首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the purine phosphoribosyltransferases (PRTases) of Escherichia coli and were able to isolate a mutant that is defective in its ability to convert guanine and xanthine to their respective ribonucleotides. The affected gene (gpt) lies between metD and proA and is 78.6% co-transducible with proA. Both this point mutant and a strain with a pro-lac deletion contain less than 2% of wild-type xanthine PRTase activity, yet still contain about 30% of wild-type guanine PRTase activity. Thus, the gpt gene is only one of at least two genes responsible for guanine PRTase activity in E. coli.  相似文献   

2.
Mutants of Escherichia coli having reduced levels of exonuclease VII activity have been isolated by a mass screening procedure. Nine mutants, five of which are known to be of independent origin, were obtained and designated xse. The defects in these strains lie at two or more loci. One of these loci, xseA, lies in the interval between purG and purC; it is 93 to 97% co-transducible with guaA. The order of the genes in this region is purG-xseA guaA,B-purC. The available data do not allow xseA to be ordered with respect to guaA,B. Exonuclease VII purified from E. coli KLC3 xseA3 is more heat labile than exonuclease VII purified from the parent, E. coli PA610 xse+. Therefore, xseA is the structural gene for exonuclease VII. Mutants with defects in the xseA gene show increased sensitivity to nalidixic acid and have an abnormally high frequency of recombination (hyper-Rec phenotype) as measured by the procedure of Konrad and Lehlman (1974). The hyper-Rec character of xseA strains is approximately one-half that of the polAex1 mutant defective in the 5' leads to 3' hydrolytic activity of deoxyribonucleic acid polymerase I. The double mutant, polAex1 xseA7, is twice as hyper-Rec as the polAex1 mutant alone. The xseA- strains are slightly more sensitive to ultraviolet irradiation than the parent strain. Bacteriophages T7, fd, and lambdared grow normally in xseA- strains.  相似文献   

3.
Four mutants were isolated from Saccharomyces cerevisiae that are deficient in S-adenosylmethionine decarboxylase (spe2). All four mutants are chromosomal and fall into a single complementation group tightly linked to arg1. Since one of the mutants contained a temperature-sensitive activity, this complementation group defines the structural gene. Mutants totally lacking enzymic activity did not contain spermidine or spermine and had a greatly increased doubling time when grown in the absence of these two polyamines. Addition of 10(-6) M spermidine or 10(-5) M spermine, but not putrescine or cadaverine, restored the doubling time to that of the wild type. Diploids formed from a cross of two mutants completely deficient in spermidine and spermine were unable to sporulate in the absence of added spermidine or spermine. We obtained evidence that arg1 was not located on any of the 17 known chromosomes, and therefore we postulate that arg1 and spe2 are located on a new 18th chromosome.  相似文献   

4.
Arginyl residues 513 and 571 of Escherichia coli K-12 gamma-glutamyl-transpeptidase (EC 2.3.2.2) were substituted with alanyl and glycyl residues, respectively, by oligonucleotide-directed in vitro mutagenesis. Both mutants were devoid of the enzymatic activity. On Western blot analysis, we found that both mutants accumulated a gamma-glutamyltranspeptidase precursor which was not processed into large and small subunits in the periplasmic space of Escherichia coli.  相似文献   

5.
Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase.   总被引:13,自引:14,他引:13       下载免费PDF全文
A new assay specific for uracil-DNA glycosylase is described, Escherichia coli mutants partially and totally deficient in uracil-DNA glycosylase activity have been isolated by using this assay in mass-screening procedures. These have been designated ung mutants. The ung gene maps between tyrA and nadB on the E. coli chromosome. T4 phage containing uracil in their DNA grow on the most glycosylase-deficient hosts but are unable to grow on wild-type bacteria. This provides a simple spot test for the ung genotype. The ung mutants show slightly higher rates of spontaneous mutation to antibiotic resistance. Taken together, these results suggest a central role for uracil-DNA glycosylase in the initiation of an excision repair pathway for the exclusion of uracil from DNA.  相似文献   

6.
Two Escherichia coli K12 mutants defective in 3-methyladenine-DNA glycosylase have been isolated following mutagenesis by N-methyl-N-nitro-N-nitrosoguanidine. The mutants, which are of independent origin and have been designated tag-1 and tag-2, contain greatly reduced amounts of 3-methyladenine-DNA glycosylase activity in cell-free extracts. The defect in the tag-1 strain is observed at 43 °C but not at 30 °C, and a partially purified enzyme from this strain is unusually heat-labile, indicating that the defect in the tag-1 strain is due to a mutation in the structural gene for 3-methyladenine-DNA glycosylase.We have shown that 3-methyladenine-DNA glycosylase is responsible for the rapid removal of 3-methyladenine from the DNA of E. coli cells treated with monofunctional alkylating agents. The active release of this base is greatly impaired in the mutant strains. Both tag mutant strains are abnormally sensitive to killing by monofunctional alkylating agents and are defective in the host cell reactivation of methyl methanesulphonate-treated bacteriophage A. The tag mutation does not confer an increased sensitivity to ultraviolet or X-irradiation, and host cell reactivation of irradiated λ is normal in these strains. Further, there was no increase in the rate of spontaneous mutation in a tag strain.Three-factor transductional crosses with nalA and nrdA have shown that the tag-2 mutation is located at 47.2 minutes on the map of the E. coli K12 chromosome. In the mapping experiments, the tag-1 mutation behaved differently and appeared to be located at 43 to 46 minutes, in a closely situated but non-adjacent gene. Possible implications of the non-identity of the tag-1 and tag-2 mutations are discussed.  相似文献   

7.
Physiological properties of mutants of Escherichia coli defective in glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, or enolase are described. Introduction of a lesion in any one of the reversible steps catalyzed by these enzymes impaired both the glycolytic and gluconeogenic capabilities of the cell and generated an obligatory requirement for a source of carbon above the block (gluconeogenic) and one below (oxidative). A mixture of glycerol and succinate supported the growth of these mutants. Mutants lacking glyceraldehyde 3-phosphate dehydrogenase and glycerate 3-phosphate kinase could grow also on glycerol and glyceric acid, and enolase mutants could grow on glycerate and succinate, whereas double mutants lacking the kinase and enolase required l-serine in addition to glycerol and succinate. Titration of cell yield with limiting amounts of glycerol with Casamino Acids in excess, or vice versa, showed the gluconeogenic requirement of a growing culture of E. coli to be one-twentieth of its total catabolic and anabolic needs. Sugars and their derivatives inhibited growth of these mutants on otherwise permissive media. The mutants accumulated glycolytic intermediates above the blocked enzyme on addition of glucose or glycerol to resting cultures. Glucose inhibited growth and induced lysis. These effects could be substantially overcome by increasing the osmotic strength of the growth medium and, in addition, including 5 mM cyclic adenosine 3',5'-monophosphate therein. This substance countered to a large extent the severe repression of beta-galactosidase synthesis that glucose caused in these mutants.  相似文献   

8.
9.
The molybdopterin content of Escherichia coli mod and mog mutants was estimated by conversion to the form A derivative. The results are in accord with complete phenotypic repair of mod, and incomplete repair of mog, by culture in high concentrations of molybdate. A possible role for Mog as a molybdochelatase is discussed.  相似文献   

10.
Temperature-sensitive conditional lethal mutants in phosphatidylserine decarboxylase (psd) accumulate large amounts of phosphatidylserine under nonpermissive conditions (42 degrees C) prior to cell death. In addition, the ratio of cardiolipin to phosphatidylglycerol is increased. At an intermediate temperature (37 degrees C), high levels of phosphatidylserine can be maintained with little effect on cell growth or viability. Under these conditions, both the rate of induction and the function of the lactose transport system are normal. At 42 degrees C addition of Mg2+ or Ca2+ to mutant cultures produces a partial phenotypic suppression. Growth is prolonged and the filaments normally present at 42 degrees C do not form. Upon transfer to the nonpermissive temperature, there is a considerable lag before accumulation of phosphatidylserine begins and the growth rate is affected. Based on the kinetics of heat inactivation of phosphatidylserine decarboxylase activity in extracts, in intact nongrowing cells, and in growing cells, it appears that the enzyme newly synthesized at 42 degrees C is more thermolabile in vivo than enzyme molecules previously inserted into the membrane at the lower temperature. Thus, the older, stable enzymatic activity must be diluted during growth before physiological effects are observed.  相似文献   

11.
Novel E. coli mutants deficient in biosynthesis of 5- methylaminomethyl -2-thiouridine were isolated based on a phenotype of reduced readthrough at UAG codons. They define 2 new loci trmE and trmF , near 83' on the E. coli map. These mutants are different from strains carrying trmC mutations, which are known to confer a methylation deficiency in biosynthesis of 5- methylaminomethyl -2-thiouridine. tRNA from mutants carrying trmE or trmF mutations was shown to carry 2-thiouridine instead of 5- methylaminomethyl -2-thiouridine. This deficiency affects the triplet binding properties of the mutant tRNA. Our results suggest that the 5- methylaminomethyl group stabilizes the basepairing of this modified nucleotide with G, most likely through direct interaction with the ribosomal binding site(s).  相似文献   

12.
Escherichia coli K-12 mutants showing an altered isozyme pattern of alkaline phosphatase were isolated. Whereas wild-type strains synthesized all three isozymes in a synthetic medium supplemented with Casamino Acids or arginine but synthesized only isozyme 3 in a medium without supplement, the mutant strains synthesized isozyme 1 and a small amount (if any) of isozyme 2, but no isozyme 3, under all growth conditions. The mutation responsible for the altered isozyme pattern, designated iap, was mapped by P1 transduction in the interval between cysC and srl (at about 58.5 min on the E. coli genetic map). It was cotransducible with cysC and srl at frequencies of 0.54 and 0.08, respectively. The order of the genes in this region was srl-iap-cysC-argA-thyA-lysA. Three more independent mutations were also mapped in the same locus. We purified isozymes 1' and 3' from iap and iap+ strains and analyzed the sequences of four amino acids from the amino terminus of each polypeptide. They were Arg-Thr-Pro-Glu (or Gln) in isozyme 1' and Thr-Pro-Glu (or gln)-Met in isozyme 3', which were identical with those of corresponding isozymes produced by the wild-type phoA+ strain (P.M. Kelley, P.A. Neumann, K. Schriefer, F. Cancedda, M.J. Schlesinger, and R.A. Bradshaw, Biochemistry 12:3499-3503, 1973; M.J. Schlesinger, W. Bloch, and P.M. Kelley, p. 333-342, in Isozymes, Academic Press Inc., 1975). These results indicate that the different mobilities of isozymes 1, 2, and 3 are determined by the presence or absence of amino-terminal arginine residues in polypeptides.  相似文献   

13.
Two new mutations are described which, together, eliminate essentially all the aminotransferase activity required for de novo biosynthesis of tyrosine, phenylalanine, and aspartic acid in a K-12 strain of Escherichia coli. One mutation, designated tyrB, lies at about 80 min on the E. coli map and inactivates the "tyrosine-repressible" tyrosine/phenylalanine aminotransferase. The second mutation, aspC, maps at about 20 min and inactivates a nonrespressible aspartate aminotransferase that also has activity on the aromatic amino acids. In ilvE- strains, which lack the branched-chain amino acid aminotransferase, the presence of either the tyrosine-repressible aminotransferase or the aspartate aminotransferase is sufficient for growth in the absence of exogenous tyrosine, phenylalanine, or aspartate; the tyrosine-repressible enzyme is also active in leucine biosynthesis. The ilvE gene product alone can reverse a phenylalanine requirement. Biochemical studies on extracts of strains carrying combinations of these aminotransferase mutations confirm the existence of two distinct enzymes with overlapping specificities for the alpha-keto acid analogues of tyrosine, phenylalanine, and aspartate. These enzymes can be distinguished by electrophoretic mobilities, by kinetic parameters using various substrates, and by a difference in tyrosine repressibility. In extracts of an ilvE- tyrB- aspC- triple mutant, no aminotransferase activity for the alpha-keto acids of tyrosine, phenylalanine, or aspartate could be detected.  相似文献   

14.
Strains of Escherichia coli containing reduced levels of exonuclease VII activity due to mutations in the xseB gene have been isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Seven mutants of independent origin deficient in exonuclease VII activity were obtained. Four of these contained defects in xseA, a locus which has been previously identified, and three others contained mutations in a gene distinct from xseA, which we have designated xseB. Genetic mapping studies place the xseB locus between proC and dnaZ. Exonuclease VII purified from KLC835 (xseA+ xseB3) is more heat labile than enzyme purified from the parent strain PA610 (xse+), showing that xseB is a structural gene for exonuclease VII. The isolation of lambda transducing phage carrying xseA is also described.  相似文献   

15.
HU-1 mutants of Escherichia coli deficient in DNA binding   总被引:1,自引:0,他引:1  
N Goshima  K Kohno  F Imamoto  Y Kano 《Gene》1990,96(1):141-145
We constructed four mutants of the Escherichia coli hupB gene, encoding HU-1 protein, by synthetic oligodeoxyribonucleotide-directed, site-specific mutagenesis on M13mp18 vectors. The HupBR45 protein contained alterations of Arg58----Gly and Arg61----Gly, and the HupBF3, HupBK2 and HupBA1 proteins contained Phe47----Thr, Lys37----Gln and Ala30----Asp alterations, respectively. HupBF3 and HupBR45 were unable to maintain normal cell growth in a hupA-hupB-himA triple mutant at 42 degrees C, mini-F or RSF1010 proliferation, or Mu phage development in a hupA-hupB double mutant, whereas HupBA1 and HupBK2 supported these cellular activities. DNA-affinity column chromatography showed that the HupBF3 and HupBR45 had reduced affinities to DNA. These observations indicate that two highly conserved Arg residues in the arm structure of the C-terminal half of the HU-1 molecule and a Phe residue in the short beta-sheet connecting the two halves of the molecule are important for the DNA-binding ability and biological functions of this protein.  相似文献   

16.
The synthesis of cyclopropane fatty acids (CFA) in bacteria represents a biochemically and physiologically unique membrane modification whose importance for the cell remains unknown, despite extensive study of a Cfa- mutant of Escherichia coli and of the cloned cfa gene. Recently we reported the isolation of new Cfa- mutants (D. W. Grogan and J. E. Cronan, Jr., Mol. Gen. Genet. 196:367-372, 1984). Molecular-genetic and biochemical analysis indicated that these were null mutants of the E. coli cfa locus which were formed by inversions of a chromosomal segment. Isogenic Cfa+ and Cfa- strains were constructed from one such mutant and subjected to various stress conditions. In nearly all cases, both strains responded equally, but certain treatments, such as repeated freezing and thawing, favored the survival of Cfa+ strains over Cfa- strains. Though not essential, CFA thus appeared to play some beneficial role (or roles) in the bacterial cell.  相似文献   

17.
Two F- mutants deficient in conjugation with F-donors have been characterized. They map at about 83 minut position, show resistance to T3 and T7 bacteriophages, and form mating aggregates in the liquid medium with lowered efficiency. Mutants have no detectable alterations in their outer membrane protein composition.  相似文献   

18.
19.
Escherichia coli contains at least two iron storage proteins, a ferritin (FtnA) and a bacterioferritin (Bfr). To investigate their specific functions, the corresponding genes (ftnA and bfr) were inactivated by replacing the chromosomal ftnA and bfr genes with disrupted derivatives containing antibiotic resistance cassettes in place of internal segments of the corresponding coding regions. Single mutants (ftnA::spc and bfr::kan) and a double mutant (ftnA::spc bfr::kan) were generated and confirmed by Western and Southern blot analyses. The iron contents of the parental strain (W3110) and the bfr mutant increased by 1.5- to 2-fold during the transition from logarithmic to stationary phase in iron-rich media, whereas the iron contents of the ftnA and ftnA bfr mutants remained unchanged. The ftnA and ftnA bfr mutants were growth impaired in iron-deficient media, but this was apparent only after the mutant and parental strains had been precultured in iron-rich media. Surprisingly, ferric iron uptake regulation (fur) mutants also had very low iron contents (2.5-fold less iron than Fur+ strains) despite constitutive expression of the iron acquisition systems. The iron deficiencies of the ftnA and fur mutants were confirmed by M?ssbauer spectroscopy, which further showed that the low iron contents of ftnA mutants are due to a lack of magnetically ordered ferric iron clusters likely to correspond to FtnA iron cores. In combination with the fur mutation, ftnA and bfr mutations produced an enhanced sensitivity to hydroperoxides, presumably due to an increase in production of reactive ferrous iron. It is concluded that FtnA acts as an iron store accommodating up to 50% of the cellular iron during postexponential growth in iron-rich media and providing a source of iron that partially compensates for iron deficiency during iron-restricted growth. In addition to repressing the iron acquisition systems, Fur appears to regulate the demand for iron, probably by controlling the expression of iron-containing proteins. The role of Bfr remains unclear.  相似文献   

20.
A series of Escherichia coli strains deficient in single-stranded DNA-binding protein (SSB) and DNA polymerase I was constructed in order to analyze the effects of these mutations on DNA repair resynthesis after UV-irradiation. Since SSB has been suggested to play a role in protecting single-stranded regions which may transiently exist during excision repair and since long single-stranded regions are believed to occur frequently as repair intermediates in strains deficient in DNA polymerase I, studies of repair resynthesis and strand rejoining were performed on strains containing both the ssb-1 and polA1 mutations. Repair resynthesis appears to be slightly decreased in the ssb-1 strain at 42 degrees C relative to the wild-type; however, this effect is not enhanced in a polA1 derivative of this strain. After UV-irradiation, the single-strand molecular weight of the DNA of an ssb-1 strain decreases and fails to recover to normal size. These results are discussed in the context of long patch repair as an inducible component of repair resynthesis and of the protection of intermediates in the excision repair process by SSB. A direct role for SSB in repair resynthesis involving modulation of the proteins involved in this mode of DNA synthesis (particularly stimulation of DNA polymerase II) is not supported by our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号