首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MS imaging (MSI) is a remarkable new technology that enables us to determine the distribution of biological molecules present in tissue sections by direct ionization and detection. This technique is now widely used for in situ imaging of endogenous or exogenous molecules such as proteins, lipids, drugs and their metabolites, and it is a potential tool for pathological analysis and the investigation of disease mechanisms. MSI is also thought to be a technique that could be used for biomarker discovery with spatial information. The application of MSI to the study of endogenous metabolites has received considerable attention because metabolites are the result of the interactions of a system's genome with its environment and a total set of these metabolites more closely represents the phenotype of an organism under a given set of conditions. Recent studies have suggested the importance of in situ metabolite imaging in biological discovery and biomedical applications, but several issues regarding the technical application limits of MSI still remained to be resolved. In this review, we describe the capabilities of the latest MSI techniques for the imaging of endogenous metabolites in biological samples, and also discuss the technical problems and new challenges that need to be addressed for effective and widespread application of MSI in both preclinical and clinical settings.  相似文献   

2.
Since its introduction mass spectrometry imaging (MSI) has proven to be a powerful tool for the localization of molecules in biological tissues. In drug discovery and development, understanding the distribution of both drug and its metabolites is of critical importance. Traditional methods suffer from a lack of spatial information (tissue extraction followed by LCMS) or lack of specificity resulting in the inability to resolve parent drug from its metabolites (whole body autoradiography). MSI is a sensitive and label-free approach for imaging drugs and metabolites in tissues. In this article we review the different MSI technologies that have been applied to the imaging of pharmaceuticals. Recent technical advances, applications and current analytical limitations are discussed.  相似文献   

3.
多光谱成像技术在植物学研究中的应用   总被引:1,自引:0,他引:1  
多光谱成像(MSI)技术是一种新兴的成像检测技术, 通过将光谱与成像合二为一, 可实现植物结构、生理、生化表型的定性定量分析及其特征分布的评估。近年来, 与数学建模分析结合的MSI技术具有强大的信息捕获能力, 在植物学研究中展现出强劲的应用潜力。该文介绍了MSI技术的成像原理, 总结了近年来MSI技术在植物损伤鉴定、病害研究、代谢物质生化特征及生理进程鉴定方面的应用, 展望了该技术在植物研究领域的前沿性发展, 以期使MSI技术在植物研究中得到更好的应用。  相似文献   

4.
The high incidence of recurrence and the poor prognosis of hepatocellular carcinoma (HCC) necessitate the discovery of new predictive markers of HCC invasion and prognosis. In this study, we evaluated the expression pattern of two members of a novel oncogene family, Musashi1 (MSI1) and Musashi2 (MSI2) in 40 normal hepatic tissue specimens, 149 HCC specimens and their adjacent non‐tumourous tissues. We observed that MSI1 and MSI2 were significantly up‐regulated in HCC tissues. High expression levels of MSI1 and MSI2 were detectable in 37.6% (56/149) and 49.0% (73/149) of the HCC specimens, respectively, but were rarely detected in adjacent non‐tumourous tissues and were never detected in normal hepatic tissue specimens. Nevertheless, only high expression of MSI2 correlated with poor prognosis. In addition, MSI2 up‐regulation correlated with clinicopathological parameters representative of highly invasive HCC. Further study indicated that MSI2 might enhance invasion of HCC by inducing epithelial–mesenchymal transition (EMT). Knockdown of MSI2 significantly decreased the invasion of HCC cells and changed the expression pattern of EMT markers. Moreover, immunohistochemistry assays of 149 HCC tissue specimens further confirmed this correlation. Taken together, the results of our study demonstrated that MSI2 correlates with EMT and has the potential to be a new predictive biomarker of HCC prognosis and invasion to help guide diagnosis and treatment of post‐operative HCC patients.  相似文献   

5.
Mass Spectrometric Imaging (MSI) is a molecular imaging technique that allows the generation of 2D ion density maps for a large complement of the active molecules present in cells and sectioned tissues. Automatic segmentation of such maps according to patterns of co-expression of individual molecules can be used for discovery of novel molecular signatures (molecules that are specifically expressed in particular spatial regions). However, current segmentation techniques are biased toward the discovery of higher abundance molecules and large segments; they allow limited opportunity for user interaction, and validation is usually performed by similarity to known anatomical features. We describe here a novel method, AMASS (Algorithm for MSI Analysis by Semi-supervised Segmentation). AMASS relies on the discriminating power of a molecular signal instead of its intensity as a key feature, uses an internal consistency measure for validation, and allows significant user interaction and supervision as options. An automated segmentation of entire leech embryo data images resulted in segmentation domains congruent with many known organs, including heart, CNS ganglia, nephridia, nephridiopores, and lateral and ventral regions, each with a distinct molecular signature. Likewise, segmentation of a rat brain MSI slice data set yielded known brain features and provided interesting examples of co-expression between distinct brain regions. AMASS represents a new approach for the discovery of peptide masses with distinct spatial features of expression. Software source code and installation and usage guide are available at http://bix.ucsd.edu/AMASS/ .  相似文献   

6.
7.
Analysis of whole animal tissue sections by MALDI MS imaging (MSI) requires effective sample collection and transfer methods to allow the highest quality of in situ analysis of small or hard to dissect tissues. We report on the use of double-sided adhesive conductive carbon tape during whole adult rat tissue sectioning of carboxymethyl cellulose (CMC) embedded animals, with samples mounted onto large format conductive glass and conductive plastic MALDI targets, enabling MSI analysis to be performed on both TOF and FT-ICR MALDI mass spectrometers. We show that mounting does not unduly affect small molecule MSI detection by analyzing tiotropium abundance and distribution in rat lung tissues, with direct on-tissue quantitation achieved. Significantly, we use the adhesive tape to provide support to embedded delicate heat-stabilized tissues, enabling sectioning and mounting to be performed that maintained tissue integrity on samples that had previously been impossible to adequately prepare section for MSI analysis. The mapping of larger peptidomic molecules was not hindered by tape mounting samples and we demonstrate this by mapping the distribution of PEP-19 in both native and heat-stabilized rat brains. Furthermore, we show that without heat stabilization PEP-19 degradation fragments can detected and identified directly by MALDI MSI analysis.  相似文献   

8.
9.
MALDI MS imaging has been extensively used to produce qualitative distribution maps of proteins, peptides, lipids, small molecule pharmaceuticals and their metabolites directly in biological tissue sections. There is growing demand to quantify the amount of target compounds in the tissue sections of different organs. We present a novel MS imaging software including protocol for the quantitation of drugs, and for the first time, an endogenous neuropeptide directly in tissue sections. After selecting regions of interest on the tissue section, data is read and processed by the software using several available methods for baseline corrections, subtractions, denoising, smoothing, recalibration and normalization. The concentrations of in vivo administered drugs or endogenous compounds are then determined semi-automatically using either external standard curves, or by using labeled compounds, i.e., isotope labeled analogs as standards. As model systems, we have quantified the distribution of imipramine and tiotropium in the brain and lung of dosed rats. Substance P was quantified in different mouse brain structures, which correlated well with previously reported peptide levels. Our approach facilitates quantitative data processing and labeled standards provide better reproducibility and may be considered as an efficient tool to quantify drugs and endogenous compounds in tissue regions of interest.  相似文献   

10.
Biomarker discovery and validation involves the consideration of many issues and challenges in order to be effectively used for translation from bench to bedside. Imaging mass spectrometry (IMS) is a new technology to assess spatial molecular arrangements in tissue sections, going far beyond microscopy in providing hundreds of different molecular images from a single scan without the need of target-specific reagents. The possibility to correlate distribution maps of multiple analytes with histological and clinical features makes it an ideal tool to discover diagnostic and prognostic markers of diseases. Some recently published studies that show the usefulness and advantages of this technology in the field of cancer research are highlighted.  相似文献   

11.
Imaging MS (MSI) has emerged as a valuable tool to study the spatial distribution of biomolecules in the brain. Herein, MALDI‐MSI was used to determine the distribution of endogenous peptides in a rat model of Usher's disease. This rare disease is considered as a leading cause of deaf‐blindness in humans worldwide. Cryosections of brain tissue were analyzed by MALDI‐MSI to differentiate between healthy and diseased rats. MSI results were highly reproducible. Tissue‐specific peptides were identified by MS/MS using LC‐Orbitrap and MALDI‐TOF/TOF analyses. These peptides were proposed for histological classification due to their particular spatial distribution in the brain, for example, substantia nigra, corpus callosum, and hippocampus. Several endogenous peptides showed significantly increased ion densities, particularly in the colliculi superiores and in the substantia nigra of diseased rats, including peptides derived from Fsd1, dystrobrevin‐β, and ProSAAS. Furthermore, several proteolytic degradation products of the myelin basic protein were identified, of which one peptide is most likely mediated by calpain‐2. Our findings contribute to the characterization of this animal model and include possible peptide markers of disease.  相似文献   

12.
Mass spectrometry (MS) has become an essential tool for the detection, identification, and characterization of the molecular components of biological processes, such as those responsible for the dynamic properties of the nervous system. Generally, the application of these powerful techniques requires the destruction of the specimen under study, but recent technological advances have made it possible to apply the matrix-assisted laser desorption/ionization (MALDI) MS technique directly to tissue sections. The major advantage of direct MALDI analysis is that it enables the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue and avoiding time-consuming extraction, purification, and separation steps, which have the potential for introducing artifacts. With automation and the ability to display complex spectral data using imaging software, it is now possible to create multiple 2D maps of selected biomolecules in register with tissue sections, a method now known as MALDI Imaging, or MSI (for Mass Spectrometry Imaging). This creates, for example, an opportunity to correlate functional states, determined a priori with live recording or imaging, with the corresponding molecular maps obtained at the time the tissue is frozen and analyzed with MSI. We review the increasing application of MALDI Imaging to the analysis of molecular distributions of proteins and peptides in nervous tissues of both vertebrates and invertebrates, focusing in particular on recent studies of neurodegenerative diseases and early efforts to implement assays of neuronal development.  相似文献   

13.
MS imaging (MSI) is a powerful tool in drug discovery because of its ability to interrogate a wide range of endogenous and exogenous molecules in a broad variety of samples. The impressive versatility of the approach, where almost any ionizable biomolecule can be analyzed, including peptides, proteins, lipids, carbohydrates, and nucleic acids, has been applied to numerous types of complex biological samples. While originally demonstrated with harvested organs from animal models and biopsies from humans, these models are time consuming and expensive, which makes it necessary to extend the approach to 3D cell culture systems. These systems, which include spheroid models, prepared from immortalized cell lines, and organoid cultures, grown from patient biopsies, can provide insight on the intersection of molecular information on a spatial scale. In particular, the investigation of drug compounds, their metabolism, and the subsequent distribution of their metabolites in 3D cell culture systems by MSI has been a promising area of study. This review summarizes the different ionization methods, sample preparation steps, and data analysis methods of MSI and focuses on several of the latest applications of MALDI-MSI for drug studies in spheroids and organoids. Finally, the application of this approach in patient-derived organoids to evaluate personalized medicine options is discussed.  相似文献   

14.
ABSTRACT

Genome variation in tissue culture is of importance for commercial use in plant propagation as well as for basic research on plant growth and development. RAPD fingerprinting can be used to trace genetic or epigenetic changes at the genome level. In the present paper, results of RAPD analyses on primary tissue cultures are given with particular attention to the repeatability of the method. The significance of primer binding site competition for the discovery of qualitative and quantitative DNA polymorphism is discussed.  相似文献   

15.
Introduction: Mass Spectrometry Imaging (MSI) provides information about the spatial distributions of different analytes on tissue sections and requires no homogenization techniques or labeling. It has a wide spectrum of applications ranging from biomarker discovery to drug response studies. MSI can be adapted to the clinical settings due to its ability to combine mass spectrometry and histological data.

Areas covered: The major obstacle to adapt MSI into clinical settings arises from the limited standardization in MSI experiments. We aimed to review the multi-site studies in MSI specifically focusing on reproducibility. Additionally, we emphasized the necessity of quality assessments in MSI for its potential usage in clinical settings.

Expert opinion: We discuss how important it is to follow optimized and standardized workflows in MSI and conduct potential quality assessments at important stages in order to adapt MSI into clinical applications.  相似文献   


16.
MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 μg/mm2. Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.  相似文献   

17.
We have conducted proteome-wide analysis of fresh surgery specimens derived from breast cancer patients, using an approach that integrates size-based intact protein fractionation, nanoscale liquid separation of peptides, electrospray ion trap mass spectrometry, and bioinformatics. Through this approach, we have acquired a large amount of peptide fragmentation spectra from size-resolved fractions of the proteomes of several breast tumors, tissue peripheral to the tumor, and samples from patients undergoing noncancer surgery. Label-free quantitation was used to generate protein abundance maps for each proteome and perform comparative analyses. The mass spectrometry data revealed distinct qualitative and quantitative patterns distinguishing the tumors from healthy tissue as well as differences between metastatic and non-metastatic human breast cancers including many established and potential novel candidate protein biomarkers. Selected proteins were evaluated by Western blotting using tumors grouped according to histological grade, size, and receptor expression but differing in nodal status. Immunohistochemical analysis of a wide panel of breast tumors was conducted to assess expression in different types of breast cancers and the cellular distribution of the candidate proteins. These experiments provided further insights and an independent validation of the data obtained by mass spectrometry and revealed the potential of this approach for establishing multimodal markers for early metastasis, therapy outcomes, prognosis, and diagnosis in the future.  相似文献   

18.
Recent investigations have shown that nuclear magnetic resonance (NMR) can be used in conjunction with a suitable chemical dosimeter to estimate the dose from ionizing radiation (Gore et al., Phys Med. Biol. 29, 1189-1197, 1984). Based on this fact it was proposed that spatial dose distributions can be measured in gels infused with the chemical dosimeter using NMR imaging. There have been few such attempts and they provided only qualitative results. In this paper, we report results demonstrating the feasibility of obtaining quantitative dose distribution measurements by this technique. It is shown that quantitative dose distribution measurements necessitate the calculation of relaxation rate maps. We have determined that the spin-spin relaxation rate is a more sensitive parameter than the spin-lattice relaxation rate. It is also demonstrated that the addition of chemical sensitizers could improve the dose sensitivity of the measured NMR parameters. The two features characterizing a photon beam, depth-dose relationship, and beam profile as measured by this technique are in good agreement with the measurements using conventional methods, ionization chambers, and film dosimetry.  相似文献   

19.
The endothelium is a metabolically active organ that regulates the interaction between blood or lymph and the vessel or the surrounding tissue. Blood endothelium has been the object of many investigations whereas lymphatic endothelium biology is yet poorly understood. This report deals with a proteomic approach to the characterization and comparative analysis of lymphatic and blood vessel endothelial cells (ECs). By 2-DE we visualized the protein profiles of EC extracts from the thoracic aorta, inferior vena cava, and thoracic duct of Bos taurus. The three obtained electropherograms were then analyzed by specific software, and 113 quantitative and 25 qualitative differences were detected between the three endothelial gels. The cluster analysis of qualitative and quantitative differences evidenced the protein pattern of lymphatic ECs to be more similar to the venous than to the arterial one. Moreover, venous ECs were interestingly found showing a protein expression profile more similar to the lymphatic ECs than to the arterial ones. We also identified 64 protein spots by MALDI-TOF MS and ESI-IT MS/MS and three reference maps of bovine endothelium were obtained. The functional implications of the identified proteins in vascular endothelial biology are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号