首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acyl-CoA thioesterases (ACOTs) are enzymes that catalyze the hydrolysis of fatty acyl-CoAs to free fatty acids and CoA-SH. In this study, we show that the expression profile of the ACOT isoforms changes remarkably during the differentiation of cultured rat brown adipocytes. Immunocytochemistry suggested that cytosolic ACOT1 was present in the preadipocytes, while mitochondrial ACOT2 was additionally expressed as the cells differentiated, concurrent with the accumulation of lipid droplets in the cytoplasm. Western blotting confirmed that, in contrast to ACOT1, the ACOT2 expression level was very low in the preadipocytes. However, after differentiation, the ACOT1 level fell to one-half of the baseline level and ACOT2 increased 18-fold. ACOT2 expression in the differentiated adipocytes was further enhanced by treatment with lipids or troglitazone. These changes in the ACOT2 expression level correlated well with changes in the expression of carnitine palmitoyltransferase 2, a mitochondrial β-oxidation enzyme. These results indicate that, in differentiating brown adipocytes, cytosolic ACOT1 becomes downregulated as the cellular use of acyl-CoA increases, while mitochondrial ACOT2 is upregulated as the β-oxidation capacity increases. ACOT isoform expression may be regulated during brown adipocyte differentiation to support the fat storage and combustion characteristics of this cell type.  相似文献   

2.
Adipose tissue secretions play an important role in the development of obesity-related pathologies such as diabetes. Through inflammatory cytokines production, adipose tissue stromavascular fraction cells (SVF), and essentially macrophages, promote adipocyte insulin resistance by a paracrine way. Since xanthine family compounds such as caffeine were shown to decrease inflammatory production by human blood cells, we investigated the possible effect of caffeine on Tumor Necrosis Factor alpha (TNFalpha) and Interleukin-6 (IL-6) expression by human adipose tissue primary culture. For that purpose, human subcutaneous adipose tissue obtained from healthy non-obese women (BMI: 26.7 +/- 2.2 kg/m2) after abdominal dermolipectomy, was split into explants and cultured for 6 hours with or without caffeine. Three different concentrations of caffeine were tested (0.5 microg/mL, 5 microg/mL and 50 microg/mL). After 6 hours of treatment, explants were subjected to collagenase digestion in order to isolate adipocytes and SVF cells. Then, TNFalpha and IL-6 mRNA were analysed by real-time PCR alternatively in adipocytes and SVF cells. In parallel, we checked gene expression of markers involved in adipocyte differenciation and in SVF cells inflammation and proliferation. Our findings show a strong and dose dependent down-regulation of TNF-alpha gene expression in both adipocyte and SVF cells whereas IL-6 was only down regulated in SVF cells. No effect of caffeine was noticed on the other genes studied. Thus, caffeine, by decreasing TNFalpha expression, could improve adipose tissue inflammation during obesity.  相似文献   

3.
Adenine nucleotide translocases (ANTs) are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in cytosol. There are four ANT isoforms in humans (hANT1-4) and three in mice (mANT1, mANT2 and mANT4), all encoded by distinct genes. The aim of this study was to quantify expression of ANT isoform genes during the adipogenesis of mouse 3T3-L1 and human Simpson–Golabi–Behmel syndrome (SGBS)-derived preadipocytes. We also studied the effects of the adipogenesis regulators, insulin and rosiglitazone, on ANT isoform expression in differentiated adipocytes and examined the expression of ANT isoforms in subcutaneous and visceral white adipose tissue (WAT) from mice and humans. We found that adipogenesis was associated with an increase in the expression of ANT isoforms, specifically mANT2 in mouse 3T3-L1 cells and hANT3 in human SGBS cells. These changes could be involved in the increases in oxidative metabolism and decreases in lactate production observed during differentiation. Insulin and rosiglitazone induced mANT2 gene expression in mature 3T3-L1 cells and hANT2 and hANT3 gene expression in SGBS adipocytes. Furthermore, human WAT expressed greater amounts of hANT3 than hANT2, and the expression of both of these isoforms was greater in subcutaneous WAT than in visceral WAT. Finally, inhibition of ANT activity by atractyloside or bongkrekic acid impaired proper adipocyte differentiation. These results suggest that changes in the expression of ANT isoforms may be involved in adipogenesis in both human and mouse WAT.  相似文献   

4.
5.
6.
From heterogeneity to plasticity in adipose tissues: site-specific differences   总被引:10,自引:0,他引:10  
In mammals, two types of adipose tissues are present, brown (BAT) and white (WAT). WAT itself can be divided into subcutaneous and internal fat deposits. All these tissues have been shown to present a great tissue plasticity, and recent data emphasized on the multiple differentiation potentials obtained from subcutaneous WAT. However, no study has compared the heterogeneity of stroma-vascular fraction (SVF) cells and their differentiation potentials according to the localization of the fat pad. This study clearly demonstrates that WAT and BAT present different antigenic features and differentiation potentials. WAT by contrast to BAT contains a large population of hematopoietic cells composed essentially of macrophages and hematopoietic progenitor cells. In WAT, the non-hematopoietic population is mainly composed of mesenchymal stem cell (MSC)-like but contains also a significant proportion of immature cells, whereas in BAT, the stromal cells do not present the same phenotype. Internal and subcutaneous WAT present some discrete differences in the phenotype of their cell populations. WAT derived SVF cells give rise to osteoblasts, endothelial cells, adipocytes, hematopoietic cells, and cardiomyoblasts only from inguinal cells. By contrast, BAT derived SVF cells display a reduced plasticity. Adipose tissues thus appear as complex tissues composed of different cell subsets according to the location of fat pads. Inguinal WAT appears as the most plastic adipose tissue and represents a potential and suitable source of stem cell, considering its easy sampling as a major advantage for cell therapy.  相似文献   

7.
8.
White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese (ob/ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a beta(3)-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.  相似文献   

9.
The sympathetic nervous system plays a central role in lipolysis and the production of leptin in white adipose tissue (WAT). In this study, we have examined whether nerve growth factor (NGF), a target-derived neurotropin that is a key signal in the development and survival of sympathetic neurons, is expressed and secreted by white adipocytes. NGF mRNA was detected by RT-PCR in the major WAT depots of mice (epididymal, perirenal, omental, mesenteric, subcutaneous) and in human fat (subcutaneous, omental). In mouse WAT, NGF expression was observed in mature adipocytes and in stromal vascular cells. NGF expression was also evident in 3T3-L1 cells before and after differentiation into adipocytes. NGF protein, measured by ELISA, was secreted from 3T3-L1 cells, release being higher before differentiation. Addition of the sympathetic agonists norepinephrine, isoprenaline, or BRL-37344 (beta(3)-agonist) led to falls in NGF gene expression and secretion by 3T3-L1 adipocytes, as did IL-6 and the PPARgamma agonist rosiglitazone. A substantial decrease in NGF expression and secretion occurred with dexamethasone. In contrast, LPS increased NGF mRNA levels and NGF secretion. A major increase in NGF mRNA level (9-fold) and NGF secretion (相似文献   

10.
Adipocyte lines are a useful tool for adipocyte research. Recently, a new preadipocyte line designated AP‐18 was established from subcutaneous tissue of the C3H/He mouse. In this study, we further characterized AP‐18 cells. Adipocyte differentiation was assessed by accumulation of fat droplets stained by Oil Red O. The expression of the preadipocyte‐ or adipocyte‐specific genes and adipocytokine genes was analysed qualitatively by RT‐PCR and quantitatively by real‐time PCR in comparison with the LM cell, a murine fibroblast line, and the 3T3‐L1 cell, respectively. AP‐18 cells were fibroblastoid in maintenance culture. After the confluence, fat droplets were accumulated in 50–60% of the cells cultured in the medium alone and in 70–90% of the cells cultured with insulin within 2 to 3 weeks. The fat accumulation was not promoted by the addition of dexamethazone, IBMX (3‐isobutyl‐1‐methylxanthine) or troglitazone in combination with insulin, which were obligatory for differentiation of the 3T3‐L1 cell, a murine preadipocyte line. Throughout the differentiation, AP‐18 cells expressed Pref‐1, LPL, C/EBPβ, C/EBPδ, RXRα, C/EBPα, PPARγ, RXRγ, aP2, GLUT4, SCD1, UCP2, UCP3, TNFα, resistin, leptin, adiponectin and PAI‐1 genes, but not the UCP1 gene, indicating that the cell is derived from WAT (white adipose tissue). The time course of these gene expressions was similar to that of 3T3‐L1 cells, although the expressions were slower and lower in AP‐18 cells. These data indicate that AP‐18 cells are preadipocytes originated from WAT and differentiate into adipocytes under more physiological conditions than 3T3‐L1 cells. AP‐18 may be useful in adipocyte research.  相似文献   

11.
12.
13.
14.
The cytosolic acyl-coenzyme A thioesterase I (Acot1) is an enzyme that hydrolyzes long-chain acyl-CoAs of C(12)-C(20)-CoA in chain length to the free fatty acid and CoA. Acot1 was shown previously to be strongly upregulated at the mRNA and protein level in rodents by fibrates. In this study, we show that Acot1 mRNA levels were increased by 90-fold in liver by treatment with Wy-14,643 and that Acot1 mRNA was also increased by 15-fold in the liver of hepatocyte nuclear factor 4alpha (HNF4alpha) knockout animals. Our study identified a direct repeat 1 (DR1) located in the Acot1 gene promoter in mouse, which binds the peroxisome proliferator-activated receptor alpha (PPARalpha) and HNF4alpha. Chromatin immunoprecipitation (ChIP) assay showed that the identified DR1 bound PPARalpha/retinoid X receptor alpha (RXRalpha) and HNF4alpha, whereas the binding in ChIP was abrogated in the PPARalpha and HNF4alpha knockout mouse models. Reporter gene assays showed activation of the Acot1 promoter in cells by the PPARalpha agonist Wy-14,643 after cotransfection with PPARalpha/RXRalpha. However, transfection with a plasmid containing HNF4alpha also resulted in an increase in promoter activity. Together, these data show that Acot1 is under regulation by an interplay between HNF4alpha and PPARalpha.  相似文献   

15.
Brown adipocytes are characterized by a high number of uncoupling protein 1 (UCP1)-positive mitochondrial content and increased thermogenic capacity. As UCP1-enriched cells can consume lipids by generating heat, browning of white adipocytes is now highlighted as a promising approach for the prevention of obesity and obesity-associated metabolic diseases. Upon cold exposure or β-adrenergic stimuli, downregulation of microRNA-133 (miR-133) elevates the expression levels of PR domain containing 16 (Prdm16), which has been shown to be a brown adipose determination factor, in brown adipose tissue and subcutaneous white adipose tissues (WAT). Here, we show that treatment of reversine to white adipocytes induces browning via suppression of miR-133a. Reversine treatment promoted the expression of brown adipocyte marker genes, such as Prdm16 and UCP1, increasing the mitochondrial content, while decreasing the levels of miR-133a and white adipocyte marker genes. Ectopic expression of miR-133a mimic reversed the browning effects of the reversine treatment. Moreover, intraperitoneal administration of reversine in mice upregulated thermogenesis and resulted in resistance to high-fat diet-mediated weight gain as well as browning of subcutaneous and epididymal WAT. Taken together, we found a novel way to promote browning of white adipocytes through downregulation of miR-133a followed by activation of Prdm16, with a synthetic chemical, reversine.  相似文献   

16.
Non-shivering thermogenesis (NST) is a heat generating process controlled by the mitochondria of brown adipose tissue (BAT). In the recent decade, ‘functionally’ acting brown adipocytes in white adipose tissue (WAT) has been identified as well: the so-called process of the ‘browning’ of WAT. While the importance of uncoupling protein 1 (UCP1)-oriented mitochondrial activation has been intensely studied, the role of peroxisomes during the browning of white adipocytes is poorly understood. Here, we assess the change in peroxisomal membrane proteins, or peroxins (PEXs), during cold stimulation and importantly, the role of PEX13 in the cold-induced remodeling of white adipocytes. PEX13, a protein that originally functions as a docking factor and is involved in protein import into peroxisome matrix, was highly increased during cold-induced recruitment of beige adipocytes within the inguinal WAT of C57BL/6 mice. Moreover, beige-induced 3 T3-L1 adipocytes and stromal vascular fraction (SVF) cells by exposure to the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone showed a significant increase in mitochondrial thermogenic factors along with peroxisomal proteins including PEX13, and these were confirmed in SVF cells with the beta 3 adrenergic receptor (β3AR)-selective agonist CL316,243. To verify the relevance of PEX13, we used the RNA silencing method targeting the Pex13 gene and evaluated the subsequent beige development in SVF cells. Interestingly, siPex13 treatment suppressed expression of thermogenic proteins such as UCP1 and PPARγ coactivator 1 alpha (PGC1α). Overall, our data provide evidence supporting the role of peroxisomal proteins, in particular PEX13, during beige remodeling of white adipocytes.  相似文献   

17.
Adipose tissue represents a complex tissue both in terms of its cellular composition, as it includes mature adipocytes and the various cell types comprising the stromal‐vascular fraction (SVF), and in relation to the distinct biochemical, morphological and functional characteristics according to its anatomical location. Herein, we have characterized the proteomic profile of both mature adipocyte and SVF from human visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) fat depots in order to unveil differences in the expression of proteins which may underlie the distinct association of VAT and SAT to several pathologies. Specifically, 24 proteins were observed to be differentially expressed between SAT SVF versus VAT SVF from lean individuals. Immunoblotting and RT‐PCR analysis confirmed the differential regulation of the nuclear envelope proteins lamin A/C, the membrane‐cytoskeletal linker ezrin and the enzyme involved in retinoic acid production, aldehyde dehydrogenase 1A2, in the two fat depots. In sum, the observation that proteins with important cell functions are differentially distributed between VAT and SAT and their characterization as components of SVF or mature adipocytes pave the way for future research on the molecular basis underlying diverse adipose tissue‐related pathologies such as metabolic syndrome or lipodystrophy.  相似文献   

18.
The mRNAs encoding mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mtHMG-CoA synthase), the rate limiting enzyme in ketone body production, are highly expressed in subcutaneous (SC) and, to a lesser extent, in peri-epididymal (PE) rat adipose tissues. This atypical mtHMG-CoA synthase gene expression is dependent on the age (from 9 weeks of age) and sex (higher in male than in female) of the rats. In contrast, the expression of mtHMG-CoA synthase in SC adipose deposit is independent of the nutritional state (fed versus starved) or of the thermic environment (24 degrees C versus 4 degrees C). The expression of mtHMG-CoA synthase is suppressed in SC fat pads of castrated male rats whereas treatment of castrated rats with testosterone restores a normal level of expression. Moreover, testosterone injection induces the expression mtHMG-CoA synthase in SC adipose tissue of age-matched females. The presence of the mtHMG-CoA synthase immunoreactive protein confers to mitochondria isolated from SC adipose deposits, the capacity to produce ketone bodies at a rate similar to that found in liver mitochondria (SC = 13.7 +/- 0.7, liver = 16.4 +/- 1.4 nmol/min/mg prot). mtHMG-CoA synthase is expressed in the stromal vascular fraction (SVF) whatever the adipose deposit considered. While acetyl-CoA carboxylase (ACC) is only expressed in mature adipocytes, the other lipogenic enzymes, fatty acid synthase (FAS) and citrate cleavage enzyme (CCE), are expressed both in SVF cells and mature adipocytes. The expression of lipogenic enzyme genes is markedly reduced in adipocytes but not in SVF cells isolated from 48-h starved male rats. When SVF is subfractionated, mtHMG-CoA synthase mRNAs are mainly recovered in two fractions containing poorly digested structures such as microcapillaries whereas the lowest expression is found in the pre-adipocyte fraction. Interestingly, FAS and CCE mRNAs co-segregate with mtHMG-CoA synthase mRNA. The possible physiological relevance of such atypical expression of mtHMG-CoA synthase is discussed.  相似文献   

19.
Objective: Prostaglandin (PG)E2 is a lipid mediator implicated in inflammatory diseases and in the regulation of lipolysis and adipocyte differentiation. This work was, thus, undertaken to study the regulation of the various PGE2 synthases (PGESs) in obesity. Research Methods and Procedures: C57Bl/6 mice were subjected to a high‐fat or regular diet for 12 weeks. The levels of PGE2 in white adipose tissue (WAT) of lean and obese mice were quantified by liquid chromatography‐mass spectrometry, and the change in expression of the three major PGES caused by diet‐induced obesity was characterized by Western blotting. Human preadipocytes and 3T3‐L1 cells were used to assess the expression of microsomal prostaglandin E2 synthase‐1 (mPGES‐1) during adipogenesis. Results: mPGES‐1, mPGES‐2, and cytosolic PGES proteins were all detected in WAT of lean animals. mPGES‐1 was expressed at higher levels in WAT than in any other tissues examined and was more abundant (3‐ to 4‐fold) in epididymal (visceral) compared with inguinal (subcutaneous) WAT. Expression of mPGES‐1 was also detected in undifferentiated and differentiated 3T3‐L1 cells and in human primary subcutaneous preadipocytes at all stages of adipogenesis. The mPGES‐1 protein was substantially down‐regulated in epididymal and inguinal WAT of obese mice, whereas mPGES‐2 and cytosolic PGES remained relatively stable. Concordantly, the PGE2 levels in obese inguinal WAT were significantly lower than those of lean animals. Discussion: These data suggest that mPGES‐1 is the major form of PGESs contributing to the synthesis of PGE2 in WAT and that its down‐regulation might be involved in the alterations of lipolysis and adipogenesis associated with obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号