首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.  相似文献   

2.
Strains of Escherichia coli K12 have been constructed which do not contain any of the polyamines normally present in a wild type strain, namely, 1,4-diaminobutane (putrescine) and spermidine. This phenotype arises as a consequence of the assembly into these strains of deletion mutations in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). The polyamine-deficient strains grow indefinitely in the absence of polyamines but with a growth rate one-third of that found in the presence of polyamines. These strains can act as hosts for bacteriophages T4, T7, and f2, although the latter phage is poorly adsorbed; they can also maintain F' factors, ColE1 and P1 plasmids, and lysogeny by bacteriophage lambda. In contrast, the production of bacteriophage lambda in the absence of polyamines is strikingly decreased (greater than 99%) either after infection of a nonlysogen or after induction of a lysogen. A polyamine-deficient Hfr strain can transfer its chromosome to a recipient at a normal rate, but the number of recombinants observed in a cross is decreased approximately 300-fold. No such effect is observed when only the F- recipient strain in a cross is polyamine deficient.  相似文献   

3.
We have studied the enzymes and genes involved in the biosynthesis of putrescine, spermidine, and spermine in Saccharomyces cerevisiae. Mutants have been isolated with defects in the biosynthetic pathway as follows: spe10 mutants, deficient in ornithine decarboxylase, cannot make putrescine, spermidine, or spermine; spe2 mutants, lacking S-adenosylmethionine decarboxylase, cannot make spermidine or spermine; spe3 mutants, lacking putrescine aminopropyltransferase, cannot make spermidine or spermine; and spe4 and spe40 mutants, lacking spermidine aminopropyltransferase, contain no spermine and permit growth of spe10 mutants. Studies with these mutants have shown that in yeast: 1) polyamines are absolutely required for growth; 2) putrescine is formed only by decarboxylation or ornithine; 3) two separate aminopropyltransferases are required for spermidine and spermine synthesis; 4) spermine and spermidine are important in the regulation of ornithine decarboxylase and the amines exert this control by a posttranslational modification of the enzyme; and 5) spermidine or spermine is essential for sporulation of yeast and for the maintenance of the double-stranded RNA killer plasmid. Recent studies in amine-deficient mutants of Escherichia coli have shown an important role of the polyamines in protein synthesis in vivo.  相似文献   

4.
Q W Xie  C W Tabor    H Tabor 《Journal of bacteriology》1989,171(8):4457-4465
Two enzymes, S-adenosylmethionine decarboxylase and spermidine synthase, are essential for the biosynthesis of spermidine in Escherichia coli. We have previously shown that the genes encoding these enzymes (speD and speE) form an operon and that the area immediately upstream from the speE gene is necessary for the expression of both the speE and speD genes. We have now studied the upstream promoter and the downstream terminator regions of this operon more completely. We have shown that the major mRNA initiation site (Ia) of the operon is located 475 base pairs (bp) upstream from the speE gene and that there is an open reading frame that encodes for a polypeptide of 115 amino acids between the Ia site and the ATG start codon for the speE gene. Downstream from the stop codon for the speD gene is a potential hairpin structure immediately followed by an mRNA termination site, t. An additional mRNA termination site, t', is present about 110 bp downstream from t and is stronger than t. By comparing our DNA fragments with those prepared from this region of the E. coli chromosome by Kohara et al., we have located the speED operon on the physical map of the E. coli chromosome. We have shown that the orientation of the speED operon is counterclockwise and that the operon is located 137.5 to 140 kbp (2.9 minutes) clockwise from the zero position of the E. coli chromosomal map.  相似文献   

5.
S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50) from most eukaryotic organisms is activated by putrescine whereas the corresponding enzyme from bacterial sources shows a stringent requirement for magnesium ions. Adenosylmethionine decarboxylase from lower eukaryotes such as protozoa, however, is not influenced by diamines, neither are any metals needed for its maximal activity. A common characteristic of those organisms containing putrescine-insensitive adenosylmethionine decarboxylase appeared to be either a total absence or very low intracellular content of spermine. While extracts of all organisms containing putrescine-activated adenosylmethionine decarboxylase (animal tissues and yeast) exhibited easily measurable spermine synthase activity, no such activity was detected in cells of Tetrahymena pyriformis, Escherichia coli or Pseudomonas aeruginosa all containing adenosylmethionine decarboxylase insensitive to putrescine and other diamines.The activation of adenosylmethionine decarboxylase by putrescine, the immediate precursor of spermidine, may thus assure the availability of sufficient amounts of decarboxylated adenosylmethionine (S-methyladenosyl-cysteamine) for the synthesis of spermidine even in the presence of a spermine synthesizing system competing for the same precursor (decarboxylated adenosylmethionine).  相似文献   

6.
The amounts of normal and compensatory polyamines of polyamine-requiring Escherichia coli mutants grown in the absence of polyamines were determined. Although aminopropylcadaverine, a compensatory polyamine, was synthesized by MA135 (speB) and DR112 (speA speB), no aminopropylcadaverine or only small amounts of aminopropylcadaverine were synthesized by EWH319 (speA speB speC speD) and MA261 (speB speC), respectively. The average mass doubling times of MA135, DR112, MA261, and EWH319 grown in the absence of polyamines were 113, 105, 260, and 318 min, respectively. The correlation of these values with the sum of spermidine plus aminopropylcadaverine suggested that aminopropylcadaverine is important for cell growth in the presence of limiting amounts of normal polyamines. This hypothesis is supported by the results of aminopropylcadaverine stimulation of the in vitro synthesis of polyphenylalanine and MS2 RNA replicase and of its stimulation of the growth of MA261. For the following reasons, it was concluded that aminopropylcadaverine was synthesized preferentially from cadaverine made by ornithine decarboxylase: aminopropylcadaverine was synthesized in relatively large amounts in cells (MA135 and DR112) which possess ornithine decarboxylase; ornithine decarboxylase catalyzed the decarboxylation of lysine in vitro, and the in vivo formation of aminopropylcadaverine was inhibited by an inhibitor of ornithine decarboxylase.  相似文献   

7.
8.
We isolated several strains of Saccharomyces cerevisiae containing mutations mapping at a single chromosomal gene (spe10); these strains are defective in the decarboxylation of L-ornithine to form putrescine and consequently do not synthesize spermidine and spermine. The growth of one of these mutants was completely eliminated in a polyamine-deficient medium; the growth rate was restored to normal if putrescine, spermidine, or spermine was added. spe10 is not linked to spe2 (adenosylmethionine decarboxylase) or spe3 (putrescine aminopropyltransferase [spermidine synthease]). spe 10 is probably a regulatory gene rather than the structural gene for ornithine decarboxylase, since we isolated two different mutations which bypassed spe10 mutants; these were spe4, an unliked recessive mutation, and spe40, a dominant mutation linked to spe10. Both spe4 and spe40 mutants exhibited a deficiency of spermidine aminopropyltransferase (spermine synthase), but not of putrescine aminopropyltransferase. This suggests that ornithine decarboxylase activity is negatively controlled by the presence of spermidine aminopropyltransferase.  相似文献   

9.
The stimulation of lymphocyte ornithine decarboxylase and adenosylmethionine decarboxylase produced by phytohaemagglutinin was accompanied by an equally marked, but delayed, stimulation of spermidine synthase, which is not commonly considered as an inducible enzyme. In contrast with the marked stimulation of these biosynthetic enzymes, less marked changes were observed in the biodegradative enzymes of polyamines in response to phytohaemagglutinin. Diamine oxidase activity was undetectable during all stages of the transformation. The activity of polyamine oxidase remained either constant or was slightly decreased several days after addition of the mitogen. The activity of polyamine acetylase (employing all the natural polyamines as substrates) distinctly increased both in the cytosolic and crude nuclear preparations of the cells during later stages of mitogen activation. Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, although powerfully inhibiting ornithine decarboxylase, produced a gradual enhancement of adenosylmethionine decarboxylase activity during lymphocyte activation, without influencing the activities of the two propylamine transferases (spermidine synthase and spermine synthase).  相似文献   

10.
Polyamines are present in high concentrations in archaea, yet little is known about their synthesis, except by extrapolation from bacterial and eucaryal systems. S-Adenosylmethionine (AdoMet) decarboxylase, a pyruvoyl group-containing enzyme that is required for spermidine biosynthesis, has been previously identified in eucarya and Escherichia coli. Despite spermidine concentrations in the Methanococcales that are several times higher than in E. coli, no AdoMet decarboxylase gene was recognized in the complete genome sequence of Methanococcus jannaschii. The gene encoding AdoMet decarboxylase in this archaeon is identified herein as a highly diverged homolog of the E. coli speD gene (less than 11% identity). The M. jannaschii enzyme has been expressed in E. coli and purified to homogeneity. Mass spectrometry showed that the enzyme is composed of two subunits of 61 and 63 residues that are derived from a common proenzyme; these proteins associate in an (alphabeta)(2) complex. The pyruvoyl-containing subunit is less than one-half the size of that in previously reported AdoMet decarboxylases, but the holoenzyme has enzymatic activity comparable to that of other AdoMet decarboxylases. The sequence of the M. jannaschii enzyme is a prototype of a class of AdoMet decarboxylases that includes homologs in other archaea and diverse bacteria. The broad phylogenetic distribution of this group suggests that the canonical SpeD-type decarboxylase was derived from an archaeal enzyme within the gamma proteobacterial lineage. Both SpeD-type and archaeal-type enzymes have diverged widely in sequence and size from analogous eucaryal enzymes.  相似文献   

11.
Saccharomyces cerevisiae spe1 delta SPE2 mutants (lacking ornithine decarboxylase) and spe1 delta spe2 delta mutants (lacking both ornithine decarboxylase and S-adenosylmethionine decarboxylase) are equally unable to synthesize putrescine, spermidine, and spermine and require spermidine or spermine for growth in amine-free media. The cessation of growth, however, occurs more rapidly in spe1 delta SPE2 cells than in SPE1 spe2 delta or spe1 delta spe2 delta cells. Since spe1 delta SPE2 cells can synthesize decarboxylated adenosylmethionine (dcAdoMet), these data indicate that dcAdoMet may be toxic to amine-deficient cells.  相似文献   

12.
1-Aminooxy-3-aminopropane was shown to be a potent competitive inhibitor (Ki = 3.2 nM) of homogenous mouse kidney ornithine decarboxylase, a potent irreversible inhibitor (Ki = 50 microM) of homogeneous liver adenosylmethionine decarboxylase and a potent competitive (Ki = 2.3 microM) of homogeneous bovine brain spermidine synthase. It did not inhibit homogeneous bovine brain spermine synthase and it did not serve as a substrate for spermidine synthase. The compound did not inhibit tyrosine aminotransferase, alanine aminotransferase or aspartate aminotransferase, which are pyridoxal phosphate-containing enzymes like ornithine decarboxylase. The inactivation of adenosylmethionine decarboxylase was partially prevented by pyruvate, which is the coenzyme of adenosylmethionine decarboxylase, and by the substrate, adenosylmethionine. 1-Aminooxy-3-aminopropane at 0.5 mM concentration inhibited the growth of HL-60 promyelocytic leukemia cells and this inhibition was prevented by spermidine but not by putrescine.  相似文献   

13.
The availability of fully sequenced bacterial genomes has revealed that many species known to synthesize the polyamine spermidine lack the spermidine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We found that such species possess orthologues of the sym-norspermidine biosynthetic enzymes carboxynorspermidine dehydrogenase and carboxynorspermidine decarboxylase. By deleting these genes in the food-borne pathogen Campylobacter jejuni, we found that the carboxynorspermidine decarboxylase orthologue is responsible for synthesizing spermidine and not sym-norspermidine in vivo. In polyamine auxotrophic gene deletion strains of C. jejuni, growth is highly compromised but can be restored by exogenous sym-homospermidine and to a lesser extent by sym-norspermidine. The alternative spermidine biosynthetic pathway is present in many bacterial phyla and is the dominant spermidine route in the human gut, stomach, and oral microbiomes, and it appears to have supplanted the S-adenosylmethionine decarboxylase/spermidine synthase pathway in the gut microbiota. Approximately half of the gut Firmicutes species appear to be polyamine auxotrophs, but all encode the potABCD spermidine/putrescine transporter. Orthologues encoding carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase are found clustered with an array of diverse putrescine biosynthetic genes in different bacterial genomes, consistent with a role in spermidine, rather than sym-norspermidine biosynthesis. Due to the pervasiveness of ε-proteobacteria in deep sea hydrothermal vents and to the ubiquity of the alternative spermidine biosynthetic pathway in that phylum, the carboxyspermidine route is also dominant in deep sea hydrothermal vents. The carboxyspermidine pathway for polyamine biosynthesis is found in diverse human pathogens, and this alternative spermidine biosynthetic route presents an attractive target for developing novel antimicrobial compounds.  相似文献   

14.
Biosynthetic ornithine decarboxylase was purified 4300-fold from Escherichia coli to a purity of approximately 85% as judged by polyacrylamide gel electrophoresis. The enzyme showed hyperbolic kinetics with a Km of 5.6 mM for ornithine and 1.0 micronM for pyridoxal phosphate and it was competitively inhibited by putrescine and spermidine. The biosynthetic decarboxylase was compared with the biodegradative ornithine decarboxylase [Applebaum, D., et al. (1975), Biochemistry 14, 3675]. Both enzymes were dimers of 80 000-82 000 molecular weight and exhibited similar kinetic properties. However, they differed significantly in other respects. The pH optimum of the biosynthetic enzyme was 8.1, compared with 6.9 for the biodegradative. Both enzymes were activated by nucleotides, but with different specificity. Antibody to the purified biodegradative ornithine decarboxylase did not cross-react with the biosynthetic enzyme. The evolutionary relationship of these two decarboxylases to the other amino acid decarboxylases of E. coli is discussed.  相似文献   

15.
16.
DL-alpha-Monofluoromethylputrescine (compound R.M.I. 71864) is an enzyme-activated irreversible inhibitor of the biosynthetic enzyme ornithine decarboxylase from Escherichia coli. This compound, however, has much less effect in vitro on ornithine decarboxylase obtained from Pseudomonas aeruginosa. These findings are in contrast with those previously found with the substrate analogue DL-alpha-difluoromethylornithine (compound R.M.I. 71782). The K1 of the DL-alpha-monofluoromethylputrescine for the E. coli ornithine decarboxylase is 110 microM, and the half-life (t1/2) calculated for an infinite concentration of inhibitor is 2.1 min. When DL-alpha-monofluoromethylputrescine is used in combination with DL-alpha-difluoromethylarginine (R.M.I. 71897), an irreversible inhibitor of arginine decarboxylase, in vivo in E. coli, both decarboxylase activities are inhibited (greater than 95%) but putrescine levels are only decreased to about one-third of control values and spermidine levels are slightly increased.  相似文献   

17.
S-adenosylmethionine decarboxylase from baker''s yeast.   总被引:7,自引:2,他引:5       下载免费PDF全文
1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate.  相似文献   

18.
The fate of S-adenosyl-L-methionine was studied in rat liver extracts by analysing the distribution of radioactivity from labelled adenosylmethionine in decomposition products, which were separated from each other by chromatographic and electrophoretic means. Marked non-enzymic degradation to adenine, pentosylmethionine, methylthioadenosine and homoserine was evident at pH 6.9-7.8. Enzymic cleavage to methylthioadenosine was stoichiometric with the accumulation of spermidine and could be totally prevented by inhibiting S-adenosyl-L-methionine decarboxylase. The results rule out the existence of adenosylmethionine cyclotransferase in rat liver and indicate that only two quantitatively significant enzymic processes are involved in hepatic adenosylmethionine degradation. Excluding nonenzymic decomposition, more than 99% of adenosylmethionine is demethylated and exclusively catabolized further by S-adenosyl-L-homocysteine hydrolase. Less than 1% of adenosylmethionine is decarboxylated and immediately utilized totally for polyamine biosynthesis.  相似文献   

19.
We have identified gene fusions of polyamine biosynthetic enzymes S‐adenosylmethionine decarboxylase (AdoMetDC, speD) and aminopropyltransferase (speE) orthologues in diverse bacterial phyla. Both domains are functionally active and we demonstrate the novel de novo synthesis of the triamine spermidine from the diamine putrescine by fusion enzymes from β‐proteobacterium Delftia acidovorans and δ‐proteobacterium Syntrophus aciditrophicus, in a ΔspeDE gene deletion strain of Salmonella enterica sv. Typhimurium. Fusion proteins from marine α‐proteobacterium Candidatus Pelagibacter ubique, actinobacterium Nocardia farcinica, chlorobi species Chloroherpeton thalassium, and β‐proteobacterium D. acidovorans each produce a different profile of non‐native polyamines including sym‐norspermidine when expressed in Escherichia coli. The different aminopropyltransferase activities together with phylogenetic analysis confirm independent evolutionary origins for some fusions. Comparative genomic analysis strongly indicates that gene fusions arose by merger of adjacent open reading frames. Independent fusion events, and horizontal and vertical gene transfer contributed to the scattered phyletic distribution of the gene fusions. Surprisingly, expression of fusion genes in E. coli and S. Typhimurium revealed novel latent spermidine catabolic activity producing non‐native 1,3‐diaminopropane in these species. We have also identified fusions of polyamine biosynthetic enzymes agmatine deiminase and N‐carbamoylputrescine amidohydrolase in archaea, and of S‐adenosylmethionine decarboxylase and ornithine decarboxylase in the single‐celled green alga Micromonas.  相似文献   

20.
An arginine decarboxylase has been isolated from a Pseudomonas species. The enzyme is constitutive and did not appear to be repressed by a variety of carbon sources. After an approximately 40-fold purification, the enzyme appeared more similar in its properties to the Escherichia coli biosynthetic arginine decarboxylase than to the E. coli inducible (biodegradative) enzyme. The Pseudomonas arginine decarboxylase exhibited a pH optimum of 8.1 and an absolute requirement of Mg2+ and pyridoxal phosphate, and was inhibited significantly at lower Mg2+ concentrations by the polyamines putrescine, spermidine, and cadaverine. The Km for L-arginine was about 0.25 mM at pH 8.1 AND 7.2. The enzyme was completely inhibited by p-chloromercuribenzoate. The inhibition was prevented by dithiothreitol, a feature that suggests the involvement of an -SH group. Of a variety of labeled amino acids tested, only L-arginine, but not D-arginine was decarboxylated. D-Arginine was a potent inhibitor of arginine decarboxylase with a Ki of 3.2 muM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号