共查询到20条相似文献,搜索用时 0 毫秒
1.
Masahiro Yamaguchi Fumiyasu Imai Noriko Tonou-Fujimori Ichiro Masai 《Mechanisms of development》2010,127(5-6):247-264
It has been reported that the loss of apicobasal cell polarity and the disruption of adherens junctions induce hyperplasia in the mouse developing brain. However, it is not fully understood whether hyperplasia is caused by an enhanced cell proliferation, an inhibited neurogenesis, or both. In this study, we found that the ratio of the number of proliferating progenitor cells to the total number of retinal cells increases in the neurogenic stages in zebrafish n-cadherin (ncad) and nagie oko (nok) mutants, in which the apicobasal cell polarity and adherens junctions in the retinal epithelium are disrupted. The cell-cycle progression was not altered in the ncad and nok mutants. Rather, the ratio of the number of cells undergoing neurogenic cell division to the total number of cells undergoing mitosis decreased in the ncad and nok mutant retinas, suggesting that the switching from proliferative cell division to neurogenic cell division was compromised in these mutant retinas. These findings suggest that the inhibition of neurogenesis is a primary defect that causes hyperplasia in the ncad and nok mutant retinas. The Hedgehog-protein kinase A signaling pathway and the Notch signaling pathway regulate retinal neurogenesis in zebrafish. We found that both signaling pathways are involved in the generation of neurogenic defects in the ncad and nok mutant retinas. Taken together, these findings suggest that apicobasal cell polarity and epithelial integrity are essential for retinal neurogenesis in zebrafish. 相似文献
2.
《Cell cycle (Georgetown, Tex.)》2013,12(11):1625-1631
The cyclin-dependent kinase (CDK) inhibitor p57Kip2 is a negative regulator of cell proliferation, binding to a variety of cyclin-CDK complexes and inhibiting their kinase activities. The p57Kip2 gene was recognized as a target gene for p73β, one member of the p53 family. In spite of this, the phenotypes of p73 and p57Kip2 knock out mice do not resemble each other while there is a phenotypic overlap betweeen the p57Kip2 null mice, the p63 null mice and patients affected by p63 associated syndromes, suggesting that p57Kip2 could be indeed a downstream target of p63. By ChIP we determined that in the HaCaT cell line the δNp63α protein is associated to three different regions of the p57Kip2 gene. δNp63 can activate both the endogenous p57Kip2 gene and a reporter vector containing a -2191 promoter fragment of the p57Kip2 gene. Natural p63 mutants, associated to the AEC syndrome, show a partial or complete lack of transactivation potential of the p57Kip2 promoter, while three other natural p63 mutants, associated to the EEC, LMS and SHFM-4 syndromes, were less affected. These data suggests that p63 play an important role in the regulation of p57Kip2 expression and that this regulation is subverted in AEC p63 mutants. 相似文献
3.
p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina 总被引:5,自引:0,他引:5
A precise balance between proliferation and differentiation must be maintained during retinal development to obtain the correct proportion of each of the seven cell types found in the adult tissue. Cyclin kinase inhibitors can regulate cell cycle exit coincident with induction of differentiation programs during development. We have found that the p57(Kip2) cyclin kinase inhibitor is upregulated during G(1)/G(0) in a subset of retinal progenitor cells exiting the cell cycle between embryonic day 14.5 and 16.5 of mouse development. Retroviral mediated overexpression of p57(Kip2) in embryonic retinal progenitor cells led to premature cell cycle exit. Retinae from mice lacking p57(Kip2) exhibited inappropriate S-phase entry and apoptotic nuclei were found in the region where p57(Kip2) is normally expressed. Apoptosis precisely compensated for the inappropriate proliferation in the p57(Kip2)-deficient retinae to preserve the correct proportion of the major retinal cell types. Postnatally, p57(Kip2) was found to be expressed in a novel subpopulation of amacrine interneurons. At this stage, p57(Kip2 )did not regulate proliferation. However, perhaps reflecting its role during this late stage of development, animals lacking p57(Kip2) showed an alteration in amacrine subpopulations. p57(Kip2) is the first gene to be implicated as a regulator of amacrine subtype/subpopulation development. Consequently, we propose that p57(Kip2) has two roles during retinal development, acting first as a cyclin kinase inhibitor in mitotic progenitor cells, and then playing a distinct role in neuronal differentiation. 相似文献
4.
5.
6.
7.
Reynaud EG Leibovitch MP Tintignac LA Pelpel K Guillier M Leibovitch SA 《The Journal of biological chemistry》2000,275(25):18767-18776
Recent data have demonstrated the role of Cdk1- and Cdk2-dependent phosphorylation of MyoD(Ser200) in the regulation of MyoD activity and protein turnover. In the present study, we show that in presence of p57(Kip2), MyoD(Ala200), a MyoD mutant that cannot be phosphorylated by cyclin-Cdk complexes, displayed activity 2-5-fold higher than of MyoD(Ala200) alone in transactivation of muscle-specific genes myosin heavy chain, creatine kinase, and myosin light chain 1. Furthermore, p57(Kip2) increases the levels of MyoD(Ala200) in cotransfected cells. This result implies that p57(Kip2) may regulate MyoD through a process distinct from its function as a cyclin-dependent kinase inhibitors. We report that overexpression of p57(Kip2) increased the half-life of MyoD(Ala200). This increased half-life of MyoD involves a physical interaction between MyoD and p57(Kip2) but not with p16(Ink4a), as shown by cross-immunoprecipitation not only on overexpressed proteins from transfected cells, but also on endogenous MyoD and p57(Kip2) from C2C12 myogenic cells. Mutational and functional analyses of the two proteins show that the NH(2) domain of p57(Kip2) associates with basic region in the basic helix-loop-helix domain of MyoD. Competition/association assays and site-directed mutagenesis of the NH(2) terminus of p57(Kip2) identified the intermediate alpha-helix domain, located between the Cdk and the cyclin binding sites, as essential for MyoD interaction. These data show that the alpha-helix domain of p57(Kip2), which is conserved in the Cip/Kip proteins, is implicated in protein-protein interaction and confers a specific regulatory mechanism, outside of their Cdk-inhibitory activity, by which the p57(Kip2) family members positively act on myogenic differentiation. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(6):935-943
HER2/neu oncogene is frequently deregulated in cancers, and the (PI3K)-Akt signaling is one of the major pathways in mediating HER2/neu oncogenic signal. p57Kip2, an inhibitor of cyclin-depependent kinases, is pivotal in regulating cell cycle progression, but its upstream regulators remain unclear. Here we show that the HER2-Akt axis is linked to p57Kip2 regulation, and that Akt is a negative regulator of p57Kip2. Ectopic expression of Akt can decrease the expression of p57Kip2, while Akt inhibition leads to p57Kip2 stabilization. Mechanistic studies show that Akt interacts with p57Kip2 and causes cytoplasmic localization of p57Kip2. Akt phosphorylates p57 on Ser 282 or Thr310. Akt activity results in destabilization of p57 by accelerating turnover rate of p57 and enhancing p57 ubiquitination. Importantly, the negative impact of HER2/Akt on p57 stability contributes to HER2-mediated cell proliferation, transformational activity and tumorigenicity. p57 restoration can attenuate these defects caused by HER2. Significantly, Kaplan-Meier analysis of tumor samples demonstrate that in tumors where HER2 expression was observed, high expression levels of p57Kip2 were associated with better overall survival. These data suggest that HER2/Akt is an important negative regulator of p57Kip2, and that p57 restoration in HER2-overexpressing cells can reduce breast tumor growth. Our findings indicate the applicability of employing p57 regulation as a therapeutic intervention in HER2-overexpressing cancers. 相似文献
9.
10.
11.
Urano T Hosoi T Shiraki M Toyoshima H Ouchi Y Inoue S 《Biochemical and biophysical research communications》2000,269(2):422-426
We previously uncovered that growth stimulation of rat primary osteoblasts by transforming growth factor-beta1 (TGF-beta1) resulted in a dramatic decrease in p57(Kip2), a member of cyclin-dependent kinase (CDK) inhibitors, through the proteasomal degradation pathway (Urano et al., J. Biol. Chem. 274, 12197-12200, 1999). Here we demonstrated that the amount of p57 protein increases markedly, when rat calvarial primary osteoblasts treated with 1,25-dihydroxyvitamin D3 transit from proliferation toward differentiation. Next, we have analyzed the association of four amino acids deletion polymorphism of p57 and bone mineral density (BMD). The p57 genotype was determined in 154 postmenopausal Japanese women. When we separated the subjects into two groups, one having one or two copies of deletion polymorphism and the other without the deletion, the former subjects had higher BMD (Z score of total body, 0.67 +/- 0.93 vs 0. 23 +/- 0.90, mean +/- standard deviation; P = 0.021). Taken together, these findings suggest that the p57 regulated in the osteoblast proliferation and differentiation may play a role in determination of bone mineral density and pathogenesis of osteoporosis. 相似文献
12.
Yokoo T Toyoshima H Miura M Wang Y Iida KT Suzuki H Sone H Shimano H Gotoda T Nishimori S Tanaka K Yamada N 《The Journal of biological chemistry》2003,278(52):52919-52923
p57Kip2 is the only cyclin-dependent kinase (Cdk) inhibitor shown to be essential for mouse embryogenesis. The fact suggests that p57 has a specific role that cannot be compensated by other Cdk inhibitors. LIM-kinase 1 (LIMK-1) is a downstream effector of the Rho family of GTPases that phosphorylates and inactivates an actin depolymerization factor, cofilin, to induce the formation of actin fiber. Here we demonstrate that p57 regulates actin dynamics by binding and translocating LIMK-1 from the cytoplasm into the nucleus, which in turn results in a reorganization of actin fiber. The central region of p57, a unique feature among the Cdk inhibitors, and the N-terminal region of LIMK-1, which contains the LIM domains were essential for the interaction. Expression of p57, but not p27Kip1 or a p57 mutant, with a deletion in the central region was shown to induce marked reorganization of actin filament and a translocation of LIMK-1. Our findings indicate p57 may act as a key regulator in embryogenesis by bearing two distinct functions, the regulation of cell cycle through binding to Cdks and the regulation of actin dynamics through binding to LIMK-1, both of which should be important in developmental procedure. 相似文献
13.
《Cell cycle (Georgetown, Tex.)》2013,12(24):4633-4641
Subunit 6 of the COP9 signalosome complex, CSN6, is known to be critical to the regulation of the MDM2-p53 axis for cell proliferation and anti-apoptosis, but its many targets remain unclear. Here we show that p57Kip2 is a target of CSN6, and that CSN6 is a negative regulator of p57Kip2. CSN6 associates with p57Kip2, and its overexpression can decrease the steady-state expression of p57Kip2; accordingly, CSN6 deficiency leads to p57Kip2 stabilization. Mechanistic studies show that CSN6 associates with p57Kip2 and Skp2, a component of the E3 ligase, which, in turn, facilitates Skp2-mediated protein ubiquitination of p57Kip2. Loss of Skp2 compromised CSN6-mediated p57Kip2 destabilization, suggesting collaboration between Skp2 and CSN6 in degradation of p57Kip2. CSN6’s negative impact on p57Kip2 elevation translates into cell growth promotion, cell cycle deregulation and potentiated transformational activity. Significantly, univariate Kaplan-Meier analysis of tumor samples demonstrates that high CSN6 expression or low p57 expression is associated with poor overall survival. These data suggest that CSN6 is an important negative regulator of p57Kip2, and that overexpression of CSN6 in many types of cancer could lead to decreased expression of p57Kip2 and result in promoted cancer cell growth. 相似文献
14.
Bo Chen Ruiying Zhao Chun-Hui Su Monica Linan Chieh Tseng Liem Phan Lekuan Fang Heng-Yin Yang Huiling Yang Wenqian Wang Xiaoyin Xu Nan Jiang Shouliang Cai Feng Jin Sai-Ching J. Yeung Mong-Hong Lee 《Cell cycle (Georgetown, Tex.)》2012,11(24):4633-4641
Subunit 6 of the COP9 signalosome complex, CSN6, is known to be critical to the regulation of the MDM2-p53 axis for cell proliferation and anti-apoptosis, but its many targets remain unclear. Here we show that p57Kip2 is a target of CSN6, and that CSN6 is a negative regulator of p57Kip2. CSN6 associates with p57Kip2, and its overexpression can decrease the steady-state expression of p57Kip2; accordingly, CSN6 deficiency leads to p57Kip2 stabilization. Mechanistic studies show that CSN6 associates with p57Kip2 and Skp2, a component of the E3 ligase, which, in turn, facilitates Skp2-mediated protein ubiquitination of p57Kip2. Loss of Skp2 compromised CSN6-mediated p57Kip2 destabilization, suggesting collaboration between Skp2 and CSN6 in degradation of p57Kip2. CSN6’s negative impact on p57Kip2 elevation translates into cell growth promotion, cell cycle deregulation and potentiated transformational activity. Significantly, univariate Kaplan-Meier analysis of tumor samples demonstrates that high CSN6 expression or low p57 expression is associated with poor overall survival. These data suggest that CSN6 is an important negative regulator of p57Kip2, and that overexpression of CSN6 in many types of cancer could lead to decreased expression of p57Kip2 and result in promoted cancer cell growth. 相似文献
15.
16.
Prykhozhij SV 《PloS one》2010,5(10):e13549
Background
Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation.Methodology/Principal Findings
Analysis of the zebrafish shh −/− mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh −/− mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh −/− mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh −/− mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53 −/− shh −/− mutant retina suggesting the effect of p53 on retinal differentiation.Conclusions
Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors. 相似文献17.
The Notch signaling pathway controls the size of the ocular lens by directly suppressing p57Kip2 expression 总被引:1,自引:0,他引:1
下载免费PDF全文

The size of an organ must be tightly controlled so that it fits within an organism. The mammalian lens is a relatively simple organ composed of terminally differentiated, amitotic lens fiber cells capped on the anterior surface by a layer of immature, mitotic epithelial cells. The proliferation of lens epithelial cells fuels the growth of the lens, thus controling the size of the lens. We report that the Notch signaling pathway defines the boundary between proliferation and differentiation in the developing lens. The loss of Notch signaling results in the loss of epithelial cells to differentiation and a much smaller lens. We found that the Notch effector Herp2 is expressed in lens epithelium and directly suppresses p57Kip2 expression, providing a molecular link between Notch signaling and the cell cycle control machinery during lens development. 相似文献
18.
19.
Borriello A Caldarelli I Bencivenga D Criscuolo M Cucciolla V Tramontano A Oliva A Perrotta S Della Ragione F 《Molecular cancer research : MCR》2011,9(10):1269-1284
p57(Kip2) is a cyclin-dependent kinase inhibitor belonging to the Cip/Kip family, which also includes p21(Cip1) and p27(Kip1). So far, p57(Kip2) is the least-studied Cip/Kip protein, and for a long time its relevance has been related mainly to its unique role in embryogenesis. Moreover, genetic and molecular studies on animal models and patients with Beckwith-Wiedemann syndrome have shown that alterations in CDKN1C (the p57(Kip2) encoding gene) have functional relevance in the pathogenesis of this disease. Recently, a number of investigations have identified and characterized heretofore unexpected roles for p57(Kip2). The protein appears to be critically involved in initial steps of cell and tissue differentiation, and particularly in neuronal development and erythropoiesis. Intriguingly, p27(Kip1), the Cip/Kip member that is most homologous to p57(Kip2), is primarily involved in the process of cell cycle exit. p57(Kip2) also plays a critical role in controlling cytoskeletal organization and cell migration through its interaction with LIMK-1. Furthermore, p57(Kip2) appears to modulate genome expression. Finally, accumulating evidence indicates that p57(Kip2) protein is frequently downregulated in different types of human epithelial and nonepithelial cancers as a consequence of genetic and epigenetic events. In summary, the emerging picture is that several aspects of p57(Kip2)'s functions are only poorly clarified. This review represents an appraisal of the data available on the p57(Kip2) gene and protein structure, and its role in human physiology and pathology. We particularly focus our attention on p57(Kip2) changes in cancers and pharmacological approaches for modulating p57(Kip2) levels. 相似文献
20.