首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The location of the Aspergillus nidulans carnitine/acyl-carnitine carrier (ACUH) was studied. ACUH with a His-tag at its N-terminus was over-expressed in Escherichia coli and purified by Ni(2+) affinity chromatography. The purified protein was utilised to raise polyclonal antibodies which were characterised by Western blotting. For localisation studies A. nidulans T1 strain, that contains the acuH gene under control of the strong promoter alcA(p), was derived. Results obtained demonstrate the exclusively mitochondrial localisation of ACUH and therefore exclude the targeting of the acuH gene product to the peroxisomal membrane.  相似文献   

2.
alpha-Methylacyl-CoA racemase, an enzyme of the bile acid biosynthesis and branched chain fatty acid degradation pathway, was studied at the protein, cDNA, and genomic levels in mouse liver. Immunoelectron microscopy and subcellular fractionation located racemase to mitochondria and peroxisomes. The enzymes were purified from both organelles with immunoaffinity chromatography. The isolated proteins were of the same size, with identical N-terminal amino acid sequences, and the existence of additional proteins with alpha-methylacyl-CoA racemase activity was excluded. A racemase gene of about 15 kilobases was isolated. Southern blot analysis and chromosomal localization showed that only one racemase gene is present, on chromosome 15, region 15B1. The putative initial ATG in the racemase gene was preceded by a functional promotor as shown with the luciferase reporter gene assay. The corresponding cDNAs were isolated from rat and mouse liver. The recombinant rat protein was overexpressed in active form in Pichia pastoris. The presented data suggest that the polypeptide encoded by the racemase gene can alternatively be targeted to peroxisomes or mitochondria without modifications. It is concluded that the noncleavable N-terminal sequence of the polypeptide acts as a weak mitochondrial and that the C-terminal sequence acts as a peroxisomal targeting signal.  相似文献   

3.
Presenilins are mutated in most cases of autosomal dominant inherited forms of early onset Alzheimer's disease and such mutations are known to sensitize cells to apoptotic stimuli in vitro. Previous studies show that presenilins are primarily located in the endoplasmatic reticulum and cell membranes. Here we report, based on immunoblot analysis and immunoelectron microscopy studies, that PS1 is also located in mitochondrial membranes. For these studies we used tissue sections and subcellular fractions of rat brain and liver. Immunogold labeling of sections show that PS1 is predominantly located in the inner membrane of mitochondria. The function of PS1 in mitochondrial membranes is presently unknown. PS1 mutations may make cells more vulnerable to apoptotic stimuli due to dysfunction of this protein at the mitochondrial level.  相似文献   

4.
Mammalian peroxisomes and reactive oxygen species   总被引:7,自引:5,他引:7  
The central role of peroxisomes in the generation and scavenging of hydrogen peroxide has been well known ever since their discovery almost four decades ago. Recent studies have revealed their involvement in metabolism of oxygen free radicals and nitric oxide that have important functions in intra- and intercellular signaling. The analysis of the role of mammalian peroxisomes in a variety of physiological and pathological processes involving reactive oxygen species (ROS) is the subject of this review. The general characteristics of peroxisomes and their enzymes involved in the metabolism of ROS are briefly reviewed. An expansion of the peroxisomal compartment with proliferation of tubular peroxisomes is observed in cells exposed to UV irradiation and various oxidants and is apparently accompanied by upregulation of PEX genes. Significant reduction of peroxisomes and their enzymes is observed in inflammatory processes including infections, ischemia-reperfusion injury, and allograft rejection and seems to be related to the suppressive effect of tumor necrosis factor- on peroxisome function and peroxisome proliferator activated receptor-. Xenobiotic-induced proliferation of peroxisomes in rodents is accompanied by the formation of hepatic tumors, and evidently the imbalance in generation and decomposition of ROS plays an important role in this process. In PEX5–/– knockout mice lacking functional peroxisomes severe alterations of mitochondria in various organs are observed which seem to be due to a generalized increase in oxidative stress confirming the important role of peroxisomes in homeostasis of ROS and the implications of its disturbances for cell pathology.  相似文献   

5.
Intracellular localization of nonspecific lipid transfer protein (nsLTP) in rat hepatocytes was investigated by immunoblot analysis of the subcellular fractions and immunoelectron microscopy, using affinity-purified antibody against nsLTP. Immunoblot analysis showed that the protein exists in the peroxisomal and cytosolic fractions. Further study indicated that nsLTP exists in the soluble subfraction of the peroxisomes. Immunoelectron microscopic observation revealed that nsLTP is highly concentrated in the matrices of the peroxisomes. From these results, we concluded that nsLTP mainly exists in the matrix of the peroxisomes. The role of nsLTP is discussed.  相似文献   

6.
Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism,especially in terms of fatty acid metabolism,reactive oxygen species(ROS) production,and ROS scavenging,and it is now clear that they metabolically interact with each other. These two organelles share some properties,such as great plasticity and high potency to adapt their form and number according to cell requirements. Their functions are connected,and any alteration in the function of mitochondria may induce changes inperoxisomal physiology. The objective of this paper was to highlight the interconnection and the crosstalk existing between mitochondria and peroxisomes. Special emphasis was placed on the best known connections between these organelles:origin,structure,and metabolic interconnections.  相似文献   

7.
In plants the degradation pathways of branched-chain amino acids have remained somewhat unclear with respect to both their biochemistry and their intracellular location. While biochemical evidence has localized some of the catabolic enzymes in peroxisomes/glyoxysomes, others cofractionate with mitochondria. We have now identified a candidate protein and corresponding cDNA for an enzyme of the leucine catabolic pathway, the isovaleryl-CoA-dehydrogenase (IVD). This polypeptide is a member of the acyl-CoA-dehydrogenase (ACDH) family and is encoded in the nuclear genome of Arabidopsis thaliana. Expression of the putative IVD gene in pea seedlings is documented by western blot analyses with an antibody against the mammalian IVD. Subcellular fractionation identifies the putative IVD enzyme in the mitochondrion. This localization suggests that in plants mitochondria contain at least part of the branched-chain amino acid degradation pathway(s).  相似文献   

8.
The movement of Ca2+ across the basolateral plasma membrane was determined in purified preparations of this membrane isolated from rabbit proximal and distal convoluted tubules. The ATP-dependent Ca2+ uptake was present in basolateral membranes from both these tubular segments, but the activity was higher in the distal tubules. A very active Na+/Ca2+ exchange system was also demonstrated in the distal-tubular membranes, but in proximal-tubular membranes this exchange system was not demonstrable. The presence of Na+ outside the vesicles gradually inhibited the ATP-dependent Ca2+ uptake in the distal-tubular-membrane preparations, but remained without effect in those from the proximal tubules. The activity of the Na+/Ca2+ exchange system in the distal-tubular membranes was a function of the imposed Na+ gradient. These results suggest that the major differences in the characteristics of Ca2+ transport in the proximal and in the distal tubules are due to the high activity of a Na+/Ca2+ exchange system in the distal tubule and its virtual absence in the proximal tubule.  相似文献   

9.
Protein import into mitochondria and peroxisomes   总被引:3,自引:0,他引:3  
  相似文献   

10.
Multiple copies of the mitochondrial genome in eukaryotic cells are organized into protein-DNA complexes called nucleoids. Mitochondrial genome repair mechanisms have been reported, but they are less well characterized than their nuclear counterparts. To expand our knowledge of mitochondrial genome maintenance, we have studied the localization of the BRCA1 protein, known to be involved in nuclear repair pathways. Our confocal and immunoelectron microscopy results show that BRCA1 is present in mitochondria of several human cancer cell lines and in primary breast and nasal epithelial cells. BRCA1 localization in mitochondria frequently overlapped that of nucleoids. Small interfering RNA-mediated knockdown of BRCA1 in human cancer cells (confirmed by Western blot) results in decreased nuclear, cytoplasmic, and mitochondrial staining after immunofluorescence microscopy, establishing the specificity of the BRCA1 immunolabeling. Furthermore, using cell fractionation, dephosphorylation, and enzyme protection experiments, we show that a 220-kDa phosphorylated isoform of BRCA1 is enriched in mitochondrial and nuclear fractions but reduced in cytoplasmic subcellular fractions. Submitochondrial fractionation confirmed the presence of BRCA1 protein in isolated mitoplasts. Because phosphorylation of BRCA1 and subsequent changes in subcellular localization are known to follow DNA damage, our data support a universal role for BRCA1 in the maintenance of genome integrity in both mitochondria and nucleus.  相似文献   

11.
Catecholamines are important lipolytic agents in horses and ponies but the nature of the adrenergic receptor subtype distribution in their adipocytes is uncertain. A first objective was to identify the beta-adrenergic receptor subtype(s) present in adipocytes from horses and ponies. A second objective was to evaluate if the lipolytic responsiveness of isolated adipocytes to beta-adrenergic agonists is altered during lactation, a condition known to affect markedly maternal fat metabolism. Isoproterenol and salbutamol elicited strong lipolytic responses in adipocytes isolated from horse and pony subcutaneous adipose tissue. There were weak lipolytic responses to norepinephrine, dobutamine and BRL37344. The weak lipolytic response to NE compared to isoproterenol or salbutamol suggests an antilipolytic action from alpha2-adrenergic receptors. The relative order of potency for the beta-adrenergic agonists was isoproterenol>/=salbutamol>dobutamine=BRL37344. There was expression of beta2-adrenergic receptor mRNA in pony and horse adipose tissues, as estimated by relative RT-PCR, but no expression of mRNAs for beta1- or beta3-adrenergic receptors. Early lactation did not alter the lipolytic responses to beta-adrenergic agonists, nor the expression of beta2-adrenergic receptor mRNA. Thus, these results indicate a dominant if not exclusive presence of beta2-adrenergic receptors in pony and horse adipocytes that is not affected by lactation.  相似文献   

12.
Mitochondria and peroxisomes share a number of common biochemical processes, including the beta oxidation of fatty acids and the scavenging of peroxides. Here, we identify a new outer-membrane mitochondria-anchored protein ligase (MAPL) containing a really interesting new gene (RING)-finger domain. Overexpression of MAPL leads to mitochondrial fragmentation, indicating a regulatory function controlling mitochondrial morphology. In addition, confocal- and electron-microscopy studies of MAPL-YFP led to the observation that MAPL is also incorporated within unique, DRP1-independent, 70-100 nm diameter mitochondria-derived vesicles (MDVs). Importantly, vesicles containing MAPL exclude another outer-membrane marker, TOM20, and vesicles containing TOM20 exclude MAPL, indicating that MDVs selectively incorporate their cargo. We further demonstrate that MAPL-containing vesicles fuse with a subset of peroxisomes, marking the first evidence for a direct relationship between these two functionally related organelles. In contrast, a distinct vesicle population labeled with TOM20 does not fuse with peroxisomes, indicating that the incorporation of specific cargo is a primary determinant of MDV fate. These data are the first to identify MAPL, describe and characterize MDVs, and define a new intracellular transport route between mitochondria and peroxisomes.  相似文献   

13.
14.
We studied the effect of sodium 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA), a potent inhibitor of mitochondrial carnitine palmitoyltransferase I, on fatty acid oxidation by rat brain cells. In cultured glial cells as well as in dissociated brain cells from adult rats palmitic acid (16:0) oxidation was inhibited by about 85% of control values when 25 microM POCA was added to the medium, whereas no inhibition of cerotic acid (26:0) oxidation was observed. Furthermore, omission of carnitine from the culture medium resulted in a 57.7% decrease in palmitic acid oxidation in cultured glial cells, whereas cerotic acid oxidation was not influenced. These results indicate that rat brain peroxisomes contribute only little (about 15%) to palmitic acid oxidation and provide conclusive evidence that cerotic acid is oxidized exclusively in rat brain peroxisomes.  相似文献   

15.
Several reports have claimed that the mitochondrial chaperonin cpn60, or a close homolog, is also present in some other subcellular compartments of the eukaryotic cell. Immunoelectron microscopy studies, using a polyclonal serum against cpn60, revealed that the protein is exclusively localized within the mitochondria of rat liver and embryonic Drosophila cells (SL2). Furthermore, no cpn60 immunoreactive material could be found within the nucleus of SL2 cells subjected to a 1 h 37°C heat-shock treatment. In contrast to these findings, immunoelectron microscopy studies, using a cpn60 monoclonal antibody, revealed mitochondrial and extramitochondrial (plasma membrane, nucleus) immunoreactive material in rat liver cells. Surprisingly, the monoclonal antibody also reacted with fixed proteins of the mature red blood cell. The monoclonal antibody, as well as cpn60 polyclonal sera, only recognize mitochondrial cpn60 in Western blots of liver proteins. Furthermore, none of the cpn60 antibodies used in this study recognized blotted proteins from rat red blood cells. Therefore, we suggest that the reported extramitochondrial localization of cpn60 in metazoan cells may be due to cross-reactivity of some of cpn60 antibodies with conformational epitopes also present in distantly related cpn60 protein homologs that are preserved during fixation procedures of the cells. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Eukaryotic cells contain functionally distinct, membrane enclosed compartments called organelles. Here we like to address two questions concerning this architectural lay out. How did this membrane complexity arise during evolution and how is this collection of organelles maintained in multiplying cells to ensure that new cells retain a complete set of them. We will try to address these questions with peroxisomes as a focal point of interest.  相似文献   

17.
P-Glycoprotein is not present in mitochondrial membranes   总被引:1,自引:0,他引:1  
Recent reports have indicated the presence of P-glycoprotein in crude mitochondrial membrane fractions, leading to the assumption that P-glycoprotein is present in mitochondrial membranes, and may be involved in transport across these membranes. To determine the validity of this claim, two cell lines overexpressing endogenous P-glycoprotein were investigated. Using various centrifugation steps, mitochondria were purified from these cells and analyzed by Western blot reaction with the anti-P-glycoprotein antibody C219 and organelle-specific antibodies. While P-glycoprotein is present in crude mitochondrial fractions, these fractions are contaminated with plasma membranes. Further purification of the mitochondria to remove plasma membranes revealed that P-glycoprotein is not expressed in mitochondria of the KB-V1 (vinblastine-resistant KB-3-1 cells) or MCF-7(ADR) (adriamycin-resistant MCF-7 cells) cell lines. To further substantiate these findings, we used confocal microscopy and the anti-P-glycoprotein antibody 17F9. This demonstrated that in intact cells, P-glycoprotein is not present in mitochondria and is primarily localized to the plasma membrane. These findings are consistent with the role of P-glycoprotein in conferring multidrug resistance by decreasing cellular drug accumulation. Therefore, contrary to previous speculation, P-glycoprotein does not confer cellular protection by residing in mitochondrial membranes.  相似文献   

18.
Peroxisomes are eukaryotic organelles highly versatile and dynamic in content and abundance. Plant peroxisomes mediate various metabolic pathways, a number of which are completed sequentially in peroxisomes and other subcellular organelles, including mitochondria and chloroplasts. To understand how peroxisomal dynamics contribute to changes in plant physiology and adaptation, the multiplication pathways of peroxisomes are being dissected. Research in Arabidopsis thaliana has identified several evolutionarily conserved families of proteins in peroxisome division. These include five PEROXIN11 proteins (PEX11a to -e) that induce peroxisome elongation and the fission machinery, which is composed of three dynamin-related proteins (DRP3A, -3B and -5B) and DRP''s membrane receptor, FISSION1 (FIS1A and -1B). While the function of PEX11 is restricted to peroxisomes, the fission factors are more promiscuous. DRP3 and FIS1 proteins are shared between peroxisomes and mitochondria, and DRP5B plays a dual role in the division of chloroplasts and peroxisomes. Analysis of the Arabidopsis genome suggests that higher plants may also contain functional homologs of the yeast Mdv1/Caf4 proteins, adaptor proteins that link DRPs to FIS1 on the membrane of both peroxisomes and mitochondria. Sharing a conserved fission machine between these metabolically linked subcellular compartments throughout evolution may have some biological significance.Key words: Arabidopsis, peroxisomal and mitochondrial division, dynamin-related protein (DRP), FISSION1 (FIS1), mitochondrial division 1 (Mdv1), CCR4p-associated factor 4 (Caf4)Peroxisomes are single membrane-delimited organelles involved in a variety of metabolic pathways essential to development.1 Plant peroxisomes participate in processes such as lipid mobilization, photorespiration, detoxification, hormone biosynthesis and metabolism, and plant-pathogen interaction.2,3 A number of these metabolic functions, such as photorespiration, fatty acid metabolism and jasmonic acid biosynthesis, are accomplished through the cooperative efforts of peroxisomes and other subcellular compartments, such as mitochondria and chloroplasts.35 The function, morphology and abundance of peroxisomes can vary depending on the organism, cell type, developmental stage and prevailing environmental conditions in which the organism resides.6,7 It is now believed that in addition to budding from the endoplasmic reticulum (ER), peroxisomes also multiply from pre-existing peroxisomes via division, going through steps including peroxisome elongation/tubulation, membrane constriction and fission.7,8In the reference plant Arabidopsis thaliana, three evolutionarily conserved families of proteins have been identified as key components of the peroxisome division apparatus. Five integral membrane proteins, named PEX11a to -e, are mainly responsible for inducing the elongation and tubulation of peroxisomes in the early stage of peroxisome division.911 DRP3A and DRP3B are members of a dynamin-related protein family that powers the fission of membranes and FIS1A and FIS1B are homologous proteins believed to anchor the DRP proteins to the membrane.1219 Similar to their counterparts in yeasts and mammals, DRP3 and FIS1 are shared by the fission machineries of peroxisomes and mitochondria.1219 We recently reported the unexpected finding that DRP5B, a plant/algal-specific DRP distantly related to the DRP3 proteins and originally discovered for its function in chloroplast division, is also involved in the division of peroxisomes. Using co-immunoprecipitation (co-IP) and bimolecular fluorescence complementation (BiFC) assays, we further demonstrated that DRP5B and the two DRP3 proteins can homo- and hetero-dimerize and each DRP can form a complex with FIS1A and/or FIS1B and most of the Arabidopsis PEX11 isoforms.20 These results together demonstrate that, despite their distinct evolutionary origins, structures and functions, peroxisomes, mitochondria and chloroplasts use some of the same factors for fission. These data also revealed that, like in yeasts and mammals, the FIS1-DRP complex exits on peroxisomes and mitochondria in plants.DRP5B, a DRP unique in the plant and photosynthetic algae lineages, seems to be the sole component shared by the division of chloroplasts and peroxisomes.20 However, both FIS1 and DRP are found to be required for the division of peroxisomes and mitochondria throughout eukaryotic evolution,21,22 prompting the question: to what extent is the FIS1-DRP complex conserved among diverse species? In the yeast Saccharomyces cerevisiae, this fission complex also contains an adaptor encoded by two homologous WD40 proteins, Mdv1 and Caf4, which are partially redundant in function with Mdv1 playing the major role. Mdv1 and Caf4 share an N-terminal extension (NTE) domain with two α-helices, a middle coiled-coil domain (CC) and C-terminal WD40 repeat. Both proteins use the NTE to interact with the tetratricopeptide repeat (TPR) domain-containing N-terminus of Fis1, the CC domain to dimerize and the C-terminal WD40 repeat to interact with and recruit the DRP protein, Dnm1.23,24 The Hansenula polymorpha Mdv1 (Hp Mdv1) also has a dual function in the division of peroxisomes and mitochondria.25 In addition, a Mdv1/Caf4 homolog, Mda1, was identified from the primitive red algae Cyanidioschyzon merolae and found to be involved at least in mitochondrial fission.26 However, higher eukaryotes do not seem to have obvious homologs of Mdv1/Caf4. For example, mammals contain Fis1 and Drp (called DLP1 or Drp1) but no apparent homologs to Mdv1 and Caf4. Instead, a metazoan-specific tail-anchored protein, Mitochondrial Fission Factor (Mff), was recently found to regulate the fission of mitochondria and peroxisomes in a similar manner to Fis1. Mff is essential in recruiting Drp1, at least in mitochondrial division, yet it functions in a Fis1-independent pathway.27,28To determine whether plants contain structural or functional homologs of Mdv1 and Caf4, we performed blast searches of the Arabidopsis genome, which resulted in the retrieval of ∼300 WD40 proteins. However, just like the search results from mammals, none of these proteins show significant sequence similarity with Mdv1 and Caf4 beyond the WD40 repeats. To identify proteins with similar domain structures with Mdv1/Caf4, we further analyzed these WD40 proteins, using the online Simple Modular Architecture Research Tool (smart.embl-heidelberg.de/). After eliminating proteins apparently inappropriate to be part of this complex, such as kinases and proteins with drastically distinct domain organizations despite of having both WD40 repeats and CC domains, we were able to narrow down to eight proteins. These proteins, which are encoded by At1g04510, At2g32950, At2g33340, At3g18860, At4g05410, At4g21130, At5g50230 and At5g67320, respectively, each contain a central CC domain in addition to the WD40 repeat region and are ranging from 450 to 900 amino acids in length (Fig. 1A). Subcellular localization studies will need to be performed to determine whether some of these proteins are associated with peroxisomes and mitochondria. If such a WD40 protein is proven to be part of the FIS1-DRP complex in Arabidopsis, it will be important to determine whether it simply acts as an adaptor or it also plays other roles, such as to promote and maintain the active structure and conformation of DRP3A/3B at the division site (Fig. 1B). Consistent with the latter scenario, it was found that Sc Mdv1 accumulates at the division sites after Dnm1 assembles and that the mammalian Fis1 and Drp1 proteins physically interact.29,30 Peroxisomes and mitochondria are functionally linked in a number of metabolic pathways. For example, in plants, they act cooperatively in important processes such as fatty acid metabolism and photorespiration.3 An interesting question to address in the future is whether sharing such a conserved fission machine between peroxisomes and mitochondria throughout evolution has critical biological consequences.Open in a separate windowFigure 1Domain structure of Mdv1/Caf4 and their homologs or putative homologs. (A) Domain structure of Sc Mdv1 and Sc Caf4 from S. cerevisiae, their homologs from H. polymorpha and C. merolae, and the eight Arabidopsis proteins with similar domain organization. Grey boxes indicate the CC domain and black boxes are Wd40 repeats. (B) The putative FIS1-WD40-DRP complex in Arabidopsis. CC, coiled-coil; NTE, N-terminal extension; TPR, tetratricopeptide repeat; TMD, transmembrane domain.  相似文献   

19.
20.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting the motor neurons. The majority of familial forms of ALS are caused by mutations in the Cu,Zn-superoxide dismutase (SOD1). In mutant SOD1 spinal cord motor neurons, mitochondria develop abnormal morphology, bioenergetic defects, and degeneration. However, the mechanisms of mitochondrial toxicity are still unclear. One possibility is that mutant SOD1 establishes aberrant interactions with nuclear-encoded mitochondrial proteins, which can interfere with their normal trafficking from the cytosol to mitochondria. Lysyl-tRNA synthetase (KARS), an enzyme required for protein translation that was shown to interact with mutant SOD1 in yeast, is a good candidate as a target for interaction with mutant SOD1 at the mitochondrion in mammals because of its dual cytosolic and mitochondrial localization. Here, we show that in mammalian cells mutant SOD1 interacts preferentially with the mitochondrial form of KARS (mitoKARS). KARS-SOD1 interactions occur also in the mitochondria of the nervous system in transgenic mice. In the presence of mutant SOD1, mitoKARS displays a high propensity to misfold and aggregate prior to its import into mitochondria, becoming a target for proteasome degradation. Impaired mitoKARS import correlates with decreased mitochondrial protein synthesis. Ultimately, the abnormal interactions between mutant SOD1 and mitoKARS result in mitochondrial morphological abnormalities and cell toxicity. mitoKARS is the first described member of a group of mitochondrial proteins whose interaction with mutant SOD1 contributes to mitochondrial dysfunction in ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号