首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of an undersown catch crop on the dynamics and leaching of nitrogen in cropping systems with spring cereals were investigated in southern Sweden. Field measurements of soil mineral nitrogen and nitrogen concentrations in drainage water were made for 4 years in a sandy soil. The experiment was performed on four tile-drained field plots sown with spring cereals. On two of the plots, Italian rye grass was undersown and ploughed down the following spring during three of the years. The other two plots were treated in a conventional way and served as controls. Soil nitrate levels were substantially reduced in the catch-crop treatment, but increased during the fourth year when no catch crop was grown. The differences between the treatments in soil nitrate were reflected in the nitrate concentrations measured in the drainage water. A mathematical model was used to simulate nitrogen dynamics in corresponding treatments. There was good agreement between measurements and simulations with regard to patterns of change in soil mineral nitrogen and nitrate concentrations in drainage water for each treatment. Simulated leaching of nitrate in the conventional treatment was 1.9–3.9 g N m–2 y–1 during the first three years while calculated leaching based on the measurements was 2.7–4.4 g N m–2 y–1. In the catch-crop treatment leaching of nitrate was reduced by 1.4–2.6 g m–2 y–1 according to the simulations and by 2.2–4.1 g m–2 y–1 according to calculations based on the measurements. Measurements showed that leaching of nitrogen compounds other than nitrate was hardly affected by the catch crop. In the simulations the ploughed-down catch crop resulted in temporary increases of the litter pool, a net increase of the humus pool and a reduced C-N ratio of the litter pool. Simulated net mineralization from the litter pool was substantially higher in the catch-crop treatment compared with the conventional treatment. In the fourth year, the yield of the main crop was 20–25% higher in the catch-crop treatment, and leaching was higher than in the conventional treatment.  相似文献   

2.
针对华北平原麦玉轮作区氮肥用量大、氮损失及土壤氮素累积严重的问题,探索不同减氮调控施肥措施对作物产量、氮损失及土壤无机氮累积的影响.通过(2016—2017年)设置两年大田试验,以农民施肥为对照,研究控释肥处理、微生物肥处理及配施硝化抑制剂处理减少氮用量后对小麦、玉米产量和地上部吸氮量、氮损失及土壤无机氮含量的影响.结果表明: 2016年微生物肥处理的小麦产量显著低于控释肥处理和硝化抑制剂处理,与农民施肥处理无显著性差异;且小麦和周年作物地上部吸氮量都显著降低.2017年各处理间作物产量和吸氮量无显著性差异.3种减氮调控施肥处理均能保持和改善耕层土壤肥力;且微生物肥处理随种植时间延长对土壤碱解氮、速效钾和有机质含量均有提升.随种植时间延长无机氮累积严重,微生物肥处理和添加硝化抑制剂处理均可降低40~100 cm土壤剖面的无机氮含量,而控释肥处理可提高0~40 cm土层无机氮含量.氮损失中氨挥发>淋溶量>N2O排放>径流,径流损失可忽略不计,其中以农民施肥处理氮损失最大,微生物肥处理可显著降低氨挥发损失量,但淋溶量较大.综上所述,减量施氮条件下,控释肥处理和添加硝化抑制剂处理可保证作物产量及地上部吸氮量,微生物肥处理随种植年限的延长可保证作物产量和吸氮量.微生物肥和添加硝化抑制剂处理可降低40~100 cm土层无机氮含量,控释肥处理对削减无机氮量效果不明显;几种减氮调控措施均可降低氮损失,但微生物肥处理需调整措施来降低氮的淋溶量.  相似文献   

3.
Chalmers  A. G.  Bacon  E. T. G.  Clarke  J. H. 《Plant and Soil》2001,228(2):157-177
The management and effects of 3-year and 5-year set-aside covers on soil mineral nitrogen (SMN, 0.0–0.9 m) were studied at six sites in England. Soil mineral N was measured annually in autumn and spring during the period of set-aside cover, with more frequent SMN sampling over the first winter after ploughing out the covers. Spring SMN was measured in the second year after set-aside. Nitrate leaching losses were also measured at three sites in the first winter after destruction of the 5-year set-aside covers. Winter cereals were grown in both test years after each set-aside period.Amounts of both autumn and spring SMN in the perennial rye-grass (PRG), perennial rye-grass/white clover (PRG/WC) and natural regeneration (NR) covers were generally less than, or similar to those in the continuous arable treatment during each year of set-aside, indicating a slightly smaller nitrate leaching risk under set-aside management. Slight increases in autumn SMN, and hence leaching potential were, however, observed under PRG/WC in the fourth and fifth years, compared with continuous arable cropping.Ploughing out of both 3-year and 5-year covers increased soil N supply and potential nitrate leaching losses over winter, compared with continuous arable cropping. By the following spring, mean increases across all sites in amounts of SMN after 3-year covers of PRG, NR and PRG/WC were 14, 18 and 33 kg ha–1 N, respectively, compared with the arable rotation. Equivalent increases in spring SMN following destruction of the 5-year set-aside covers were almost identical, at 17, 19 and 33 kg ha–1, respectively, although only the ploughed-out PRG/WC covers increased SMN at the clay sites. Measured nitrate leaching losses in the first winter after 5-year set-aside were greatest after PRG/WC at two sites on shallow chalk but greatest after NR, which had a naturally large clover content, at the third site which was on a sandy soil. However, the leaching losses after set-aside were relatively small, relative to typical losses after ploughing out intensively managed grass or grass/clover swards, and would have been compensated for by potentially less leaching during set-aside.Spring SMN measurements in the second year after ploughing out the set-aside covers, showed negligible or, for PRG/WC, only slight increases (12 – 18 kg ha–1) in residual soil N supply after both 3-year and 5-year covers, compared to continuous arable cropping. The extra N mineralisation after cover destruction justified small reductions in fertiliser N inputs for the first, but not second crop following either 3- or 5-year set-aside, unless the cover had contained a large clover content. Both 3-year and 5-year set-aside covers had minimal or no effect on either organic matter content, apart from a slight increase in the PRG/WC treatments, or extractable phosphorus, potassium and magnesium status in the topsoil.  相似文献   

4.
Summary The changes in the ammonium-N and nitrate-N contents of bare fallow and soil under the first and third crops of winter wheat after fallow were followed on plots of Broadbalk Field, Rothamsted, which have received for each crop 14 tons farmyard manure (FYM) per acre, complete minerals (P, K, Na, Mg), or complete minerals + nitrogen fertilizers.More mineral N was produced during fallow on the plot receiving FYM than on the other plots. Soil under wheat also contained more mineral N on the FYM plots than elsewhere. Nitrogen fertilizers applied in the spring temporarily increased the mineral-N content of the soil, but were rapidly removed by the crop. Ammonium sulphate applied in the autumn was lost from the surface soil by the following March through nitrification and leaching.Twice as much mineral-N was produced when soil from the FYM plot was incubated as when soils from other plots were similarly treated. Nitrate formed during fallow was leached into the subsoil during the autumn and winter, and recovered by the wheat during the following spring and summer. Its existence is not detected by sampling the surface soil, nor by an incubation test. This source of nitrogen complicates the use of laboratory measurements to assess the fertilizer nitrogen required by winter wheat. Since the crop removed mineral N from the surface soil by March, estimation of the amount then present was also of no value for making fertilizer recommendations.  相似文献   

5.
Vos  G. J. M.  Bergevoet  I. M. J.  Védy  J. C.  Neyroud  J. A. 《Plant and Soil》1994,160(2):201-213
A field experiment was carried out at a pilot plot that was cropped with oilseed rape, and then left partly fallow and partly cropped with a green manure (mustard) during the autumn after harvest of the oilseed rape. The rape residues were incorporated in the soil. Methods used to quantify the N fluxes from harvest until sowing of the next crop were (1) 15N balance method, (2) total mineral N analysis and (3) NO emission measurements. Losses of spring applied fertilizer N were negligible in cropped plots and minimal in fallow plots during the following autumn-winter period. Most of the plant-N residues was retained by the organic N pool of the upper 30-cm soil layer. The green manure contributed slightly to soil available N at sowing of the next crop. However, the incorporation of plant material resulted in a nitrate flux that was at risk of leaching on the fallow plots, and on the green manure plots after incorporation of the green manure. This nitrate was largely derived from soil organic N, not from unused fertilizer applied in spring or from immobilized fertilizer. The NO emissions from the green manure plots were significantly higher than emissions from the fallow plots. The plants had a stimulating effect on the NO emission. A relationship between the NO emission and the soil nitrate concentration could not be established. No emissions were measured after green manure incorporation due to the low temperatures at the pilot plot. However, a greenhouse experiment showed an increased emission after incorporation. The NO emissions seemed to be related with the soil ammonium concentration.  相似文献   

6.
Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3 leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality.  相似文献   

7.
Summary Nitrogen fertilizer was applied to field plots at rates of 0, 50, 100, 150 and 200 N kg/ha yr, in order to determine the effects of differentiated N applications on drainage water and groundwater quality. Water samples, collected monthly or bimonthly from 1974 to 1983, were analysed for inorganic and total N content. In order to see the impact of residual N on leaching losses, soil samples were collected to a depth of 2 m in the N0, N100 and N200 plots, usually in September and April. Leaching of nitrate was moderate to the N100 level but increased substantially with increasing fertilization, up to 91 N kg/(ha-yr) for the highest application rate (N200), during the wet year of 1980/81. The losses were greatest during the fall, mainly due to high levels of N remaining in the soil after harvest combined with high precipitation. The N content of the groundwater did not show any significant correlation to the fertilization intensity. A buildup of inorganic N in the soil occurred only when excessive amounts of fertilizer were applied (N200), while the contents of the N0 and N100 treatments fluctuated around states of balance, approximately 45 and 70 N kg/ha respectively. Spring rape followed by winter wheat showed a great ability to reduce N contents in the tile effluent from highly fertilized plots (N150 and N200), even though the plots had received excessive amounts of fertilizer for several years. Results of this experiment in central Sweden demonstrate the importance of applying nitrogen fertilizer in balance with crop needs and of maintaining a growing crop cover as much of the time as possible in order to minimize water pollution.  相似文献   

8.
Rye (Secale cereale L.), wheat (Triticum aestivum L.), and annual ryegrass (Lolium multiflorum Lam.) are commonly double cropped with soybean (Glycine max L.). Recent greenhouse studies have shown variability in plant-parasitic nematode response to cool season grass species and cultivars. However, subsequent soybean performance was not affected by previous annual ryegrass cultivar in the green-house. The objective of this research was to determine whether winter cover crop species or cultivars affected nematode populations and subsequent performance of soybean in teh field. Four cultivars of annual ryegrass, wheat, and rye, and a fallow control were seeded on a Suffolk sandy loam (fine-loamy, siliceous, thermic Typic Hapuldult) soil in each of three years. Nematode-susceptible soybeans were seeded following forage removal. Soil samples for nematode counts were taken immediately before soybean harvest each year. In another experiment, one cultivar each of annual ryegrass, wheat, and rye, and a fallow control were followed by three soybean cultivars selected for differing nematode susceptibility. Grass cultivars did not affect nematode populations under succedding soybean. The only nematodes affected by grass species in either experiment were Pratylenchus spp., Heterodera glycines Ichinohe, and Tylenchorhynchus claytoni (Kofoid and White) Chitwood. Nematode population means were usually low following ryegrass and high following the fallow control. High soybean yields followed the fallow control, and low soybean yields followed annual ryegrass.  相似文献   

9.
Catch crops can effectively decrease nitrate leaching in arable cropping systems but their long-term impacts on nitrogen mineralization are not well known. This study quantified the effects of continuous catch crops on net N mineralization, crop N uptake, crop N use efficiency and N leaching in three long-term (13?C17?years) field experiments in northern France. Mustard was grown every year at Boigneville, radish every year at Thibie and ryegrass every 2?years at Kerlavic. The mean N content of catch crop residues at these sites was 33, 36 and 35?kg ha?1 yr?1 and their mean C:N ratio was 13, 17 and 28, respectively. Net mineralization was calculated with a mass balance of soil mineral N using measured inputs and outputs. Catch crop establishment enhanced annual mineralization by on average 26, 18 and 9?kg N ha?1 yr?1 respectively during the 13?C17?year period. The difference in mineralization rate between catch crop and control treatments (extra mineralization) was positive from the first year at Boigneville, whereas it was negative or nil during the first 3?C5?years at Thibie and Kerlavic. At the latter sites, the extra mineralization rate increased significantly over time at a rate of 2.0 and 2.6?kg N ha?1 yr?2. At the end of the experiment, cumulative extra mineralization represented 72%, 60% and 23% of the total N added by catch crop residues at Boigneville, Thibie and Kerlavic, respectively. Repeated catch crops significantly increased N uptake and N use efficiency by main crops at Kerlavic and Thibie, but not at Boigneville. The efficiency of catch crops in reducing N leaching persisted over the years at all sites. A model simulating C and N dynamics during catch crop decomposition was able to reproduce the pattern of extra N mineralization kinetics with the various catch crop species, but underestimated the range of variation between sites. Better predictions were obtained when C or N inputs due to catch crops were increased by 10?C57%, suggesting that the actual inputs could be markedly greater than those measured in catch crop residues. According to the model, the C:N ratio of catch crop residues largely explained differences in mineralization due to different catch crop species.  相似文献   

10.
Indirect emission of nitrous oxide (N2O), associated with nitrogen (N) leaching and runoff from agricultural lands is a major source of atmospheric N2O. Recent studies have shown that carbon dioxide (CO2) and methane (CH4) are also emitted via these pathways. We measured the concentrations of three dissolved greenhouse gases (GHGs) in the subsurface drainage from field lysimeter that had a shallow groundwater table. Aboveground fluxes of CH4 and N2O were monitored using an automated closed‐chamber system. The annual total emissions of dissolved and aboveground GHGs were compared among three cropping systems; paddy rice, soybean and wheat, and upland rice. The annual drainage in the paddy rice, the soybean and wheat, and the upland rice plots was 1435, 782, and 1010 mm yr?1, respectively. Dissolved CO2 emissions were highest in the paddy rice plots, and were equivalent to 1.05–1.16% of the carbon storage in the topsoil. Dissolved CH4 emissions were also higher in the paddy rice plots, but were only 0.03–0.05% of the aboveground emissions. Dissolved N2O emissions were highest in the upland rice plots, where leached N was greatest due to small crop biomass. In the soybean and wheat plots, large crop biomass, due to double cropping, decreased the drainage volume, and thus decreased dissolved GHG emissions. Dissolved N2O emissions from both the soybean and wheat plots and the upland rice plots were equivalent to 50.3–67.3% of the aboveground emissions. The results indicate that crop type and rotation are important factors in determining dissolved GHG emissions in the drainage from a crop field.  相似文献   

11.
Field experiments were done to evaluate the extent to which cover crops can be used to help farmers comply with current legislation on nitrate leaching from arable land in nitrate vulnerable zones. Nitrate leaching was measured in sandy loam and chalky loam soils under a range of early sown (mid-August) cover crops at two sites in SE England, and in the subsequent winter following their incorporation. Cover crop species tested were forage rape, rye, white mustard, a rye/white mustard mixture, Phacelia and ryegrass. Additional treatments were weeds plus cereal volunteers, a bare fallow and a conventional winter barley crop sown one month later than the cover crops and grown to maturity. Cover crop and bare fallow treatments were followed by spring barley. This was followed by winter barley, as was the conventional winter barley crop. In the winter immediately after establishment, early sown cover crops decreased nitrate leaching by 29–91% compared to bare fallow. They were most effective in a wet winter on the sandy loam where nitrate leaching under bare fallow was greatest. There was little difference between cover crop species with respect to their capacity to decrease nitrate leaching, but losses were consistently smaller under forage rape. The growth of weeds plus cereal volunteers significantly decreased nitrate leaching on the sandy loam compared with a bare fallow, but was less effective on the chalky loam. Nitrate leaching under the later sown winter barley was often greater than under cover crops, but under dry conditions leaching losses were similar. In the longer-term, in most cases, the inclusion of cover crops in predominantly cereal-based cropping systems did not significantly decrease cumulative nitrate leaching compared with two successive winter cereals. In summary, early sown cover crops are most likely to be effective when grown on freely drained sandy soils where the risk of nitrate leaching is greatest. They are less likely to be effective on poorer drained, medium-heavy textured soils in the driest parts of SE England. In these areas the regeneration of weeds and cereal volunteers together with some additional broadcast seed may be sufficient to avoid excessive nitrate losses. In the short-term, mineralization of N derived from the relatively small cover crops grown once every 3–4years in cereal-based cropping systems is unlikely to contribute greatly to nitrate leaching in later years and adjustments to fertilizer N recommendations will not usually be necessary.  相似文献   

12.
Abstract Non‐crop habitats may play a vital role in conservation biological control. This study tested the effect of ryegrass (Lolium multiflorum L.) strips on aphid and ladybird populations in adjacent winter wheat fields. The field experiment was conducted in three ryegrass‐margin wheat plots and three control plots in 2010 in North China. In spring, the same aphid species, Sitobion miscanthi (Takahashi), was found in both the ryegrass strips and wheat plots. The population density of ladybirds in the ryegrass strips (3.5 ± 0.9/m2) was significantly higher than in the wheat plots (1.5 ± 0.5/m2). We cut the ryegrass, forcing the ladybirds to migrate to the wheat fields. Three and eight days after cutting the ryegrass, the aphid numbers in the ryegrass‐margin wheat plots decreased significantly: they were 19.9% and 53.6%, respectively, lower than in control plots. In the early period of ladybird population development, the percentage of larvae was greater in the ryegrass‐margin wheat plots than in controls, and the peak number of pupae in the ryegrass‐margin wheat plots occurred 5 days earlier than in the control plots. The results suggest that ryegrass strips may promote the development of ladybird populations. Cutting ryegrass can manipulate ladybirds to enhance biological aphid control in wheat fields. The efficiency of this management approach is discussed.  相似文献   

13.
Summary A 16-plot experimental field was established in 1975 on a clay soil in Jokioinen, Finland. The water discharge through tile drains was measured and its ammonium and nitrate N contents determined for each plot separately. The surface runoff was also measured and analysed. The annual runoff and the N leached from the surface of moderately fertilized (100 kg/ha/y N) cereal plots varied during 1976–1982 from 21 to 301 mm and from 2 to 7 kg/ha, respectively. The discharge of water and leaching of N through subdrains varied from 65 to 225 mm and from 1 to 38 kg/ha, respectively. The highest leaching was probably caused by a previous fallow. The annual N uptake by the crop varied between 41 and 122 kg/ha.Of the fertilizer-N used for cereals, 20% of that applied in the autumn was lost, but only 1 to 4 per cent was lost when applied in the spring. There was much less N leaching from ley than from barley plots, although the former was given twice as much N. The rate of N fertilization had only a very slight effect on N leaching from both ley and barley plots.The results were compared with those obtained in lysimeters filled with clay, silt, sand and peat soils. No definite conclusions can be drawn because the lysimeter experimental data are only for the first year.  相似文献   

14.
The effect of field margins on the yield of sugar beet, wheat and barley was studied on commercial farms and in a series of field experiments from 1992–1997. There was always a trend of increasing yield from the edge of the field to the centre, with a marked reduction around the ‘tramlines’ and the area where machinery turns. In the studies on commercial farms, headland yield loss varied widely. In sugar beet the headlands yielded 19–41% less than the centre, with a mean reduction of 26%. In cereals the range was 3–19%, with a mean loss of 7%. Headland yield reductions were generally smaller in the field experiments than those found on commercial farms. These headland effects did not move towards the centre of the field when grass margins were planted at the edge of the field; there was no significant effect on the yield of the adjacent crop. The presence of boundary trees had the greatest effect on yield: in the outer 9 m of the field, the area shaded by trees produced 4.4 t ha-1 of wheat, and the area that was not shaded 8.1 t ha-1. Turning of machinery also significantly reduced yield, while grazing by rabbits and hares surprisingly had no effect. Following the reform of the Common Agricultural Policy in 1992, the main effect of which was to change from a price support policy to direct payments to producers, farmers in the European Union who produce more than a specified tonnage of ‘eligible crops’ per year, are required to fallow a given percentage of their land (currently 5%), to qualify for Arable Area Payments. Growers can elect to fallow fields on a rotational basis, or permanently. Headland set-aside is a term used to describe strips of set-aside, a minimum of 20 m wide around the edges of fields. In these experiments, the headland effect did not extend beyond 20 m from the field edge. Therefore, particularly in fields with boundary hedges or trees, headland set-aside could effectively remove the poor-yielding area at the field margin.  相似文献   

15.
不同施肥条件下玉米田土壤养分淋溶规律的原位研究   总被引:13,自引:0,他引:13  
利用排水采集器法结合田间原位试验,研究了夏玉米不同施肥处理对棕壤土养分淋失的影响.结果表明:在夏玉米生长期内,影响玉米田土壤水分淋溶的主要因素是大量降雨和灌溉,夏玉米生长前期的土壤淋溶水量较大,但随夏玉米生育进程的推进而递减,各处理差异也逐渐减小;与施氮肥处理相比,秸秆还田配施氮肥处理可加剧土壤水淋溶.在夏玉米生长期内,施肥处理的土壤淋溶水硝态氮浓度均呈"双峰"曲线变化趋势,而铵态氮浓度则呈先升后降的变化趋势.玉米田土壤氮素淋失以硝态氮形式为主,其累计淋失量为12.90~46.53 kg·hm-2,铵态氮的累计淋仅为1.66~5.11 kg·hm-2,两种形态氮的淋失量都随施氮量的增加而升高.秸秆还田配施氮肥处理的氮素淋失率比单施氮肥处理高6.53%~13.07%,低氮处理的氮素淋失率比高氮处理高3.66%~10.10%;玉米田土壤速效磷的累计淋失量较小,仅为0.148~0.235 kg·hm-2,而速效钾的累计淋失量较大,为7.08~13.00 kg·hm-2.在夏玉米生长后期,秸秆还田配施氮肥处理使土壤速效磷淋失量升高,并可加剧土壤速效钾的淋失,而单施氮肥处理作用不明显.  相似文献   

16.
This study focuses on the effect of ploughing on plant abundance,vegetation cover, species richness, and taxonomic diversity during the growingseasons (winter and spring) of 1992 and 2000 in the habitat of inland plateau(natural habitat), 21 km south of Mersa-Matrouh (Egypt).Ninety-five species belonging to 27 families were recorded. High percentages oflife-forms and a large number of species were recorded in ploughed andunploughed stripes in the winter and spring of 2000. Higher averages of importancevalues (IVs) and absolute frequencies were recorded for most perennial andannual species in the unploughed stripes compared to the ploughed ones. This may beattributed to crop failure and consequently unfavourable soil conditions. On theother hand, some shrubby species (e.g. Noaea mucronata andHaloxylon scoparium) and perennial herbs (e.g.Gynandriris sisyrinchium) attained higher IVs in theploughed stripes compared to unploughed ones. This may be attributed to thecultivation of Prosopis juliflora trees in the elevatedpart of the ploughed stripes, which have an ecological role in protecting andenriching the soil with organic matter, thus favouring the growth of theseshrubs and perennial herbs. Higher species richness and diversity wereassociated with low concentration of dominance and low taxonomic diversity inthe spring of 2000 in ploughed and unploughed stripes compared to the winter of1992, for both perennials and annuals. The lowest taxonomic diversities wereexhibited in the spring of 2000 for ploughed and unploughed stripes where thevegetation had the largest number of congeneric species and confamilial genera.Higher species richness and diversity characterized the vegetation of theunploughed stripes, especially in winter and spring 2000, as compared to those ofploughed ones. The present study also reveals low species richness and diversityof therophytes in winter for both ploughed and unploughed stripes.  相似文献   

17.
水网平原地区不同种植类型农田氮磷流失特征   总被引:4,自引:1,他引:4  
章明奎  王阳  黄超 《应用生态学报》2011,22(12):3211-3220
采用田间径流小区定位研究方法,在浙江省绍兴县选择27块农田,研究了自然降雨条件下水网平原地区7种种植类型农田N、P的径流流失特征、负荷及影响因素.结果表明: 农田径流总P(TP)、水溶态P(DP)和颗粒态P(PP)的年流失量平均分别为4.75、0.74和4.01 kg·hm-2;PP占TP的比例高于DP.径流总N(TN)、水溶态总N(DTN)、水溶态有机N(DON)、NH4+-N和NO3--N的年流失量平均分别为21.87、17.19、0.61、3.63和12.95 kg·hm-2;流失的DTN各组分以NO3--N为主,其次为NH4+-N,DON的比例较低.不同种植类型农田径流TN、DTN、DON和NO3--N的流失量由低至高依次为:休闲地<苗木地<单季晚稻农田<双季稻农田<油菜(或小麦)-单季水稻农田<小麦-早稻-晚稻农田<蔬菜地,而径流TP和PP的流失量依次为:休闲地<苗木地<单季晚稻、双季稻农田<小麦-早稻-晚稻农田<油菜(或小麦)-单季水稻农田<蔬菜地,不同种植类型间的DP流失量差异较小.N、P流失主要发生在作物生产期间,TN和TP的流失比例随作物复种指数的提高而增加.TN、DTN和NO3--N流失量主要与N肥施用量有关,土壤中NO3--N含量对TN和DTN流失量也有明显影响;农田DON的流失除与N肥施用量有关外,还受土壤全N和有机质积累的影响;NH4+-N的流失量主要与土壤NH4+-N水平有关,受N肥施用量的影响不明显;径流TP和PP的流失量受P肥施用量、土壤P积累的共同影响,而DP的流失与施P量关系不大,但与土壤全P和有效P都存在显著相关关系.  相似文献   

18.
Estavillo  JM  Merino  P  Pinto  M  Yamulki  S  Gebauer  G  Sapek  A  Corré  W 《Plant and Soil》2002,239(2):253-265
Soils are an important source of N2O, which can be produced both in the nitrification and the denitrification processes. Grassland soils in particular have a high potential for mineralization and subsequent nitrification and denitrification. When ploughing long term grassland soils, the resulting high supply of mineral N may provide a high potential for N2O losses. In this work, the short-term effect of ploughing a permanent grassland soil on gaseous N production was studied at different soil depths. Fertiliser and irrigation were applied in order to observe the effect of ploughing under a range of conditions. The relative proportions of N2O produced from nitrification and denitrification and the proportion of N2 gas produced from denitrification were determined using the methyl fluoride and acetylene specific inhibitors. Irrespectively to ploughing, fertiliser application increased the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). Application of fertiliser also increased the denitrification N2O/N2 ratio both in the denitrification potential and in the gaseous N productions by denitrification. Ploughing promoted soil organic N mineralization which led to an increase in the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). In both the ploughed and unploughed treatments the 0–10 cm soil layer was the major contributing layer to gaseous N production by all the above processes. However, the contribution of this layer decreased by ploughing, gaseous N productions from the 10 to 30 cm layer being significantly increased with respect to the unploughed treatment. Ploughing promoted both nitrification and denitrification derived N2O production, although a higher proportion of N2O lost by denitrification was observed as WFPS increased. Recently ploughed plots showed lower denitrification derived N2O percentages than those ploughed before as a result of the lower soil water content in the former plots. Similarly, a lower mean nitrification derived N2O percentage was found in the 10–30 cm layer compared with the 0–10 cm.  相似文献   

19.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

20.
Increased fertilizer use over many years may have detrimental effects on crop production due to its high soil water consumption in rainfed regions. In this study, based on a long-term fertilization experiment initiated in 1984, we report the effect of increased fertilization on soil water balance, precipitation storage efficiency (PSE), yield and water use efficiency of winter wheat from 2005 to 2009. The experimental design consisted of a control treatment (CK) and three fertilizer treatments: nitrogen, phosphorus and manure (NPM), nitrogen and phosphorus (NP), and nitrogen (N). Soil water storage in NP and NPM was significantly lower than that in CK and N at both harvest and planting time. Compared with the CK, on average, treatments N, NP and NPM increased soil water recharge during the fallow period by 11%, 22% and 17%, and they also increased soil water depletion during growing season by 17%, 23% and 23% (P?<?0.05), respectively. The average value of annual soil water balance was positive for all treatments, and was not significantly different among treatments. Increased fertilizer application significantly (P?<?0.05) increased PSE during the summer fallow periods, and the average PSE was 28%, 32%, 34% and 33% for CK, N, NP and NPM, respectively. Wheat yield and water use efficiency increased significantly after long term fertilization, especially for treatments NP and NPM. The results indicated that more of rainfall was used for evapotranspiration and less was lost during the fallow season for the high fertility treatments after long term fertilizer application. In the long run, such changes in water use pattern could help to improve the sustainability of winter wheat production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号