首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These studies examined the expression of cyclooxygenase-2 (COX-2) expression in the urothelium and suburothelial space and detrusor from rats treated with cyclophosphamide (CYP) to induce acute (4 h), intermediate (48 h), or chronic (10-day) cystitis. Western blot analysis and immunohistochemistry were used to demonstrate COX-2 expression. In whole mount preparations of urinary bladder, nerve fibers in the suburothelial plexus, and inflammatory cell infiltrates were characterized for COX-2 expression after CYP-induced cystitis. COX-2 expression significantly (P 相似文献   

2.
Recent studies have employed two markers, alpha-smooth muscle actin (α-SMA) and STRO-1, to detect cells with mesenchymal stem cell properties in dental pulp. The present study aimed to explore the expression profile of α-SMA and STRO-1 in intact dental pulp as well as during wound healing in adult dental pulp tissue. Healthy pulps were mechanically exposed and capped with the clinically used materials MTA (ProRoot White MTA) or Ca(OH)(2) to induce a mineralized barrier at the exposed surface. After 7-42?days, the teeth were extracted and processed for immunohistochemical analysis using antibodies against α-SMA, STRO-1 and nestin (a neurogenic cytoskeletal protein expressed in odontoblasts). In normal pulp, α-SMA was detected in vascular smooth muscle cells and pericytes. Double immunofluorescent staining with STRO-1 and α-SMA showed that STRO-1 was localized in vascular smooth muscle cells, pericytes and endothelial cells, in addition to nerve fibers. During the process of dental pulp healing, numerous α-SMA-positive cells emerged at the wound margin at 14?days, and the initially formed mineralized barrier was lined with α-SMA-positive cells similar in appearance to reparative odontoblasts, some of which co-expressed nestin. STRO-1 was abundant in nerve fibers. In the advanced stage of mineralized barrier formation at 42?days, cells lining the barrier were stained with nestin, and no staining of α-SMA was detected in those cells. These observations indicate that α-SMA-positive cells temporarily appear along the wound margin during the earlier phase of mineralized barrier formation and STRO-1 is confined in vascular and neuronal elements.  相似文献   

3.
The innervation of the dorsal aorta and renal vasculature in the toad (Bufo marinus) has been studied with both fluorescence and ultrastructural histochemistry. The innervation consists primarily of a dense plexus of adrenergic nerves associated with all levels of the preglomerular vasculature. Non-adrenergic nerves are occasionally found in the renal artery, and even more rarely near the afferent arterioles. Many of the adrenergic nerve profiles in the dorsal aorta and renal vasculature are distinguished by high proportions of chromaffin-negative, large, filled vesicles. Close neuromuscular contacts are common in both the renal arteries and afferent arterioles. Possibly every smooth muscle cell in the afferent arterioles is multiply innervated. The glomerular capillaries and peritubular vessels are not innervated, and only 3-5% of efferent arterioles are accompanied by single adrenergic nerve fibres. Thus, nervous control of glomerular blood flow must be exerted primarily by adrenergic nerves acting on the preglomerular vasculature. The adrenergic innervation of the renal portal veins and efferent renal veins may play a role in regulating peritubular blood flow. In addition, glomerular and postglomerular control of renal blood flow could be achieved by circulating agents acting via contractile elements in the glomerular mesangial cells, and in the endothelial cells and pericytes of the efferent arterioles. Some adrenergic nerve profiles near afferent arterioles are as close as 70 nm to distal tubule cells, indicating that tubular function may be directly controlled by adrenergic nerves.  相似文献   

4.
The investigation of film preparations and histological sections of human trigeminal nerves impregnated with silver nitrate and treated after Gomori, Falck--Hillarp demonstrated a rich innervation in the intraneural blood vessels. The most various and complex interconnections of the neural structures were noted in arterioles and venules of the node capsule, epineurium and external layers of perineurium of the trigeminal nerve branches. On the vessel walls of these layers, neural plexus were revealed. Sensitive innervation of the neural blood vessels mainly performed by posvalent tissue-vascular receptors. In the walls of intraneural vessels, adrenergic and cholinergic neural plexus are revealed.  相似文献   

5.
Autonomic nerves in most mammalian species mediate both contractions and relaxations of airway smooth muscle. Cholinergic-parasympathetic nerves mediate contractions, whereas adrenergic-sympathetic and/or noncholinergic parasympathetic nerves mediate relaxations. Sympathetic-adrenergic innervation of human airway smooth muscle is sparse or nonexistent based on histological analyses and plays little or no role in regulating airway caliber. Rather, in humans and in many other species, postganglionic noncholinergic parasympathetic nerves provide the only relaxant innervation of airway smooth muscle. These noncholinergic nerves are anatomically and physiologically distinct from the postganglionic cholinergic parasympathetic nerves and differentially regulated by reflexes. Although bronchopulmonary vagal afferent nerves provide the primary afferent input regulating airway autonomic nerve activity, extrapulmonary afferent nerves, both vagal and nonvagal, can also reflexively regulate autonomic tone in airway smooth muscle. Reflexes result in either an enhanced activity in one or more of the autonomic efferent pathways, or a withdrawal of baseline cholinergic tone. These parallel excitatory and inhibitory afferent and efferent pathways add complexity to autonomic control of airway caliber. Dysfunction or dysregulation of these afferent and efferent nerves likely contributes to the pathogenesis of obstructive airways diseases and may account for the pulmonary symptoms associated with extrapulmonary disorders, including gastroesophageal reflux disease, cardiovascular disease, and rhinosinusitis.  相似文献   

6.
Summary The innervation and myocardial cells of the human atrial appendage were investigated by means of immunocytochemical and ultrastructural techniques using both tissue sections and whole mount preparations. A dense innervation of the myocardium, blood vessels and endocardium was revealed with antisera to general neuronal (protein gene product 9.5 and synaptophysin) and Schwann cell markers (S-100). The majority of nerve fibres possessed neuropeptide Y immunoreactivity and were found associated with myocardial cells, around small arteries and arterioles at the adventitial-medial border and forming a plexus in the endocardium. Subpopulations of nerve fibres displayed immunoreactivity for vasoactive intestinal polypeptide, somatostatin, substance P and calcitonin gene-related peptide. In whole-mount preparations of endocardium, substance P and calcitonin gene-related peptide immunoreactivities were found to coexist in the same varicose nerve terminals. Ultrastructural studies revealed the presence of numerous varicose terminals associated with myocardial, vascular smooth muscle and endothelial cells. Neuropeptide Y immunoreactivity was localised to large electron-dense secretory vesicles in nerve terminals which also contained numerous small vesicles. Atrial natriuretic peptide immunoreactivity occurred exclusively in myocardial cells where it was localised to large secretory vesicles. The human atrial appendage comprises a neuroendocrine complex of peptidecontaining nerves and myocardial cells producing ANP.  相似文献   

7.
The adrenergic innervation of structures in the gills of brown and rainbow trout was studied with catecholamine fluorescence histochemistry. In the arterio-arterial vascular pathway, there was an innervation of the afferent and efferent lamellar arterioles, but the afferent and efferent filamental arteries and the secondary lamellae were devoid of any fluorescent nerve fibres. In S. trutta only, there was an additional innervation of the afferent and efferent branchial arteries and the base of the efferent filamental artery. The innervation of the arterio-venous vascular pathway was similar in both trout species. Many fluorescent nerve fibres were found on nutritive arterioles in the gill arch and interbranchial septum, and in the core of each filament between the surface epithelium and the wall of the filament venous sinus. No fluorescent nerve fibres were observed at the origins of the capillaries arising from the efferent filamental artery. The sympathetic nerve supply is provided to the gills mainly through the posttrematic nerve, with an occasional small contribution through the pretrematic nerve. The presence of adrenergic nerves in the gills is discussed in relation to the regulation of blood flow through the arterio-arterial and arterio-venous pathways.  相似文献   

8.
Summary The innervation of the mesenteric microvasculature was studied in fetal and neonatal rabbits with the aid of methods demonstrating fluorescence of catecholamines and cholinesterase activity as well as a silver impregnation procedure. The results showed that: (1) adrenergic nerve fibers were present, coursing independently in the mesentery by day twenty-one of gestation, and were found routinely in the adventitia of arterioles and venules by day 25 of gestation; (2) cholinesterase positive cells and fibers of the myenteric plexus were present by day 18 of gestation but cholinergic fibers were not present in the mesentery until day 26; the latter not being associated with blood vessels; and (3) nerve fibers in the mesentery thought to be sensory stained positively with the Holmes silver method on day 18 of gestation.Supported by grants from the Akron Heart Association and the Heart Association of Southwestern Ohio.Recipient of N.I.H. Research Career Development Award AM-42, 370.  相似文献   

9.
The presence of neuropeptide Y (NPY)-like immunoreactivity (-LI) in sympathetic perivascular nerves and the functional effects of NPY and noradrenaline (NA) on vascular tone were studied in skeletal muscle of various species. A dense network of NPY-LI was found around arteries and arterioles but not venules in the gluteus maximus muscle of man, gracilis muscle of dog, tenuissimus muscle of rabbit and quadriceps muscle of cat, rat, guinea pig and pig. The distribution of NPY-immunoreactive (-IR) nerves was closely correlated to the presence of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH)-positive fibers, two markers for noradrenergic neurons. Double-staining experiments revealed that NPY- and TH-IR as well as NPY- and DBH-IR nerve fibers around arteries and arterioles were identical. The veins and venules, however, lacked or had a very sparse innervation of NPY-, TH- and DBH-positive fibers. The NPY- and TH-IR nerves in quadriceps muscle of the guinea pig were absent after treatment with 6-hydroxydopamine. Lumbosacral sympathetic ganglia from the same species contained many NPY-positive cells which were also TH- and DBH-IR. NPY-LI was also detected by radioimmunoassay in extracts of skeletal muscle from guinea pig, rabbit, dog, pig and man as well as of lumbosacral sympathetic ganglia. The content of NPY-LI in skeletal muscle was relatively low (0.1-0.4 pmol/g), whereas lumbosacral sympathetic ganglia had a much higher content (48-88 pmol/g). NPY (10(-7) M) contracted arterioles in the tenuissimus muscle of the rabbit to a similar extent (by 65%) as NA (10(-6) M), as studied by intravital microscopy in vivo. NPY had no effect on the corresponding venules while NA caused a slight contraction of these vessels. In vitro studies of small human skeletal muscle arteries and veins revealed that NPY was more potent than NA in contracting the arteries, and the highest concentration of NPY (5 x 10(-7) M) caused a contraction of a similar magnitude as NA 10(-5) M. NA contracted veins from human skeletal muscle, while NPY had only small effects. It is suggested that NPY, together with NA, could be of importance for sympathetic control of skeletal muscle blood flow.  相似文献   

10.
Summary The extrinsic innervation of the guinea pig uterus was studied by immunohistochemical, ultrastructural and enzyme histochemical methods.The extrinsic innervation was organized in two major ways. One consisted of nerve trunks and non-varicose nerve fibres running in the suspensory ligament, and the other of a plexus of varicose nerve fibres surrounding vessels, and non-vessel-related non-varicose nerve fibres in the mesouterus. The use of different neuronal and Schwann cell markers showed that the extrinsic innervation was predominantly adrenergic and contained only few peptidergic nerves. Acetylcholinesterase-positive (cholinergic) nerves were only found around the uterine artery.In late pregnancy, the extrinsic nerves of the mesouterus adjacent to foetus-containing uterine horns underwent pronounced degenerative changes comprising both Schwann cell and axonal structures. In comparison, no changes were found in extrinsic nerves of mesouteri adjacent to non-foetus-bearing uterine horns or in extrinsic nerves in the suspensory ligaments. Further, chemical sympathectomy produced axonal degeneration but no changes in the Schwann cells.In conclusion, the pregnancy-induced nerve degeneration is of a very special type different from that following chemical sympathectomy and represents a local phenomenon related to the conceptus. Hypothetically, this could be of importance for counteracting disturbances in placental blood flow.  相似文献   

11.

Background

Epithelial to mesenchymal transition (EMT) in alveolar epithelial cells (AECs) has been widely observed in patients suffering interstitial pulmonary fibrosis. In vitro studies have also demonstrated that AECs could convert into myofibroblasts following exposure to TGF-β1. In this study, we examined whether EMT occurs in bleomycin (BLM) induced pulmonary fibrosis, and the involvement of bronchial epithelial cells (BECs) in the EMT. Using an α-smooth muscle actin-Cre transgenic mouse (α-SMA-Cre/R26R) strain, we labelled myofibroblasts in vivo. We also performed a phenotypic analysis of human BEC lines during TGF-β1 stimulation in vitro.

Methods

We generated the α-SMA-Cre mouse strain by pronuclear microinjection with a Cre recombinase cDNA driven by the mouse α-smooth muscle actin (α-SMA) promoter. α-SMA-Cre mice were crossed with the Cre-dependent LacZ expressing strain R26R to produce the double transgenic strain α-SMA-Cre/R26R. β-galactosidase (βgal) staining, α-SMA and smooth muscle myosin heavy chains immunostaining were carried out simultaneously to confirm the specificity of expression of the transgenic reporter within smooth muscle cells (SMCs) under physiological conditions. BLM-induced peribronchial fibrosis in α-SMA-Cre/R26R mice was examined by pulmonary βgal staining and α-SMA immunofluorescence staining. To confirm in vivo observations of BECs undergoing EMT, we stimulated human BEC line 16HBE with TGF-β1 and examined the localization of the myofibroblast markers α-SMA and F-actin, and the epithelial marker E-cadherin by immunofluorescence.

Results

βgal staining in organs of healthy α-SMA-Cre/R26R mice corresponded with the distribution of SMCs, as confirmed by α-SMA and SM-MHC immunostaining. BLM-treated mice showed significantly enhanced βgal staining in subepithelial areas in bronchi, terminal bronchioles and walls of pulmonary vessels. Some AECs in certain peribronchial areas or even a small subset of BECs were also positively stained, as confirmed by α-SMA immunostaining. In vitro, addition of TGF-β1 to 16HBE cells could also stimulate the expression of α-SMA and F-actin, while E-cadherin was decreased, consistent with an EMT.

Conclusion

We observed airway EMT in BLM-induced peribronchial fibrosis mice. BECs, like AECs, have the capacity to undergo EMT and to contribute to mesenchymal expansion in pulmonary fibrosis.  相似文献   

12.
This report describes the morphology of the smooth muscle cells, pericytes, and the perivascular autonomic nerve plexus of blood vessels in the rat mammary gland as visualized by scanning electron microscopy after removal of connective-tissue components. From the differences in cellular morphology, eight vascular segments were identified: 1) terminal arterioles (10-30 microns in outer diameter), with a compact layer of spindle-shaped and circularly oriented smooth muscle cells; 2) precapillary arterioles (6-12 microns), with a less compact layer of branched smooth muscle cells having circular processes; 3) arterial capillaries (4-7 microns), with " spidery " pericytes having mostly circularly oriented processes; 4) true capillaries (3-5 microns), with widely scattered pericytes having longitudinal and several circular processes; 5) venous capillaries (5-8 microns), with spidery pericytes having ramifying processes; 6) postcapillary venules (10-40 microns), with clustered spidery pericytes; 7) collecting venules (30-60 microns), with a discontinuous layer of circularly oriented and elongated stellate or branched spindle-shaped cells which may represent primitive smooth muscle cells; and 8) muscular venules (over 60 microns), with a discontinuous layer of ribbon-like smooth muscle cells having a series of small lateral projections. No focal precapillary sphincters were found. The nerve plexus appears to innervate terminal arterioles densely and precapillary arterioles less densely. Fine nerve fibers are only occasionally associated with arterial capillaries. Venous microvessels in the rat mammary gland seemingly lack innervation.  相似文献   

13.
Mechanical activities of the uterus, cervix, and bladder were recorded in vivo in anesthetized rats during electrical stimulation of either the hypogastric or pelvic nerve. Ovariectomized controls and hormone-treated groups were used as well as pregnant and postpartum rats. Stimulation of either hypogastric or pelvic nerve produced voltage- and frequency-dependent contractions of the three organs with no evidence of apparent inhibition. All evoked responses were completely abolished by tetrodotoxin, suggesting that these nerves are common pathways of innervation to the three organs. Atropine abolished uterine and cervical responses to both hypogastric and pelvic nerve stimulation, whereas bladder responses were only partly reduced. Hexamethonium almost totally blocked the evoked responses of the uterus and cervix. Phentolamine partly blocked uterine and cervical responses, and propranolol or physostigmine enhanced uterine and cervical responses to both hypogastric and pelvic nerve stimulation. These results suggest that motor innervation to the rat uterus and cervix is predominantly postganglionic cholinergic, with some alpha- and beta-adrenergic components, and that the bladder is innervated by mainly cholinergic and also noncholinergic nerves. Estrogen and estrogen-plus-progesterone pretreatment significantly increased the responses of uterus and cervix but not bladder. Uterine and cervical responses to either hypogastric or pelvic nerve stimulation were markedly reduced late in pregnancy and reappeared within 7 days after delivery.  相似文献   

14.
Summary Specific histochemical techniques for the demonstration of acetylcholinesterase and of norepinephrine have been used to study the distribution of cholinergic and adrenergic nerve fibers to arteries and arterioles in various organs of cats and dogs, including the male genital apparatus, tongue, skeletal muscle, heart and gastrointestinal tract. Arteries and arterioles in all of these organs showed both cholinergic and adrenergic nerve fibers, although the relative number of each of the types of fiber was variable. The findings provide morphologic evidence for a widespread and generalized dual adrenergic and cholinergic innervation of arteries and arterioles.Supported in part by Grant No. HE 10465 from the USPHS and by a grant from the Monroe County Heart Chapter.  相似文献   

15.
Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor α2 (GFRα2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRα2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.This study was supported by the National Heart, Lung, and Blood Institute (grant HL-54633).  相似文献   

16.
OBJECTIVE: To examine the effects of the renin-angiotensin system (RAS) on renal arterioles to determine the association between the distribution of angiotensin II AT1 receptors and the morphologic and physiologic heterogeneity of renal arterioles. STUDY DESIGN: To estimate the number of angiotensin II AT1 receptors along the length of the arterioles and per arteriole, we combined immunoelectron microscopy with stereology. RESULTS: The number of AT1 receptor molecules was significantly lower in the renin-positive smooth muscle cells (SMCs) than in the renin-negative SMCs of the afferent and efferent arterioles. There were no significant differences along and between the afferent and efferent arterioles in relative number of AT1 receptors of endothelial cells or SMCs. CONCLUSION: Our results suggest that the heterogeneous activity of angiotensin II in SMCs and the different permeabilities of the endothelium along the afferent arterioles are probably not controlled directly by angiotensin II AT1 receptors. However, the activity of the RAS is possibly involved in the significantly reduced number of receptors in renin-granulated cells. An understanding of how the number of AT1 receptors on the SMC surface is controlled may furnish a new path for pharmacologically changing RAS activity on SMCs.  相似文献   

17.
Phosphorylated ERK expression has been demonstrated in the central and peripheral nervous system after various stimuli, including visceral stimulation. Changes in the activation (i.e., phosphorylation) of extracellular signal-regulated kinases (pERK) were examined in the urinary bladder after 4 h (acute), 48 h (intermediate), or chronic (10 day) cyclophosphamide (CYP) treatment. CYP-induced cystitis significantly (P < or = 0.01) increased pERK expression in the urinary bladder with intermediate (48 h) and chronic CYP treatment. Immunohistochemistry for pERK immunoreactivity revealed little pERK-IR in control or acute (4 h) CYP-treated rat urinary bladders. However, pERK expression was significantly (P < or = 0.01) upregulated in the urothelium after 48 h or chronic CYP treatment. Whole mount preparations of urothelium/lamina propria or detrusor smooth muscle from control (noninflamed) rats showed no pERK-IR in PGP9.5-labeled nerve fibers in the suburothelial plexus. However, with CYP-treatment (48 h, chronic), a few pERK-IR nerve fibers in the suburothelial plexus of whole mount preparations of bladder and at the serosal edge of urinary bladder sections were observed. pERK-IR cells expressing the CD86 antigen were also observed in urinary bladder from CYP-treated rats (48 h, chronic). Treatment with the upstream inhibitor of ERK phosphorylation, U0126, significantly (P < or= 0.01) increased bladder capacity in CYP-treated rats (48 h). These studies suggest that therapies targeted at pERK pathways may improve urinary bladder function in CYP-treated rats.  相似文献   

18.
The proximal urethra plays a central role in maintaining urinary continence, and sympathetic excitatory innervation to urethral smooth muscle is a major factor in promoting tonic contraction of this organ. Elevated estrogen levels are often associated with incontinence in humans. Because elevated estrogen levels result in degeneration of sympathetic nerves from the closely related uterine smooth muscle, we examined the effects of chronic estrogen administration on proximal urethral innervation. Ovariectomized virgin female rats received either vehicle or 17 beta-estradiol for 1 week, and smooth muscle size and parasympathetic, sensory and sympathetic nerve densities were assessed quantitatively throughout the first 3 mm of the proximal urethral smooth muscle. In vehicle-infused ovariectomized rats, parasympathetic nerves immunoreactive for vesicular acetylcholine transporter were most abundant, while calcitonin gene-related peptide-immunoreactive sensory nerves and tyrosine hydroxylase-immunoreactive sympathetic nerves were less numerous. The densities of parasympathetic and sensory nerves remained constant along the proximal urethra, while sympathetic nerves showed a significant increase along a proximal-distal gradient. Administration of 17beta-estradiol for 7 days via subcutaneous osmotic pump did not change smooth muscle area in sections, and neither densities nor total innervation of any nerve population was altered. These findings reveal a rich cholinergic innervation of the proximal urethra, and a pronounced gradient in sympathetic innervation. Unlike the embryologically similar uterine smooth muscle, estrogen does not influence muscle size or composition of innervation, indicating that estrogen's actions on innervation are highly target-specific. Thus, estrogen's effects on urinary continence apparently occur independently of any significant remodeling of smooth muscle or resident innervation.  相似文献   

19.
In the distal parts of the urinary tract, nerves containing calcitonin gene-related peptide (CGRP) or substance P (SP) are sensory with their cell bodies located in lumbosacral dorsal root ganglia. These two neuropeptides are recognised as being present in pelvic sensory nerves, and may be involved in the mediation of pain, stretch and/or vasodilatation. We have used indirect immunohistochemical techniques to examine the distribution and regional variation of nerves immunoreactive (-ir) for CGRP and SP in the urinary bladder and in neurons in lumbosacral dorsal root ganglia (L1-L2 & L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were made for CGRP-ir and SP-ir fibres innervating the dome, body and base of the urinary bladder. Quantitative studies were also used to examine the effects of age on the percentage of dorsal root ganglion neurons immunoreactive for CGRP and SP. There were very few immunoreactive axons in the dome and the overall density of innervation increased progressively towards the base of the bladder. The density of innervation in the aged rats revealed a slight reduction in CGRP and SP innervation of the detrusor muscle but was otherwise comparable to the young group. However, immunostaining of the lumbosacral dorsal root ganglia revealed that the percentage of CGRP- and SP-ir neuronal profiles showed a significant (P < 0.05) reduction from (mean +/- S.D) 44.5 +/- 2; 23.3 +/- 2 in young adult to 25.0 +/- 2.9; 14.8 +/- 1.6 in aged rats, respectively. These findings suggest that the involvement of CGRP and SP in urinary bladder innervation is relatively unchanged in old age, but their expression in dorsal root ganglion neurons is affected by age. The afferent micturition pathway from the pelvic region via these lumbosacral ganglia may be perturbed as a result.  相似文献   

20.
Summary Dual innervation of snake cerebral blood vessels by adrenergic and cholinergic fibres was demonstrated with the use of histochemical methods. Although the nerve plexuses are somewhat less dense, the essential features of innervation of the blood vessels are similar to those of mammals with the exception that the adrenergic plexuses are more prominent than the cholinergic plexuses. The major arteries of the cerebral carotid system have a rich nerve supply. However, the innervation is less rich in the basilar and poor in the spinal (vertebral) arteries. Although the arteries supplying the right side of head are poorly developed, three pairs of arteries, cerebral carotids, ophthalmics and spinals, supply the snake brain. The carotids and ophthalmics are densely innervated and are accompanied by thick nerve bundles, suggesting that the nerves preferentially enter the skull along those arteries. Some parenchymal arterioles are also dually innervated. Connection between the brain parenchyma and intracerebral capillaries via both cholinergic and adrenergic fibres was observed. In addition cholinergic nerve fibres, connecting capillaries and the intramedullary nerve fibre bundles, were noticed. Capillary blood flow may be influenced by both adrenergic and cholinergic central neurons. The walls of capillaries also exhibit heavy acetylcholinesterase activity. This may indicate an important role for the capillary in the regulation of intracerebral blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号