% of the enzyme activity is recovered in the rough-surfaced microsomal fraction, which also has a higher specific activity than the smooth-surfaced fraction. 4. Of the increase in activity after the phenobarbital pretreatment 50% occurs in the smooth-surfaced fraction, 19% in the rough-surfaced fraction and 31% in the fraction located between the smooth- and rough-surfaced microsomal fractions on the sucrose density gradient. 5. The latency of the enzyme in vitro, as shown by the effect of the detergent Triton X-100, is discussed in relation to the proposed heterogeneity of UDP glucuronyltransferase.  相似文献   

6.
Successive administrations of allylisopropylacetamide, a potent porphyrinogenic drug, increase liver weight, microsomal protein and phospholipid contents. There is an increase in the rate of microsomal protein synthesis in vivo and in vitro. The drug decreases microsomal ribonuclease activity and increases NADPH-cytochrome c reductase activity. Phenobarbital, which has been reported to exhibit all these changes mentioned, is a weaker inducer of delta-aminolaevulinate synthetase and increases the rate of haem synthesis only after a considerable time-lag in fed female rats, when compared with the effects observed with allylisopropylacetamide. Again, phenobarbital does not share the property of allylisopropylacetamide in causing an initial decrease in cytochrome P-450 content. Haematin does not counteract most of the biochemical effects caused by allylisopropylacetamide, although it is quite effective in the case of phenobarbital. Haematin does not inhibit the uptake of [2-(14)C]allylisopropylacetamide by any of the liver subcellular fractions.  相似文献   

7.
The effect of the insecticides, mirex and chordecone (Kepone), on the cytochrome P-450 monooxygenase system in C57BL/6N mouse liver microsomes was studied. Mice were treated intraperitoneally with low (6 mg/kg) and high (30 mg/kg) doses of mirex and chlordecone in corn oil for 2 days. For comparison, mice were also treated with either phenobarbital (PB) or 3-methylcholanthrene (3-MC). All treatments significantly increased the hepatic microsomal P-450 content over that of controls. Benzphetamine N-demethylase, ethoxyresorufin O-deethylase, benzo[a]pyrene hydroxylase, and acetanilide hydroxylase activities were also determined. Mirex and chlordecone resembled phenobarbital with respect to the induction of monooxygenase activities. Immunoquantitation with antibodies to purified P-450 IIB1 (Pb-induced P-450) and P-450 IA1 (3-MC-induced P-450) indicated that mirex and chlordecone induced P-450 IIB1 in a dose-dependent manner. The high dose of mirex also induced a small amount of a protein cross reacting with the antibody to IA1. The induction of this isozyme did not, however, contribute significantly to the monooxygenase activities measured.  相似文献   

8.
A highly sensitive fluorometric assay for the determination of monooxygenase activity in liver microsomes is described. The assay is based on the use of 3-chloro-7-methoxy-4-methylcoumarin which is demethylated to 3-chloro-7-hydroxy-4-methylcoumarin. The rate of formation of 3-chloro-7-hydroxy-4-methylcoumarin was recorded as an increase of fluorescence (lambdaA = 380 nm, lambdaF = 480 nm) with time. When 3-chloro-7-methoxy-4-methylcoumarin was incubated in the presence of MgCl2 and NADPH with rat liver microsomes, a continuous increase of the fluorescence could be measured. The reaction proceeded linearly for about 10 min and at least up to a concentration of 0.1 mg/ml of microsomal protein. Besides 3-chloro-7-hydroxy-4-methylcoumarin a hydroxylated derivative of the substrate was formed as a second metabolite during the incubation. Using an excitation wavelength of 380 nm and a fluorescence/emission wavelength of 480 nm, the fluorescence of this substance (lambdaA = 338 nm, lambdaF = 422 nm) amounted only to about 1% of the fluorescence of the main product. The use of 3-chloro-7-methoxy-4-methylcoumarin as substrate enables the fluorometric determination of the O-dealkylation activity of a cytochrome P450-dependent monooxygenase system in rat liver which is inducible by phenobarbital but not by 3-methylcholanthrene.  相似文献   

9.
The in vivo turnover of several rat liver microsomal proteins was studied using techniques designed to maximize antibody recognition specificity and minimize reutilization of radioactive labels. The kinetics of degradation of seven cytochrome P-450 isozymes, NADPH-cytochrome P-450 reductase, and epoxide hydrolase were determined in untreated rats and rats treated with phenobarbital or beta-naphthoflavone. In the cases where induction of these enzymes occurred with the above chemicals, rates of synthesis of the proteins were also estimated. In general, the degradation rates of the different proteins were rather similar to each other, and the effects of phenobarbital and beta-naphthoflavone on these rates were not very great. However, in the case of cytochromes P-450, a general trend was observed in which the heme moiety was degraded more rapidly than the apoprotein. Changes in the rates of synthesis of the individual proteins appear to contribute more to the altered steady-state levels which are expressed than do the rates of degradation, and profiles of steady-state enzyme concentrations predicted by the kinetic constants approximate those observed in vivo.  相似文献   

10.
The rate of adrenal protein degradation appears to be slower in rats to which ACTH (adrenocorticotrophin) has been chronically administered. As measured by the exponential decay of radioactively labelled adrenal protein in vivo, the mean half-lives of total protein and of mitochondrial, microsomal and 18000g-supernatant protein were significantly longer in ACTH-treated animals. Experiments in which either [(3)H]leucine or NaH(14)CO(3) was used to label proteins showed that of the fractions studied, the effect on mitochondrial protein degradation was most pronounced. The half-lives of the same subcellular fractions in rat liver were not affected by ACTH. The possibility that the results might have been caused by changes in radioisotope reutilization and pool size is discussed.  相似文献   

11.
The ability of phenobarbital to induce the expression and activity of microsomal drug monooxygenases in the liver presents one of the most important issues in the field of chemical interactions and in the toxicity of xenobiotics. The model of rat liver injury induced by a single dose of thioacetamide (500 mg/kg intraperitoneally) was used to study the effect of phenobarbital (80 mg/kg/day intraperitoneally) for 5 days prior to thioacetamide. Serum parameters of liver injury such as aspartate aminotransferase activity, gamma-glutamyl transferase activity and the total bilirubin levels, as well as the activities of hepatic FAD and cytochrome P450 microsomal monooxygenases, were assayed in 2- and 12-month-old rats. Samples of blood and liver were obtained from controls (injected at 0 h with 0.5 ml of 0.9% NaCl) and at 12, 24, 48, 72 and 96 h of thioacetamide intoxication either to non-treated or phenobarbital pretreated rats. Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment was demonstrated at morphological level, and by significant increases in the activities of serum aspartate aminotransferase and gamma-glutamyl transferase, and in the levels of total bilirubin. The extent of potentiation of thioacetamide-induced liver injury by phenobarbital pretreatment was similar in both age groups. Microsomal FAD monooxygenase activity, the enzyme responsible for thioacetamide biotransformation, was significantly enhanced (twofold) by phenobarbital pretreatment, and also underwent a further increase following thioacetamide, preceding the peak of necrosis. Cytochrome P450 monooxygenases were induced by phenobarbital pretreatment more than sixfold, and sharply decreased when phenobarbital was withdrawn and thioacetamide administered, showing at 48 h intoxication values close to basal. Phenobarbital pretreatment potentiated thioacetamide necrogenicity, and this potentiation was parallel to the induction of the microsomal FAD monooxygenase system, both by phenobarbital and by thioacetamide itself. The extent of thioacetamide-induced liver injury was significantly higher in 12-month-old rats, but the effect of phenobarbital pretreatment was similar in both age groups.  相似文献   

12.
Inhibitory antibodies against NADPH-cytochrome P-450 reductase, detergent solubilization to dissociate functional interaction between the reductase and cytochrome P-450, and selective trypsin degradation have been used to characterize flavin-containing monooxygenase activity in microsomes from different tissues and species. A comparison of assay methods is reported. The native microsome-bound flavin-containing monooxygenase of mouse, rabbit, and rat liver, lung, and kidney can metabolize compounds containing thiol, sulfide, thioamide, secondary and tertiary amine, hydrazine, and phosphine substituents. Therefore, this enzyme from these common experimental animals has catalytic capabilities similar to those of the well-characterized porcine liver enzyme. True allosteric activation by n-octylamine does not appear to be a property of either the mouse, rabbit, or rat liver enzymes, but is a property of the pig liver and mouse lung enzymes. The microsomal pulmonary flavin-containing monooxygenase of the rabbit has some unique substrate preferences which differ from the mouse lung enzyme. Both the rabbit and mouse pulmonary enzymes have recently been shown to be distinct enzyme forms. However, the rat pulmonary flavin-containing monooxygenase appears to be catalytically identical to the rat liver enzyme, and does not have any of the unusual catalytic properties of either the rabbit or mouse lung enzymes. Enzyme activity of mouse, rabbit, and rat kidney microsomes is qualitatively similar to the hepatic activities. Substrates which saturate the microsome-bound flavin-containing monooxygenase at 1.0 mM, including thiourea, thioacetamide, methimazole, cysteamine, and thiobenzamide, are metabolized at common maximal velocities. This suggests that the kinetic mechanism of the native enzyme is similar to that established for the isolated porcine liver enzyme in that the rate-limiting step of catalysis occurs after substrate binding, and that all substrates capable of saturating the microsomal enzyme should be metabolized at a common maximal velocity.  相似文献   

13.
Activity of oxidation enzymes of the pentosephosphate way (glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44), cytoplasmic malate dehydrogenase (decarboxylating oxaloacetate) (NADP+) (EC 1.1.1.40) and isocitrate dehydrogenase (NADP+) (EC 1.1.1.42) as well as the content of microsomal cytochromes b5 and P-450 in the rat liver have been studied 24 hours after 1, 2, 3, 4 and 5 intraperitoneal administrations of phenobarbital (4 mg per 100 g of the body weight). It is shown that the cytochrome P-450 content increases after a single administration of phenobarbital and then it gradually grows reaching its maximum after 4 administrations and falls after 5 administrations (though it remains high as compared to the control animals). The content of cytochrome b5 increases only after 4 administrations of phenobarbital and after 5th one it returns to the initial level. The content of microsomal gangliosides calculated per 1 mg of microsomal protein decreases after a single administration of phenobarbital and 5 days later it returns to the initial level. Activity of glucose-6-phosphate dehydrogenase increases after a single administration of phenobarbital, that of malate dehydrogenase--after 3 administrations, 6--phosphogluconate-dehydrogenase--after 4 administrations of the preparation. The 5 administrations of phenobarbital makes activity of all the mentioned dehydrogenases return to the initial level. Activity of isocitrate dehydrogenase under given conditions of the experiment does not change.  相似文献   

14.
The main nongenetic factors are revealed which regulate the catalytic activity and substrate specificity of microsomal monooxygenases preinduced by phenobarbital-type xenobiotics (barbituric acid and pyrazolone derivatives). It is shown that a blockage of the primary microsomal metabolism of an inducer is the obligate condition for its inductive effect on the content and activity of cytochrome P-450. On this basis it is practicable to convert the typical monooxygenase substrates into inducers of the enzyme biosynthesis by the blockage of the molecule site subjected to monooxygenation. A model is suggested which shows the phenobarbital participation in the formation of the specific configuration of the active site of cytochrome P-450 synthesized; the latter catalyzes the oxidation of a number of substrates by the way typical of inducer itself.  相似文献   

15.
Cytochrome P450 can undergo inactivation following monooxygenase reactions in liver microsomes of untreated, phenobarbital and 3-methylcholanthrene-treated rats and rabbits. The acceleration of cytochrome P450 loss in the presence of catalase inhibitors (sodium azide, hydroxylamine) indicates that hydrogen peroxide is involved in hemoprotein degradation. It was revealed that cytochrome P450 is inactivated mainly by H2O2 formed through peroxy complex breakdown, whereas H2O2 formed via the dismutation of superoxide anions produces a slight inactivating effect. The hydrogen peroxide added outside or formed by a glucose-glucose oxidase system has less of an inactivating effect than H2O2 produced within the cytochrome P450 active center. Self-inactivation of cytochrome P450 during oxygenase reactions is highly specific. Other components of the monooxygenase system, such as cytochrome b5, NADH- and NADPH-specific flavorproteins, undergo no inactivation. The alterations in phospholipid content and in the rate of lipid peroxidation were not observed as well. The inactivation of cytochrome P450 by H2O2 is the result of heme loss or destruction without cytochrome P420 formation. Such. a mechanism operates with different substrates and cytochrome P450 species catalyzing the partially coupled monooxygenase reactions.  相似文献   

16.
The dependence of expressiveness of microsomal mono-oxygenase induction by phenobarbital upon the amount of binding sites at cytochrome P-450 active center(s) has been studied. The experimental cholestasis is accompanied by accumulation of hydroxylated derivatives of cholesterol, which possess the detergent characteristics and destruct the substrate binding sites in P-450 molecule. The possibility has been demonstrated of phenobarbital induction under conditions when the inducer-monooxygenase primary binding and metabolic steps are not involved. It is assumed that the activation of de novo microsomal protein synthesis is effected by the molecule of phenobarbital itself and not by the products of its primary hydroxylation in the microsomes.  相似文献   

17.
The effects of neonatal exposure to phenobarbital during the first five days after birth on the enzymatic activity of the adult male and female rat liver P450-dependent monooxygenase system were investigated. Although liver weight per 100 grams of body weight and total hepatic microsomal protein content were not altered in adult rats treated neonatally with phenobarbital, both sexes did show significant increases in cytochrome P450 content, cytochrome P450 reductase activity, cytochrome c reductase activity, ethoxycoumarin-O-deethylase activity and in the activity of a specific glucuronyl-transferase. Several of these activities were increased to a larger extent in the females, suggesting that females may be more sensitive to this phenomenon.  相似文献   

18.
Liver microsomal, flavin-containing monooxygenases catalyze NADPH- and oxygen-dependent oxidation of a wide variety of antipsychotic and narcotic drugs. Two forms of these enzymes have been isolated and partially characterized (Ozols, J. (1989) Biochem. Biophys. Res. Commun. 163, 49-55). The amino acid sequence of form 1 is presented here. Sequence determination has been achieved by automated Edman degradation of peptides generated by chemical and enzymatic cleavages. The NH2 terminus of form 1 oxygenase is blocked. Partial acid hydrolysis of the blocked peptides removed acetyl groups and permitted their analysis by Edman degradation. Form 1 monooxygenase contains 536 residues. A peptide of 32 residues at the COOH terminus of the protein could not be sequenced in a gas-phase or pulsed liquid-phase sequenator, due to its extreme hydrophobicity. Covalent coupling of this peptide to an aryl amine membrane by means of carbodiimide, followed by automated solid-phase sequencing, established the order of 30 amino acid residues. The hydrophobic segment at the COOH terminus presumably functions to anchor the monooxygenase to the microsomal membrane. The amino acid sequence of form 1 monooxygenase, despite overlapping substrate specificity, is not related to the cytochrome P-450 superfamily. Comparison of the sequence of form 1 oxygenase with other known sequences, except for some short segments similar to those in the bacterial flavin-containing monooxygenases, did not reveal significant sequence similarities that would suggest a structural or evolutionary relationship.  相似文献   

19.
Administration of phenobarbital to rats increases the rate of synthesis of certain microsomal drug-metabolizing enzymes in a selective manner and promotes proliferation of smooth endoplasmic reticulum in the liver. Phenobarbital increased a number of factors by which protein synthesis could be enhanced in the liver. It produced a 30% increase in the amount of ribosomes and mRNA per cell. The proportion of ribosomes associated with polysomes was increased by 5-10% over normal liver. There was a 10-30% increase in the rate of ploypeptide elongation and a small increase or no change in polysome size, indicating that the rate of polypeptide initiation was increased proportionately. The product of these effects accounts for the 1.5-fold increase in the rate of total protein synthesis previously reported. The average polysome size, and the size of free polysomes in particular, was maintained when actinomycin D was administered to phenobarbital-pretreated rats, suggesting that the rate of mRNA degradation was decreased selectively. Phenobarbital did not, however, affect the distribution of ribosomes between the free and membrane-bound states or the activity of ribonucleases associated with isolated free and bound polysomes. Thus, we conclude that phenobarbital stimulates protein synthesis by expanding the mRNA pool, at least partially through effects on mRNA degradation, and by augmenting the rate of mRNA translation.  相似文献   

20.
A mutant of Pseudomonas sp. strain HBP1, originally isolated on 2-hydroxybiphenyl, was selected for the ability to grow on 2-propylphenol as the sole carbon and energy source. In the mutant strain, which was designated as Pseudomonas sp. strain HBP1 Prp, the cellular induction mechanism involved in the synthesis of the NADH-dependent monooxygenase is changed. 2-Propylphenol, which is known to be a substrate of the monooxygenase, does not induce formation of the monooxygenase in the wild type but does have an induction effect in the mutant strain. Furthermore, in contrast to the wild type, mutant strain HBP1 Prp constitutively produces a small amount of monooxygenase and metapyrocatechase. The enzymes from strain HBP1 Prp catalyzing the first three steps in the degradation of 2-propylphenol--the NADH-dependent monooxygenase, the metapyrocatechase, and the meta fission product hydrolase--were partially purified, and their activities were measured. The product of the monooxygenase activity was identified by mass spectrometry as 3-propylcatechol. The metapyrocatechase used this compound as a substrate and produced a yellow meta fission product that was identified by mass spectrometry as 2-hydroxy-6-oxo-nona-2,4- dienoate. Butyrate could be detected as a product of the meta fission product hydrolase in crude cell extract of 2-propylphenol-grown cells, as well as an intermediate in culture broths during growth on 2-propylphenol. All three enzymes expressed highest activities for the metabolites of the degradation of 2-hydroxybiphenyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号