首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rat glomerular mesangial cell monolayers loaded with the fluorescent probe fura-2 responded to exogenous platelet-activating factor (PAF) with a rapid increase in cytosolic free calcium concentration ([Ca2+]i). PAF-induced [CA2+]i transients consisted of a dose-dependent phasic peak response followed by a sustained tonic phase of increased [Ca2+]i. Chelation of extracellular calcium with EGTA suppressed the tonic phase of increased [Ca2+]i but did not affect the phasic peak response. This suggests two mechanisms for the elevation of [Ca2+]i: a transient mobilization from intracellular stores and an enhanced calcium influx across the plasma membrane, possibly mediated by receptor-operated channels. Lyso-PAF had no effect on basal [Ca2+]i and the PAF-receptor antagonist L652,731 selectively inhibited responses to PAF. PAF-stimulated mesangial cells displayed homologous desensitization to reexposure to PAF while still being responsive to other calcium-mobilizing agonists. Preincubation of cells with the protein kinase C (PKC) activator phorbol myristate acetate diminished the PAF-induced [Ca2+]i transient, suggesting a regulatory role for PKC in PAF-activation of mesangial cells. An increase in [Ca2+]i, as a result of receptor-linked activation of phospholipase C, may mediate PAF-induced hemodynamic and inflammatory events in renal glomeruli.  相似文献   

2.
We studied the effects of four products of arachidonate cyclo-oxygenation on a phospholipase C-dependent signal transduction system in cultured rat glomerular mesangial cells. PGF2 alpha, PGE2 and the thromboxane A2/endoperoxide analogue U-46619 rapidly increased cytosolic free Ca2+, measured in monolayers loaded with the fluorescent intracellular probe fura-2. Peak responses were dose-dependent and unaffected by chelation of extracellular Ca2+, indicating release from internal stores. The thromboxane A2-receptor antagonist SQ 27,427 selectively inhibited responses to U-46619. The PGI2 analogue Iloprost had no effect on cytosolic Ca2+. PGF2 alpha, PGE2 and U-46619 also stimulated accumulation of total inositol phosphates during 15 min incubations. We conclude that phospholipase C activation mediates the effects of certain eicosanoids on the glomerular mesangium.  相似文献   

3.
A fluorescent Ca2+ indicator, acetoxymethyl Quin2, was used to quantify changes in the cytosolic free calcium concentration ([Ca2+]i) of confluent mouse osteoblasts. 1,25 - Dihydroxycholecalciferol (1,25 - (OH)2D3, 10-100 pM), 25-hydroxycholecalciferol (25-(OH)D3, 10-100 nM), parathyroid hormone (PTH(1-84), 0.1-10 nM), and prostaglandin E2 (PGE2, 10-1000 nM) all induced immediate (t less than 15 s) transient increases in [Ca2+]i, from a basal level of 135 +/- 8 nM to levels of 179-224 nM. These increases rapidly returned to a plateau approximately 10% higher than the basal level. 24,25-Dihydroxycholecalciferol (24,25-(OH)2D2, 0.1-10 nM) induced a rapid increase in [Ca2+]i which remained elevated for 5 min before decreasing. The 1,25-(OH)2D3- and PTH-induced spikes were abolished by the prior addition of EGTA and Ca2+ entry blockers (verapamil, nifedipine, 1 microM) while the responses to 25-(OH)D3, 24,25-(OH)2D3, and PGE2 were unaffected. Addition of 1,25-(OH)2D3 + EGTA or PTH + EGTA caused enhanced Ca efflux. Addition of drugs which interfere with calcium sequestration by the endoplasmic reticulum (ER) (caffeine, 4 mM; 8-(diethyl-amino)-octyl 3,4,5-trimethoxybenzoate HCl, 0.5 mM) or mitochondria (antimycin, 10 microM; oligomycin, 5 microM) showed that 25-(OH)D3 and PGE2 mainly mobilized Ca2+ from ER. 1,25-(OH)2D3 and bovine PTH caused a transient increase in [Ca2+]i, 70% of which resulted from Ca2+ influx from outside the cells and 30% by release from the ER. The [Ca2+]i increase induced by 24,25-(OH)2D3 included a 30% contribution from the ER and 70% from the mitochondria.  相似文献   

4.
Cultured rat ovarian granulosa cells undergo a dramatic morphological change when exposed to follicle-stimulating hormone (FSH). Exposure to FSH causes the flattened epithelioid granulosa cells to assume a nearly spherical shape while retaining cytoplasmic processes which contact the substrate as well as adjacent cells. This effect of FSH is preceded by a dose-dependent increase in intracellular cAMP, is potentiated by cyclic nucleotide phosphodiesterase inhibitors, and is mimicked by dibutyryl cAMP. Prostaglandins E1 or E2 and cholera enterotoxin also cause the cells to change shape. A subpopulation of the cells responds to luteinizing hormone. These morphological changes, which are blocked by 2,4-dinitrophenol, resemble those produced by treating cultures with cytochalasin B. Electron microscopy shows that the unstimulated, flattened cells contain bundles of microfilaments particularly in the cortical and basal regions. After FSH stimulation, microfilament bundles are not found in the rounded granulosa cell bodies but they are present in the thin cytoplasmic processes. These data suggest that the morphological change results from a cAMP-mediated, energy-dependent mechanism that may involve the alteration of microfilaments in these cells.  相似文献   

5.
Sphingolipid metabolism was examined in human promyelocytic leukemia HL-60 cells. Differentiation of HL-60 cells with 1 alpha, 25-dihydroxyvitamin D3 (vitamin D3; 100 nM) was accompanied by sphingomyelin turnover. Maximum turnover of [3H]choline-labeled sphingomyelin occurred 2 h following vitamin D3 treatment, with sphingomyelin levels decreasing to 77 +/- 6% of control and returning to base-line levels by 4 h. Ceramide and phosphorylcholine were concomitantly generated. Ceramide mass levels increased by 55% at 2 h following vitamin D3 treatment and returned to base-line levels by 4 h. The amount of phosphorylcholine produced equaled the amount of sphingomyelin hydrolyzed, suggesting the involvement of a sphingomyelinase. Vitamin D3 treatment resulted in a 90% increase in the activity of a neutral sphingomyelinase from HL-60 cells. The inferred role of sphingomyelin hydrolysis in the induction of cell differentiation was investigated using an exogenous sphingomyelinase. When a bacterial sphingomyelinase was added at concentrations that caused a similar degree of sphingomyelin hydrolysis as 100 nM vitamin D3, it enhanced the ability of subthreshold levels of vitamin D3 to induce HL-60 cell differentiation. This study demonstrates the existence of a "sphingomyelin cycle" in human cells. Such sphingolipid cycles (Hannun, Y., and Bell, R. (1989) Science 243, 500-507) may function in a signal transduction pathway and in cellular differentiation.  相似文献   

6.
A slowly inactivating inward calcium current was identified in the rat osteosarcoma cell line ROS 17/2.8 using a combination of ion flux and electrophysiological techniques. Voltage dependence, dihydropyridine sensitivity, divalent cation selectivity, and single channel properties identified this current as a high threshold, "L-type" calcium current. Ion flux experiments using 45Ca2+ confirmed that calcium uptake through these channel represents a major pathway for calcium entry into osteosarcoma cells. In resting cells, i.e. at negative membrane potentials, stimulation of both calcium current and rapid 45Ca2+ influx could be elicited by concentrations of 1,25-(OH)2-vitamin D3 between 0.1 and 3 nM. At these concentrations, 1,25-(OH)2-vitamin D3 shifted the threshold for activation of inward calcium current to more negative potentials. At higher concentrations (5-10 nM), inhibitory effects became predominant. These opposing effects are functionally similar to those of the dihydropyridine BAY K 8644. Other vitamin D3 metabolites (25-(OH)-D3 and 24,25-(OH)2-D3) exhibited less potent stimulatory effects and greater inhibition of calcium current than 1,25-(OH)2-D3. These results suggest that (i) vitamin D3 acts as a potent modulator of calcium channel function in osteosarcoma cells, and (ii) intracellular Ca2+-dependent signaling processes may be affected acutely by physiological concentrations of vitamin D3 metabolites.  相似文献   

7.
Production of endothelin-1 by rat cultured mesangial cells   总被引:7,自引:0,他引:7  
We investigated whether ET-1 is synthesized by and released from mesangial cells. ET-1-like immunoreactivity (LI) released into medium increased time-dependently under a serum-free condition. The amounts of ET-1-LI released into the medium was augmented in the presence of fetal calf serum. Reverse-phase HPLC profile of the conditioned media revealed a major component coeluting with standard ET-1. Northern blot analysis of poly(A) +RNA extracted from mesangial cells showed a single major band corresponding to the size of preproET-1 mRNA (2.3 kb). These findings demonstrate that ET-1 is synthesized by and released from rat mesangial cells and suggest a possibility that it acts on their own cells as an autocrine factor.  相似文献   

8.
《Life sciences》1994,55(18):PL365-PL370
The effects of the new 5-HT2A receptor antagonist sarpogrelate on the cellular action of serotonin were examined in cultured rat mesangial cells by measuring cytosolic free calcium concentration ([Ca2+]i). Sarpogrelate inhibited serotonin-induced increases in [Ca2+]i in a concentration-dependent manner. M1, a major metabolite of sarpogrelate, also exhibited an inhibitory effect exceeding that of sarpogrelate. The inhibitory effects of sarpogrelate and M1 were abolished by washing out these compounds. In contrast, the increase in [Ca2+]i induced by angiotensin II or arginine vasopressin was not affected by pretreatment of the cells with sarpogrelate or M1. These results suggest that sarpogrelate and its major metabolite (M1) act as reversible and specific 5-HT2A receptor antagonists against the contractile action of platelet-derived serotonin in mesangial cells.  相似文献   

9.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

10.
11.
Two forms of protein kinase C (PKC) activity in cytosol of cultured rat mesangial cells have been characterized in vitro by using histone H1 or endogenous proteins as substrates. Histones H1-phosphorylation was significantly increased only when calcium, phosphatidylserine (PS) and 1,2-diacylglycerol (DAG) or phorbol myristate acetate (PMA) were present together in the incubation medium. EGTA, a calcium chelator, completely inhibited this activity. Upon hydroxyapatite chromatography (HPLC), the PKC activity was eluted as a main peak at 150 mM potassium phosphate with a shoulder at 180 mM. Both peaks corresponded to the type III PKC from rat brain and were identified as PKC alpha isoform by immunoblot analysis. In contrast with what was observed using histone H1, the increased phosphorylation of endogenous proteins in the presence of a mixture of Ca2+/PS, plus either DAG or PMA, was only partly reduced by EGTA. Moreover, the level of the PKC activity detected in the presence of EGTA was comparable to the level of kinase activity, measured in the presence of PS alone or associated with DAG or PMA. This suggests that mesangial cells contain PKC activity which does not absolutely require calcium. Polyacrylamide gel electrophoresis revealed that patterns of phosphorylated mesangial cell proteins are different depending on whether calcium was added or not. In the presence of calcium, PKC strongly phosphorylated the proteins of 53,000 molecular weight, a doublet of 37,000-39,000, the 24,000 and the triplet of 17,000-20,000-22,000 molecular weight. The addition of EGTA to the assays suppressed completely the labelling of most proteins; only the 20,000 molecular weight protein remained strongly labelled, while the 39,000 molecular weight band was only faintly visible. The same patterns of phosphorylations were obtained after omission of calcium in the assays containing only PS and DAG (or PMA). So, the main substrates of calcium-dependent PKC are proteins of 53,000, 39,000, 37,000, 22,000, 24,000 and 17,000 molecular weight while the protein of 20,000 molecular weight appears to be the main substrate of calcium-independent PKC. The existence in mesangial cells of at least two forms of PKC, which phosphorylate specific endogenous proteins, emphasizes the complexity of the phospholipid-dependent regulatory cascade and raises the possibility that actions of different regulators may be transduced through distinct PKC isozymes.  相似文献   

12.
Sphingolipids mediate a number of cellular functions in a variety of cell systems. The role they play in osteoblast signaling is yet unknown. This study investigated the effects of epidermal growth factor (EGF) on the levels of ceramide, sphingosine (SPH), and sphingosine-1-phosphate (S1P) in rat calvariae osteoblastic cells, and whether these metabolites mediated cytosolic calcium ([Ca2+]i) mobilization in these cells. EGF significantly (P<0.05) increased the levels of all three sphingolipids, and the phorbol ester PMA partially inhibited these effects. SPH and S1P markedly increased [Ca2+]i levels, with thapsigargin (depletes [Ca2+]i pools) decreasing the response by 60%. Verapamil (calcium channel blocker) only inhibited ceramide's effects on [Ca2+]i. Furthermore, SPH enhanced the EGF' induced increase in [Ca2+]i. This study demonstrates that ceramide, SPH and S1P mediate [Ca2+]i mobilization in rat calvarial osteoblastic cells, and that EGF induces changes in the levels of these metabolites with PKC playing an important role in the mechanisms regulating these events.  相似文献   

13.
Developmental changes in responsiveness to vitamin D metabolites   总被引:1,自引:0,他引:1  
We have demonstrated that epiphyseal chondroblasts contain specific receptors for 24R,25-dihydroxy vitamin D3(24,25(OH)2D3) while diaphyseal osteoblasts contain specific receptors for 1 alpha 25-dihydroxy vitamin D3(1,25(OH)2D3). Both metabolites induce DNA synthesis and creatine kinase (CKBB) activity. We have also found that the responsiveness of rat kidney to these metabolites changes during development. In embryonic and early postnatal stages, the kidney responds to 24,25(OH)2D3, later to both 24,25(OH)2D3 and 1,25(OH)2D3, and the mature kidney only to 1,25(OH)2D3. These responses correlate with changes in the specific receptors present in the kidney. Furthermore, we have compared developmental changes in skeletal (epiphysis, diaphysis and mandibular condyle) and non-skeletal (kidney, cerebellum, cerebrum, liver and pituitary) tissue in both rat (a postnatal developer) and rabbit (a perinatal developer). Epiphyseal or diaphyseal chondroblasts at any stage of development were predominantly responsive to 24,25(OH)2D3, whereas osteoblasts were responsive to 1,25(OH)2D3. In contrast, condylar chondroblasts, kidney, cerebellum and pituitary responded to 24,25(OH)2D3 during early development and subsequently developed responsiveness to 1,25(OH)2D3. Using primary cell cultures from kidneys at different stages of maturation, we showed the same developmental pattern as in vivo. Chronic treatment of the cells with 24,25(OH)2D3, but not 1,25(OH)2D3, caused precocious development of responsiveness to 1,25(OH)2D3 in culture. We suggest that 24,25(OH)2D3 acts as a maturation factor, during early development in kidney, and probably in other tissues, possibly by induction of receptor to 1,25(OH)2D3, accompanied by down-regulation of its own receptor.  相似文献   

14.
Because adenosine plays a role in the regulation of glomerular filtration rate and of the release of renin, we examined the possibility of a local source for this mediator. We found that rat cultured glomerular mesangial cells converted 5'-AMP into adenosine. The properties of the enzyme involved in the reaction were those of an ecto-5' nucleotidase: (1) the products of the reaction were generated in the extracellular fluid although no 5'-nucleotidase was released by the cells into the medium; (2) identical activities were found for cultured cells in situ and sonicated cells; (3) the diazonium salt of sulfanilic acid which is a nonpenetrating reagent inhibited up to 75% of the enzyme activity. Ecto-5'-nucleotidase activity of intact cells obeyed Michaelis-Menten kinetics. Apparent Km for 5'-AMP was 0.32 mM. 5'-UMP was a strictly competitive inhibitor. ADP exerted a very powerful inhibitory effect and behaved also as a competitive inhibitor. ATP was inhibitory both by increasing Km and by decreasing Vmax. Ecto-5'-nucleotidase was active in the absence of divalent cations. However, Mg2+, Ca2+, Co2+ and Mn2+ were stimulatory. Zn2+ and Cu2+ suppressed the activity. Concanavalin A, a plant lectin, was markedly inhibitory, suggesting that a glycoprotein moiety was necessary to express enzyme activity. Ecto-5'-nucleotidase activity was not modified during phagocytosis of serum-treated zymosan by mesangial cells. Rat cultured glomerular epithelial cells exhibited a 5'-nucleotidase activity which was 4 times lower than that of the mesangial cells in primary culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Responses of cultured cartilage cells to metabolites of vitamin D3 were studied. Cells were obtained from the epiphyseal growth plate of rachitic chicks and were exposed to physiological and pharmacological concentrations of three metabolites of vitamin D3, 25 hydroxyvitamin D3 (25(OH)D3), 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). 1,25(OH)2D3 was found to reduce L-[U-14C]leucine incorporation into proteins and Na2 35SO4 incorporation into proteoglycans. The synthesis of 24,25(OH)2D3 from 25(OH)D3 was stimulated upon addition of 1,25(OH)2D3 to the cultures. Physiological concentrations of 24,25(OH)2D3 stimulated protein and proteoglycan synthesis. These findings support the notion that vitamin D3, through its active dihydroxylated metabolites, is directly involved in cartilage cells metabolism and healing of rickets.  相似文献   

16.
17.
We have previously reported that platelet-activating factor (PAF) elevates cytosolic free calcium concentration ([Ca2+]i) in fura-2-loaded glomerular mesangial cells. To confirm that this increase in [Ca2+]i is a result of receptor-mediated activation of phospholipase C, we investigated hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) in PAF-treated mesangial cells. PAF (10(-7) M) stimulated a rapid and transient formation of inositol trisphosphate. In concomitant experiments, PAF stimulated a biphasic accumulation of 3H-arachidonate-labeled 1,2-diacylglycerol (DAG). The secondary elevation in DAG was coincident with a rise in 3H-phosphorylcholine (PC) and 3H-phosphorylethanolamine (PE) suggesting that PAF stimulates delayed phospholipase activities which hydrolyze alternate phospholipids besides the polyphosphoinositides. This PAF-stimulated elevation in 3H-water soluble phosphorylbases was seen at 5 min but not at 15 sec suggesting that the initial rise in DAG as well as the initial elevation in [Ca2+]i are due primarily to PtdIns-4,5-P2 hydrolysis. PAF also stimulated PGE2 as well as 3H-arachidonic acid and 3H-lyso phosphatidylcholine (PtdCho) formation. We suggest that arachidonate released specifically from PtdCho via phospholipase A2 is a source of this PAF-elevated PGE2. It has been postulated that anti-inflammatory prostaglandins may antagonize the contractile and proinflammatory effects of PAF via activation of adenylate cyclase. Surprisingly, exogenous PAF reduced basal and receptor-mediated cAMP concentration indicating that PAF-stimulated transmembrane signaling pathways may oppose receptor-mediated activation of adenylyl cyclase. We have taken advantage of the different sensitivities of phospholipases A2 and C(s) to PMA, EGTA, and pertussis toxin to dissociate phospholipase A2 and C activities. Acute PMA-treatment enhanced PAF-stimulated PGE2 formation, reduced PAF-induced elevations in [Ca2+]i and had no effect upon PAF-stimulated 3H-PE. We have also demonstrated that phospholipase A2, but not PtdIns-specific phospholipase C, was sensitive to external calcium concentration. The role of a GTP-binding protein to couple PAF-receptors to the PtdIns-specific phospholipase C was confirmed as GTP gamma S synergistically elevated PAF-stimulated inositol phosphate formation. We also demonstrated that pertussis toxin ADP-ribosylates a single protein of an apparent 42 kD mass and that PAF pretreatment reduced subsequent ADP-ribosylation in a time-dependent manner. However, pertussis toxin had no effect upon phospholipase C-generated water soluble phosphorylbases or inositol phosphates. In contrast, PAF-stimulated phospholipase A2 and PAF-inhibited adenylyl cyclase activities were sensitive to pertussis toxin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Two separate liver cytosolic proteins have been partially purified and identified by their selectivity for binding either [1α,2α(n)-3H]vitamin D3 or 25-hydroxy [26(27)-methyl-3H]vitamin D3. The chromatographic properties of the two proteins were not distinguishable by ion-exchange nor were they dependent upon the vitamin D3 nutritional status of the birds. However, in molecular exclusion chromatography, the binding proteins can be successfully resolved into two discrete entities. Their binding properties suggest that they are not identical with plasma vitamin D3 binding protein.  相似文献   

19.
RBL-2H3 cells have been widely used to study histamine release in vitro. It was previously shown that these cells undergo striking morphological changes after IgE-mediated secretion. The present study was undertaken to examine if the morphological changes were dependent on activation of the Fc epsilon receptor. Therefore, the cells were stimulated to release histamine by two different mechanisms: activation of the Fc epsilon receptor by antigen and treatment with the calcium ionophore A23187. Cell surface and cytoskeletal changes were examined by fluorescence microscopy and scanning electron microscopy after either IgE- or ionophore-mediated histamine release. After exposure of the cells to either secretagogue, the cells spread over the surface of the culture dish and underwent rearrangement of the cytoskeleton. In addition, scanning electron microscopy revealed that deep ruffles developed on the surface of the cells undergoing IgE-mediated release. The surface changes were not as pronounced with the ionophore. The distribution of the cytoskeletal elements was examined by immunofluorescence using FITC-phalloidin and antibodies against vimentin and tubulin. In unstimulated cells actin was localized at the cell periphery, just under the plasma membrane. In the stimulated cells it was associated with the cell periphery and concentrated in the surface ruffles. As the stimulated cells spread, intermediate filaments and microtubules became distributed throughout the cell body, but there was no obvious association with the membrane ruffles. These morphological changes were dependent on the presence of extracellular calcium and on the concentration of ionophore or antigen, and were also correlated with the amount of histamine released. Additionally, IgE-mediated stimulation led to increased uptake of the soluble-phase tracer Lucifer yellow, whereas stimulation with the ionophore A23187 showed no increase in Lucifer yellow internalization. Ionophore A23187 produced changes similar but not identical to those seen in the RBL-2H3 cells after IgE-mediated histamine release. The differences may be owing to the involvement of the Fc epsilon receptor in IgE-mediated secretion.  相似文献   

20.
《Bone and mineral》1989,5(3):323-333
Investigation of the effects of 1,25(OH)2D3 and 24,25(OH)2D3 on the proliferation and differentiation of the human myelomonocytic cell line U937 has been complemented with studies of the effect of the same metabolites on the number of nuclear receptors for 1,25(OH)2D3. Both 1,25(OH)2D3 and 24,25(OH)2D3 inhibit the proliferation of U937 cells in a dose-dependent manner. The concentrations of 24,25(OH)2D3 required to produce this effect were 100-times greater than those of 1,25(OH)2D3. Inhibition of proliferation was associated with increased expression of the CD14 and 200 kDa 63D3 antigens thus confirming differentiation of U937 towards a more mature cell type.Studies of the nuclear receptor for 1,25(OH)2D3 showed that pre-treatment of the cells with 1,25(OH)2D3 resulted in an apparent 40% decrease in the number of detectable 1,25(OH)2D3 receptors as compared to control U937 cells. This is due to the fact that the 1,25(OH)2D3 binds to U937 cell nuclei during culture and thus blocks the subsequent binding of radiolabelled 1,25(OH)2D3 used to measure the number of 1,25(OH)2D3 receptors. Measurement of the binding of unlabelled 1,25(OH)2D3 by radioimmunoassay indicated that pre-treatment of the cells with 1,25(OH)2D3 increased the capacity of U937 to bind the hormone, although measurement of these receptors by whole cell assay was prevented by the binding of 1,25(OH)2D3 itself. This effect was not observed with 24,25(OH)2D3 which was more easily displaced from binding sites by radiolabelled 1,25(OH)2D3 and it appears to act through low affinity binding to the 1,25(OH)2D3 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号