首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined 15N isotope effects and solvent deuterium isotope effects for adenosine deaminase using both adenosine and the slow alternate substrate 7,8-dihydro-8-oxoadenosine. With adenosine, 15N isotope effects were 1.0040 in H2O and 1.0023 in D2O, and the solvent deuterium isotope effect was 0.77. With 7,8-dihydro-8-oxoadenosine, 15N isotope effects were 1.015 in H2O and 1.0131 in D2O, and the solvent deuterium isotope effect was 0.45. The inverse solvent deuterium isotope effect shows that the fractionation factor of a proton, which is originally less than 0.6, increases to near unity during formation of the tetrahedral intermediate from which ammonia is released. Proton inventories for 1/V and 1/(V/K) vs percent D2O are linear, indicating that a single proton has its fractionation factor altered during the reaction. We conclude that a sulfhydryl group on the enzyme donates its proton to oxygen or nitrogen during this step. pH profiles with 7,8-dihydro-8-oxoadenosine suggest that the pK of this sulfhydryl group is 8.45. The inhibition of adenosine deaminase by cadmium also shows a pK of approximately 9 from the pKi profile. Quantitative analysis of the isotope effects suggests an intrinsic 15N isotope effect for the release of ammonia from the tetrahedral intermediate of approximately 1.03 for both substrates; however, the partition ratio of this intermediate for release of ammonia as opposed to back-reaction is 14 times greater for adenosine (1.4) than for 7,8-dihydro-8-oxoadenosine (0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
B J Bahnson  V E Anderson 《Biochemistry》1989,28(10):4173-4181
The primary, alpha-secondary, beta-secondary, and beta'-secondary deuterium and primary 18O kinetic isotope effects on V/K for the dehydration of [(3S)-3-hydroxybutyryl]pantetheine by bovine liver crotonase (enoyl-CoA hydratase, EC 4.2.1.17) have been determined by the equilibrium perturbation method. The primary deuterium and 18O kinetic isotope effects are 1.61 and 1.051, respectively. The secondary deuterium effects at C-2, C-3, and C-4 are 1.12, 1.13, and 1.00 per H, respectively. The large 18O isotope effect suggests C-O bond cleavage is largely rate determining but is consistent with either an E1cb or E2 mechanism with a large amount of carbanion character. The beta-secondary effect is a factor of 1.05 greater than the equilibrium isotope effect, indicating that this C-H bond is less stiff in the affected transition state or that its motion is coupled to the reaction coordinate motion. Analytical solutions to the differential equations describing uni-uni equilibrium perturbations are presented.  相似文献   

3.
Beta-ketoacyl-acyl carrier protein (ACP) reductase from Mycobacterium tuberculosis (MabA) is responsible for the second step of the type-II fatty acid elongation system of bacteria, plants, and apicomplexan organisms, catalyzing the NADPH-dependent reduction of beta-ketoacyl-ACP to generate beta-hydroxyacyl-ACP and NADP(+). In the present work, the mabA-encoded MabA has been cloned, expressed, and purified to homogeneity. Initial velocity studies, product inhibition, and primary deuterium kinetic isotope effects suggested a steady-state random bi-bi kinetic mechanism for the MabA-catalyzed reaction. The magnitudes of the primary deuterium kinetic isotope effect indicated that the C(4)-proS hydrogen is transferred from the pyridine nucleotide and that this transfer contributes modestly to the rate-limiting step of the reaction. The pH-rate profiles demonstrated groups with pK values of 6.9 and 8.0, important for binding of NADPH, and with pK values of 8.8 and 9.6, important for binding of AcAcCoA and for catalysis, respectively. Temperature studies were employed to determine the activation energy of the reaction. Solvent kinetic isotope effects and proton inventory analysis established that a single proton is transferred in a partially rate-limiting step and that the mechanism of carbonyl reduction is probably concerted. The observation of an inverse (D)2(O)V/K and an increase in (D)2(O)V when [4S-(2)H]NADPH was the varied substrate obscured the distinction between stepwise and concerted mechanisms; however, the latter was further supported by the pH dependence of the primary deuterium kinetic isotope effect. Kinetic and chemical mechanisms for the MabA-catalyzed reaction are proposed on the basis of the experimental data.  相似文献   

4.
W M Atkins  S G Sligar 《Biochemistry》1988,27(5):1610-1616
The kinetics of NADH consumption, oxygen uptake, and hydrogen peroxide production have been studied for norcamphor metabolism by cytochrome P-450cam. The kinetic deuterium isotope effects on these processes, with specifically deuteriated norcamphor, are 0.77, 1.22, and 1.16, respectively. Steady-state UV-visible spectroscopy indicates that transfer of the second electron to the dioxy ferrous P-450 is the rate-limiting step, as it is when camphor is the substrate. The inverse deuterium isotope effect for NADH consumption is consistent with an isotope-dependent branching between monooxygenase and oxidase activity, where these reactivities differ in their NADH:oxygen stoichiometries. However, no isotope-dependent redistribution of steady-state intermediates was detected by isotopic difference UV-visible spectroscopy in the presence of norcamphor. The kinetic isotope effects and steady-state spectral results suggest that the high-valent iron-oxo hydroxylating intermediate [FeO]3+ is reduced by NADH and the physiological electron-transfer proteins to afford water.  相似文献   

5.
Noncompetitive and competitive intermolecular deuterium isotope effects were measured for the cytochrome P-450 catalyzed hydroxylation of a series of selectively deuterated chlorobenzenes. An isotope effect of 1.27 accompanied the meta hydroxylation of chlorobenzene-2H5 as determined by two totally independent methods (EC-LC and GC-MS assays). All isotope effects associated with the meta hydroxylation of chlorobenzenes-3,5-2H2 and -2,4,6-2H3 were approximately 1.1. In contrast, competitive isotope studies on the ortho and para hydroxylation of chlorobenzenes-4-2H1, -3,5-2H2, and -2,4,6-2H3 resulted in significant inverse isotope effects (approximately 0.95) when deuterium was substituted at the site of oxidation whereas no isotope effect was observed for the oxidation of protio sites. These results eliminate initial epoxide formation and initial electron abstraction (charge transfer) as viable mechanisms for the cytochrome P-450 catalyzed hydroxylation of chlorobenzene. The results, however, can be explained by a mechanism in which an active triplet-like oxygen atom adds to the pi system in a manner analogous to that for olefin oxidation. The resulting tetrahedral intermediate can then rearrange to phenol directly or via epoxide or ketone intermediates.  相似文献   

6.
The pH dependence of the kinetic parameters V, V/KNADH, and V/KH2O2 has been determined for the flavoenzyme NADH peroxidase. Both V/KNADH and V/KH2O2 decrease as groups exhibiting pK's of 9.2 and 9.9, respectively, are deprotonated. The V profile decreases by a factor of 5 as a group exhibiting a pK of 7.2 is deprotonated. Primary deuterium kinetic isotope effects on NADH oxidation are observed on V only, and the magnitude of DV is independent of H2O2 concentration at pH 7.5. DV/KNADH is pH independent and equal to 1.0 between pH 6 and pH 9.5, but DV is pH dependent, decreasing from a value of 7.2 at pH 5.5 to 1.9 at pH 9.5. The shape of the DV versus pH profile parallels that observed in the V profile and yields a similar pK of 6.6 for the group whose deprotonation decreases DV. Solvent kinetic isotope effects obtained with NADH or reduced nicotinamide hypoxanthine dinucleotide as the variable substrate are observed on V only, while equivalent solvent kinetic isotope effects on V and V/K are observed when H2O2 is used as the variable substrate. In all cases linear proton inventories are observed. Primary deuterium kinetic isotope effects on V for NADH oxidation decrease as the solvent isotopic composition is changed from H2O to D2O. These data are consistent with a change in the rate-limiting step from a step in the reductive half-reaction at low pH to a step in the oxidative half-reaction at high pH. Analysis of the multiple kinetic isotope effect data suggests that at high D2O concentrations the rate of a single proton transfer step in the oxidative half-reaction is slowed. These data are used to propose a chemical mechanism involving the pH-dependent protonation of a flavin hydroxide anion, following flavin peroxide bond cleavage.  相似文献   

7.
Cathepsin C, or dipeptidyl peptidase I, is a lysosomal cysteine protease of the papain family that catalyzes the sequential removal of dipeptides from the free N-termini of proteins and peptides. Using the dipeptide substrate Ser-Tyr-AMC, cathepsin C was characterized in both steady-state and pre-steady-state kinetic modes. The pH(D) rate profiles for both log k cat/ K m and log k cat conformed to bell-shaped curves for which an inverse solvent kinetic isotope effect (sKIE) of 0.71 +/- 0.14 for (D)( k cat/ K a) and a normal sKIE of 2.76 +/- 0.03 for (D) k cat were obtained. Pre-steady-state kinetics exhibited a single-exponential burst of AMC formation in which the maximal acylation rate ( k ac = 397 +/- 5 s (-1)) was found to be nearly 30-fold greater than the rate-limiting deacylation rate ( k dac = 13.95 +/- 0.013 s (-1)) and turnover number ( k cat = 13.92 +/- 0.001 s (-1)). Analysis of pre-steady-state burst kinetics in D 2O allowed abstraction of a normal sKIE for the acylation half-reaction that was not observed in steady-state kinetics. Since normal sKIEs were obtained for all measurable acylation steps in the presteady state [ (D) k ac = 1.31 +/- 0.04, and the transient kinetic isotope effect at time zero (tKIE (0)) = 2.3 +/- 0.2], the kinetic step(s) contributing to the inverse sKIE of (D)( k cat/ K a) must occur more rapidly than the experimental time frame of the transient kinetics. Results are consistent with a chemical mechanism in which acylation occurs via a two-step process: the thiolate form of Cys-234, which is enriched in D 2O and gives rise to the inverse value of (D)( k cat/ K a), attacks the substrate to form a tetrahedral intermediate that proceeds to form an acyl-enzyme intermediate during a proton transfer step expressing a normal sKIE. The subsequent deacylation half-reaction is rate-limiting, with proton transfers exhibiting normal sKIEs. Through derivation of 12 equations describing all kinetic parameters and sKIEs for the proposed cathepsin C mechanism, integration of both steady-state and pre-steady-state kinetics with sKIEs allowed the provision of at least one self-consistent set of values for all 13 rate constants in this cysteine protease's chemical mechanism. Simulation of the resulting kinetic profile showed that at steady state approximately 80% of the enzyme exists in an active-site cysteine-acylated form in the mechanistic pathway. The chemical and kinetic details deduced from this work provide a potential roadmap to help steer drug discovery efforts for this and other disease-relevant cysteine proteases.  相似文献   

8.
Earlier, it had been proposed in the laboratories at Halle that a cysteine residue is responsible for the hysteretic substrate activation behavior of yeast pyruvate decarboxylase. More recently, this idea has received support in a series of studies from Rutgers with the identification of residue C221 as the site where substrate is bound to transmit the information to H92, to E91, to W412, and finally to the active center thiamin diphosphate. According to steady-state kinetic assays, the C221A/C222A variant is no longer subject to substrate activation yet is still a well-functioning enzyme. Several further experiments are reported on this variant: (1) The variant exhibits lag phases in the product formation progress curves, which can be attributed to a unimolecular step in the pre-steady-state stage of catalysis. (2) The rate of exchange with solvent deuterium of the thiamin diphosphate C2H atom is slowed by a factor of 2 compared to the wild-type enzyme, suggesting that the reduced activity that results from the substitutions some 20 A from the active center is also seen in the first key step of the reaction. (3) The solvent (deuterium oxide) kinetic isotope effect was found to be inverse on V(max)/K(m) (0.62), and small but normal on V(max) (1.26), virtually ruling out residue C221 as being responsible for the inverse effects reported for the wild-type enzyme at low substrate concentrations. The solvent kinetic isotope effects are compared to those on two related enzymes not subject to substrate activation, Zymomonas mobilis pyruvate decarboxylase and benzoylformate decarboxylase.  相似文献   

9.
Cheng MC  Marsh EN 《Biochemistry》2007,46(3):883-889
Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that catalyze unusual isomerizations that proceed through organic radical intermediates generated by homolytic fission of the coenzyme's unique cobalt-carbon bond. These enzymes are part of a larger family of enzymes that catalyze radical chemistry in which a key step is the abstraction of a hydrogen atom from an otherwise inert substrate. To gain insight into the mechanism of hydrogen transfer, we previously used pre-steady-state, rapid-quench techniques to measure the alpha-secondary tritium kinetic and equilibrium isotope effects associated with the formation of 5'-deoxyadenosine when glutamate mutase was reacted with [5'-(3)H]adenosylcobalamin and L-glutamate. We showed that both the kinetic and equilibrium isotope effects are large and inverse, 0.76 and 0.72, respectively. We have now repeated these measurements using glutamate deuterated in the position of hydrogen abstraction. The effect of introducing a primary deuterium kinetic isotope effect on the hydrogen transfer step is to reduce the magnitude of the secondary kinetic isotope effect to a value close to unity, 1.05 +/- 0.08, whereas the equilibrium isotope effect is unchanged. The significant reduction in the secondary kinetic isotope effect is consistent with motions of the 5'-hydrogen atoms being coupled in the transition state to the motion of the hydrogen undergoing transfer, in a reaction that involves a large degree of quantum tunneling.  相似文献   

10.
Rickert KW  Klinman JP 《Biochemistry》1999,38(38):12218-12228
Previous measurements of the kinetics of oxidation of linoleic acid by soybean lipoxygenase 1 have indicated very large deuterium isotope effects, but have not been able to distinguish the primary isotope effect from the alpha-secondary effect. To address this question, singly deuterated linoleic acid was prepared, and enantiomerically resolved using the enzyme itself. Noncompetitive measurements of the primary deuterium isotope effect give a value of ca. 40 which is temperature-independent. The enthalpy of activation is low and isotope-independent, and there is a large isotope effect on the Arrhenius prefactor. A very large apparent secondary isotope effect (ca. 2.1) is measured with deuterium in the primary position, but a greatly reduced value (1.1) is observed with protium in the primary position. Mutagenesis of the active site leads to a significant reduction in k(cat) and perturbed isotope effects, in particular, a secondary effect of 5.6 when deuterium is in the primary position. The anomalous secondary isotope effects are shown to arise from imperfect stereoselectivity of hydrogen abstraction which, for the mutant, is attributed to a combination of inverse substrate binding and increased flexibility at the reactive carbon. After correction, a very large primary (76-84) and small secondary (1.1-1.2) kinetic isotope effects are calculated for both mutant and wild-type enzymes. The weight of the evidence is taken to favor hydrogen tunneling as the primary mechanism of hydrogen transfer.  相似文献   

11.
The dissociation constants for reversible covalent binding of twelve peptide nitrile inhibitors to the active site of papain have been measured by means of fluorescence titration. The binding constants generally parallel the kinetic specificity constants (kcat/Km) for related papain substrates, supporting earlier suggestions that peptide nitriles behave as transition state analog inhibitors of papain. In ten cases the temperature dependence of binding was analyzed to determine the enthalpic and entropic contributions to the binding energy. A compensation plot of delta H vs. T delta S resulted in two parallel lines, one for 'specific' nitriles (i.e., N-Ac-L-aa-NHCH2CN; aa = Phe, Leu, Met) and the other for 'non-specific' nitriles (e.g., N-Ac-D-Phe-NHCH2CN, PhCH2CH2CONHCH2CN hippurylnitrile, etc.). For both specific and nonspecific nitriles representing an 1800-fold range of Kd values (0.27 microM-490 microM), the solvent deuterium isotope effect on binding (Kd(H2O)/Kd(D2O) = DKd) was very close to 2.0. This isotope effect could be accounted for entirely by the simple protonic change which occurs upon the reversible addition of the active site sulfhydryl of papain to the nitrile group of the peptide derivative to form a covalent thioimidate linkage. In contrast, six closely related non-nitrile ligands containing identical peptide side chains but having C-terminal groups incapable of binding covalently to papain had unmeasureably high dissociation constants. Collectively, these results indicate that strong binding of peptide nitrile substrate analogs to papain requires a combination of (1) hydrophobic interaction (especially at the P2 position), (2) specific intermolecular hydrogen bonding and (3) covalent interaction of the nitrile with the active site sulfhydryl group.  相似文献   

12.
Cytochrome P-450 (P-450)-catalyzed oxidation of 2,6-dimethyl-4-phenyl-3,5-pyridinedicarboxylic acid diethyl ester gives rise to 2,6-dimethyl-4-phenyl-3,5-pyridinedicarboxylic acid monoethyl ester and to 2-hydroxymethyl-6-methyl-4-phenyl-3,5-pyridinedicarboxylic acid diethyl ester, identified in this work. A pyridine hydroxymethyl diester of the sort of the latter compound is novel; under acidic or dehydrating conditions the diester is readily converted to a cyclic lactone (2-hydroxymethyl-6-methyl-4-phenyl-3,5-pyridinedicarboxylic acid 5-ethyl ester lactone). 2,6-Dimethyl-4-phenyl-3,5-pyridinedicarboxylic acid monoethyl ester was not hydroxylated to form this hydroxymethyl compound or lactone, but 1,4-dihydro-2-hydroxymethyl-4-phenyl-6-methyl-3,5-pyridinedicarboxyli c acid diethyl ester was enzymatically oxidized to give both products. The rates of oxidative carboxylic ester cleavage and methyl hydroxylation varied among individual forms of P-450 tested. Experiments with 2H and 3H labels were used to estimate an intrinsic kinetic deuterium isotope effect of 15 for ethyl ester cleavage by rat liver P-450PB-B in a reconstituted system. Rat liver microsomal systems showed kinetic deuterium and tritium isotope effects of 8 and 11, respectively, and this deuterium isotope effect was not attenuated in either intra- or intermolecular competitive experiments. When deuterium was present in the ethyl (ester) groups, increases in the rate of 2-methyl hydroxylation were observed in rat liver microsomes and with purified P-450 beta NF-B (but not with P-450PB-B). Deuteration of the methyl groups gave rise to kinetic isotope effects of 7-11, but no increases were seen in the rates of ester cleavage. These studies and those on rates of substrate disappearance indicate that isotopically sensitive branching (metabolic switching) observed in these systems is not necessarily bidirectional.  相似文献   

13.
The reaction mechanism for glycogen synthetase from rabbit muscle was examined by alpha-secondary deuterium isotope effects and positional exchange experiments. Incubation of glycogen synthetase with [beta-18O2,alpha beta-18O]UDP-Glc did not result in any detectable positional isotope exchange from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. Glucono-1,5-lactone was found to be a noncompetitive inhibitor versus UDP-Glc. The kinetic constants, K(is) and K(ii), were found to be 91 +/- 4 microM and 0.70 +/- 0.09 mM, respectively. Deoxynojirimycin was a nonlinear inhibitor at pH 7.5. The alpha-secondary deuterium isotope effects were measured with [1-2H]UDP-Glc by the direct comparison method. The isotope effects on Vmax and Vmax/K were found to be 1.23 +/- 0.04 and 1.09 +/- 0.06, respectively. The inhibitory effects by glucono-lactone and deoxynojirimycon plus the large alpha-secondary isotope effect on Vmax have been interpreted to show that an oxocarbonium ion is an intermediate in this reaction mechanism. The lack of a detectable positional isotope exchange reaction in the absence of glycogen suggests the formation of a rigid tight ion pair between UDP and the oxocarbonium ion intermediate.  相似文献   

14.
Heavy-atom isotope effects for the N-demethylation of nicotine have been determined in vivo in static-phase biosynthetically incompetent plant cell cultures of Nicotiana species. A (2)H kinetic isotope effect of 0.587 and a (15)N kinetic isotope effect of 1.0028 were obtained. An identical (15)N kinetic isotope effect of 1.0032 was obtained for the nicotine analogue, N-methyl-2-phenylpyrrolidine. The magnitude of the (15)N heavy-atom isotope effect indicates that the fission of the CN bond is not rate limiting for demethylation. The theoretical calculation of heavy-atom isotope effects for a model of the reaction pathway based on cytochrome P450 best fits the measured kinetic isotope effect to the addition of hydroxyl ion to iminium to form N-hydroxymethyl, for which the computed (2)H- and (15)N kinetic isotope effects are 0.689 and 1.0081, respectively. This large inverse (2)H kinetic isotope effect is not compatible with the initial abstraction of the H from the methyl group playing a significant kinetic role in the overall kinetic limitation of the reaction pathway, since computed values for this step (4.54 and 0.9995, respectively) are inconsistent with the experimental data.  相似文献   

15.
A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which bound alpha-aminoacetophenone is generated followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the inhibitory species (Mangold, J.B., and Klinman, J.P. (1984) J. Biol. Chem. 259, 7772-7779). Based on the assumption that the ketone radical is the inhibitory intermediate, an analogous system was predicted and verified (Bossard, M.J., and Klinman, J.P. (1986) J. Biol. Chem. 261, 16421-16427). In the present study, the role of alpha-aminoacetophenone as the proposed intermediate in the inactivation by beta-chlorophenethylamine was examined in greater detail. From the interdependence of tyramine and alpha-aminoacetophenone concentrations, ketone inactivation is concluded to occur at the substrate site as opposed to potential binding at the reductant-binding site. Using beta-[2-1H]- and beta-[2-2H]chlorophenethylamine, the magnitude of the deuterium isotope effect on inactivation under second-order conditions has been found to be identical to that observed under catalytic turnover, D(kappa inact/Ki) = D(kappa cat/Km) = 6-7. By contrast, the isotope effect on inactivation under conditions of substrate and oxygen saturation, D kappa inact = 2, is 3-fold smaller than that seen on catalytic turnover, D kappa cat = 6. This reduced isotope effect for inactivation is attributed to a normal isotope effect on substrate hydroxylation followed by an inverse isotope effect on the partitioning of the enol of alpha-aminoacetophenone between oxidation to a radical cation versus protonation to regenerate ketone. These findings are unusual in that two isotopically sensitive steps are present in the inactivation pathway whereas only one is observable in turnover.  相似文献   

16.
Using 4-methoxybenzoate monooxygenase from Pseudomonas putida, the substrate deuterium isotope effect on product formation and the solvent isotope effect on the stoichiometry of oxygen uptake, NADH oxidation, product and/or H2O2 (D2O2) formation for tight couplers, partial uncouplers, and uncouplers as substrates were measured. These studies revealed for the true, intrinsic substrate deuterium isotope effect on the oxygenation reaction a k1H/k2H ratio of < 2.0, derived from the inter- and intramolecular substrate isotope effects. This value favours a concerted oxygenation mechanism of the substrate. Deuterium substitution in a tightly coupling substrate initiated a partial uncoupling of oxygen reduction and substrate oxygenation, with release of H2O2 corresponding to 20% of the overall oxygen uptake. This H2O2 (D2O2) formation (oxidase reaction) almost completely disappeared when the oxygenase function was increased by deuterium substitution in the solvent. The electron transfer from NADH to oxygen, however, was not affected by deuterium substitution in the substrate and/or the solvent. With 4-trifluoromethylbenzoate as uncoupling substrate and D2O as solvent, a reduction (peroxidase reaction) of the active oxygen complex was initiated in consequence of its extended lifetime. These additional two electron-transfer reactions to the active oxygen complex were accompanied by a decrease of both NADH oxidation and oxygen uptake rates. These findings lead to the following conclusions: (a) under tightly coupling conditions the rate-limiting step must be the formation time and lifetime of an active transient intermediate within the ternary complex iron/peroxo/substrate, rather than an oxygenative attack on a suitable C-H bond or electron transfer from NADH to oxygen. Water is released after the monooxygenation reaction; (b) under uncoupling conditions there is competition in the detoxification of the active oxygen complex between its protonation (deuteronation), with formation of H2O2 (D2O2) and its further reduction to water. The additional two electron-transfer reactions onto the active oxygen complex then become rate limiting for the oxygen uptake rate.  相似文献   

17.
The Photoactive Yellow Protein (PYP) from Halorhodospira halophila (formerly Ectothiorhodospira halophila) is increasingly used as a model system. As such, a thorough understanding of the photocycle of PYP is essential. In this study we have combined information from pOH- (or pH-) dependence and (kinetic) deuterium isotope effects to elaborate on existing photocycle models. For several characteristics of PYP we were able to make a distinction between pH- and pOH-dependence, a nontrivial distinction when comparing data from samples dissolved in H2O and D2O. It turns out that most characteristics of PYP are pOH-dependent. We confirmed the existence of a pB′ intermediate in the pR to pB transition of the photocycle. In addition, we were able to show that the pR to pB′ transition is reversible, which explains the previously observed biexponential character of the pR-to-pB photocycle step. Also, the absorption spectrum of pB′ is slightly red-shifted with respect to pB. The recovery of the pG state is accompanied by an inverse kinetic deuterium isotope effect. Our interpretation of this is that before the chromophore can be isomerized, it is deprotonated by a hydroxide ion from solution. From this we propose a new photocycle intermediate, pBdeprot, from which pG is recovered and which is in equilibrium with pB. This is supported in our data through the combination of the observed pOH and pH dependence, together with the kinetic deuterium isotope effect.  相似文献   

18.
The effect of D2O on the kinetic parameters for the hydroperoxide-supported N-demethylation of N,N-dimethylaniline catalyzed by chloroperoxidase and horseradish peroxidase was investigated in order to assess the roles of exchangeable hydrogens in the demethylation reaction. The initial rate of the chloroperoxidase-catalyzed N-demethylation of N,N-dimethylaniline supported by ethyl hydroperoxide exhibited a pL optimum (where L denotes H or D) of 4.5 in both H2O and D2O. The solvent isotope effect on the initial rate of the chloroperoxidase-catalyzed demethylation reaction was independent of pL, suggesting that the solvent isotope effect is not due to a change in the pK of a rate-controlling ionization in D2O. The solvent isotope effect on the Vmax for the chloroperoxidase-catalyzed demethylation reaction was 3.66 +/- 0.62. In contrast, the solvent isotope effect on the Vmax for the horseradish peroxidase catalyzed demethylation reaction was approximately 1.5 with either ethyl hydroperoxide or hydrogen peroxide as the oxidant, indicating that the exchange of hydrogens in the enzyme and hydroperoxide for deuterium in D2O has little effect on the rate of the demethylation reaction. The solvent isotope effect on the Vmax/KM for ethyl hydroperoxide in the chloroperoxidase-catalyzed demethylation reaction was 8.82 +/- 1.57, indicating that the rate of chloroperoxidase compound I formation is substantially decreased in D2O. This isotope effect is suggested to arise from deuterium exchange of the hydroperoxide hydrogen and of active-site residues involved in compound I formation. A solvent isotope effect of 2.96 +/- 0.57 was observed on the Vmax/KM for N,N-dimethylaniline in the chloroperoxidase-catalyzed reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Penicillin acylase catalyses the hydrolysis and synthesis of semisynthetic beta-lactam antibiotics via formation of a covalent acyl-enzyme intermediate. The kinetic and mechanistic aspects of these reactions were studied. Stopped-flow experiments with the penicillin and ampicillin analogues 2-nitro-5-phenylacetoxy-benzoic acid (NIPAOB) and d-2-nitro-5-[(phenylglycyl)amino]-benzoic acid (NIPGB) showed that the rate-limiting step in the conversion of penicillin G and ampicillin is the formation of the acyl-enzyme. The phenylacetyl- and phenylglycyl-enzymes are hydrolysed with rate constants of at least 1000 s-1 and 75 s-1, respectively. A normal solvent deuterium kinetic isotope effect (KIE) of 2 on the hydrolysis of 2-nitro-5-[(phenylacetyl)amino]-benzoic acid (NIPAB), NIPGB and NIPAOB indicated that the formation of the acyl-enzyme proceeds via a general acid-base mechanism. In agreement with such a mechanism, the proton inventory of the kcat for NIPAB showed that one proton, with a fractionation factor of 0.5, is transferred in the transition state of the rate-limiting step. The overall KIE of 2 for the kcat of NIPAOB resulted from an inverse isotope effect at low concentrations of D2O, which is overridden by a large normal isotope effect at large molar fractions of D2O. Rate measurements in the presence of glycerol indicated that the inverse isotope effect originated from the higher viscosity of D2O compared to H2O. Deacylation of the acyl-enzyme was studied by nucleophile competition and inhibition experiments. The beta-lactam compound 7-aminodesacetoxycephalosporanic acid (7-ADCA) was a better nucleophile than 6-aminopenicillanic acid, caused by a higher affinity of the enzyme for 7-ADCA and complete suppression of hydrolysis of the acyl-enzyme upon binding of 7-ADCA. By combining the results of the steady-state, presteady state and nucleophile binding experiments, values for the relevant kinetic constants for the synthesis and hydrolysis of beta-lactam antibiotics were obtained.  相似文献   

20.
W L Sweet  J S Blanchard 《Biochemistry》1991,30(35):8702-8709
Kinetic parameters and primary deuterium kinetic isotope effects for NADH and five pyridine nucleotide substrates have been determined at pH 8.1 for human erythrocyte glutathione reductase. DV/KNADH and DV are equal to 1.4 and are pH independent below pH 8.1, but DV decreases to 1.0 at high pH as a group exhibiting a pK of 8.6 is deprotonated. This result suggests that as His-467' is deprotonated, the rate of the isotopically insensitive oxidative half-reaction is specifically decreased and becomes rate-limiting. For all substrates, equivalent V and V/K primary deuterium kinetic isotope effects are observed at pH values below 8.1. The primary deuterium kinetic isotope effect on V, but not V/K, is sensitive to solvent isotopic composition. The primary tritium kinetic isotope effects agree well with the corresponding value calculated from the primary deuterium kinetic isotope effects by using the Swain-Schaad relationship. This suggests that the primary deuterium kinetic isotope effects observed in these steady-state experiments are the intrinsic primary deuterium kinetic isotope effects for hydride transfer. The magnitude of the primary deuterium kinetic isotope effect is dependent on the redox potential of the pyridine nucleotide substrate used, varying from approximately 1.4 for NADH and -320 mV reductants to 2.7 for thioNADH to 4.2-4.8 for 3-acetylpyridine adenine dinucleotide (3APADH). The alpha-secondary tritium kinetic isotope effects also increase as the redox potential of the pyridine nucleotide substrate becomes more positive. Together, these data indicate that the transition state for hydride transfer is very early for NADH and becomes later for thioNADH and 3APADH, as predicted by Hammond's postulate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号