首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
The dynamics of changes in total proteolytic activity and activities of various groups of proteases in the coleoptiles of 3- to 12-day-old wheat seedlings grown in light with and without antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) was studied. It was established that the specialized proteases that easily hydrolyze specific synthetic substrates and the enzymes actively hydrolyzing histone H1 dominate in young coleoptiles of 3- to 4-day-old seedlings. Proteases that degrade equally well the majority of the studied substrates are accumulated in the cells of old coleoptiles of 11- to 12-day-old seedlings. Under the effect of BHT, the plants grown in light (in comparison with etiolated seedlings) demonstrated a somewhat changed dynamics of proteolytic activity in young coleoptiles and the disappearance of proteases active toward histone H1. An inhibitory analysis revealed a relative domination of cysteine proteases in young coleoptiles at the initial development stage of seedlings, whereas the fraction of serine proteases markedly increased in old coleoptiles. We presume that the revealed quantitative and qualitative changes in the proteolytic apparatus of the coleoptile cells induced by BHT may be largely responsible for the retardant and geroprotective effect of this antioxidant in plants.  相似文献   

2.
Apoptosis was observed in the coleoptile and initial leaf in 5-8-day-old wheat seedlings grown under normal daylight. Apoptosis is an obligatory event in early wheat plant ontogenesis, and it is characterized by cytoplasmic structural reorganization and fragmentation, in particular, with the appearance in vacuoles of specific vesicles containing intact organelles, chromatin condensation and margination in the nucleus, and internucleosomal fragmentation of nuclear DNA. The earliest signs of programmed cell death (PCD) were observed in the cytoplasm, but the elements of apoptotic degradation in the nucleus appeared later. Nuclear DNA fragmentation was detected after chromatin condensation and the appearance in vacuoles of specific vesicles containing mitochondria. Two PCD varieties were observed in the initial leaf of 5-day-old seedlings grown under normal daylight: a proper apoptosis and vacuolar collapse. On the contrary, PCD in coleoptiles under various growing (light) conditions and in the initial leaf of etiolated seedlings is only a classical plant apoptosis. Therefore, various tissue-specific and light-dependent PCD forms do exist in plants. Amounts of O2*- and H2O2 evolved by seedlings grown under normal daylight are less than that evolved by etiolated seedlings. The amount of H2O2 formed in the presence of sodium salicylate or azide by seedlings grown under normal daylight was increased. Contrary to etiolated seedlings, the antioxidant BHT (ionol) did not inhibit O2*- formation and apoptosis and it had no influence on ontogenesis in the seedlings grown under normal daylight. Thus, in plants grown under the normal light regime the powerful system controlling the balance between formation and inactivation of reactive oxygen species (ROS) does exist and it effectively functions. This system is responsible for maintenance of cell homeostasis, and it regulates the crucial ROS level controlling plant growth and development. In etiolated plants, this system seems to be absent, or it is much less effective.  相似文献   

3.
It has been established that the DNA and H1 histone contents in aged coleoptile of 8-day-old etiolated wheat seedling are about 40 and 30%, respectively, lower than those in young seedlings. H1 histone in wheat seedlings is represented as six electrophoretically different subfractions. The ratios of H1 histone subfractions in wheat coleoptile and initial leaf are similar. In contrast to some animal cells, apoptosis in wheat coleoptile is not accompanied by changes in the set and ratios of H1 histone subfractions. Aging of coleoptiles is associated with a progressive diminution of the H1 histone and DNA contents. H1 histone/DNA ratio in aged coleoptile is 1.5-2-fold higher than that in the young organs. Therefore, the content of H1 histone in chromatin of coleoptile decreases with age more slowly than DNA content.  相似文献   

4.
It was established that total proteolytic activity in etiolated wheat seedlings changes in ontogenesis in cycles: peaks of proteolytic activity correspond to the 3rd, 5th, and 8th days of seedling growth, respectively. The maximum of proteolytic activity preceded the maximum of nuclease activity, which may be due to activation of nucleases by proteolytic enzymes. According to inhibitory analysis the cysteine and serine proteases play the main role in apoptosis in wheat coleoptiles. Growing of seedlings in the presence of ethrel stimulated apoptosis in the coleoptile, and it increased (almost 6-fold) the proteolytic activity in its cells. On the other hand, the antioxidant ionol (BHT) suppressed the induction of proteases, particularly at the second stage of coleoptile development, and it slowed down the increase in the nuclease activity after 6th day of the seedling life. It is suggested that phytohormones and antioxidants participate in regulation of apoptosis in the ageing coleoptile, directly or indirectly effecting the proteolytic apparatus in the coleoptile cells.  相似文献   

5.
Summary Ultrastructural surveys, carried out into an olive necrotic maize mutant (Neuffer E 283 B) grown under a 16 hours photoperiod, have shown remarkable morphological alterations in the plastids. Such alterations, affecting both the mesophyll and the bundle sheath plastids, appear to be photodependent. Quite normal etioplasts are present in dark-grown mutant seedlings. Moreover, light appears also to inhibit the overall growth of mutant plants. 12-day-old mutant plants grown under illumination are 4 cm in comparison with the 10 cm of the wild type, while corresponding dark-grown seedlings of both types are 12 cm high.Supported by a grant of C.N.R.  相似文献   

6.
C. Houssard  J. Escarré 《Oecologia》1991,86(2):236-242
Summary The effects of seed size on growth, biomass allocation and competitive ability of Rumex acetosella plants grown either individually or in competition were studied in two populations (6 months and 15 years old respectively) sampled from a postcultivation successional gradient. For plants grown individually there were highly significant effects of seed weight on growth after 43 days, with a higher relative growth rate (RGR) observed for plants raised from heavier seeds. However at the end of the experiment, seedlings developed from lighter seeds had a RGR 2 times greater than those from heavier seeds. Final biomass of the two types was not significantly different after 73 days of growth. When plants were grown individually, there were only slight differences between populations, but when grown in monocultures of 4 plants per pot, plants from the old population had higher root and leaf biomass per pot whereas those from the young population had a higher reproductive effort per pot. This suggests that a trade-off between allocation to sexual and vegetative reproduction occurs over successional time. In mixtures of light and heavy seeds, plants from light seeds were shorter, had fewer leaves and lower biomass than plants from heavy seeds, which were also taller and produced more dry matter than plants grown from heavy seeds in monoculture. The significant effects of seed weight and population on biomass parameters persisted unit the end of the experiment. Seedlings from heavy seeds were strong competitors: those from the young population grew better in the presence of neighbors than in monoculture and those from the late successional population suppressed the more the growth of their partners. Seedlings from light seeds were subordinate competitors. These results suggest that seedlings from seeds of different sizes benefit from contrasting ecological conditions and that selection acts on reproductive output along successional gradients.  相似文献   

7.
A soluble Ca(2+)-dependent protein kinase (CDPK) was isolated from seedlings of the short-day plant Pharbitis nil and purified to homogeneity. Activity of Pharbitis nil CDPK (PnCDPK) was strictly dependent on the presence of Ca(2+) (K(0,5)=4,9 microM). The enzyme was autophosphorylated on serine and threonine residues and phosphorylated a wide diversity of substrates only on serine residues. Histone III-S and syntide-2 were the best phosphate acceptors (K(m) for histone III-S=0,178 mg ml(-1)). Polyclonal antibodies directed to a regulatory region of the soybean CDPK recognized 54 and 62 kDa polypeptides from Pharbitis nil. However, only 54 kDa protein was able to catalyse autophosphorylation and phosphorylation of substrates in a Ca(2+)-dependent manner. CDPK autophosphorylation was high in 5-day-old Pharbitis nil seedlings grown under non-inductive continuous white light and was reduced to one-half of its original when plants were grown in the long inductive night. Also, the pattern of proteins phosphorylation has changed. After 16-h-long inductive night phosphorylation of endogenous target (specific band of 82 kDa) increased in the presence of calcium ions. It may suggest that Ca(2+)-dependent protein kinase is involved in this process and it is dependent on light/dark conditions.  相似文献   

8.
Coleoptiles of rice (Oryza sativa L.) show a spontaneous (automorphic) curvature toward the caryopsis under microgravity conditions. The possible involvement of the reorientation of cortical microtubules in automorphic curvature was studied in rice coleoptiles grown on a three-dimensional clinostat. When rice seedlings that had been grown in the normal gravitational field were transferred to the clinostat in the dark, cortical microtubules of epidermal cells in the dorsal side of the coleoptiles oriented more transversely than the ventral side within 0.5 h. The rotation on the clinostat also increased the cell wall extensibility in the dorsal side and decreased the extensibility in the ventral side, and induced automorphic curvature. The reorientation of cortical microtubules preceded the changes in the cell wall extensibility and the curvature. The irradiation of rice seedlings with white light from above inhibited microtubule reorientation and changes in the cell wall extensibility, as well as curvature of coleoptiles. Also, colchicine, applied to the bending region of coleoptiles, partially inhibited the automorphic curvature. These results suggest that reorientation of cortical microtubules is involved in causing automorphic curvature in rice coleoptiles on the clinostat.  相似文献   

9.
Bacterial growth rates on the rhizoplane of rape seedlings grown in sand were determined using 3H-thymidine incorporation into DNA. Axenic roots incorporated thymidine into DNA, which had to be subtracted from values for roots with associated bacteria. Thymidine incorporation into rhizoplane bacterial DNA ranged between 0.6 and 1.4 pmol thymidine h–1 root–1 for 6 to 26-day-old plants. Using a conversion factor, the turnover time of bacteria was calculated to decrease from 9.2 h for 6-day-old plants to 160h for 26-day-old plants. A similar value was found for rhizosphere bacteria of plants grown for 26 days in natural soil.  相似文献   

10.
Larval cuticle fromTrichoplusia ni, Helicoverpa (=Heliothis)zea, andHeliothis virescens and a cellulose substrate were used to quantify release of proteolytic, chitinolytic, and lipolytic enzymes by germinating conidia of the entomopathogenic fungus,Nomuraea rileyi. There was no significant difference in conidial viability incubated withT. ni, H. zea or cellulose substrates. Conidial viability onH. virescens cuticle, however, was significantly lower (ca. 19–25%) than the other three substrates. The presence of cuticle substrates, especially cuticle ofT. ni, stimulated germination. The nature of the substrate influenced both the time and quantity of the enzymes expressed. Specific proteases (aminopeptidase, chymoelastase, trypsin) generally were expressed earlier and/or in greater quantities on cuticular than on the cellulose substrate. Although both chitinolytic enzymes (endochitinase, N-acetylglucosaminidase) were detected on all three cuticular substrates, their activity was substantially lower than that of the proteolytic enzymes. Lipase activity was only minimally present. Early concurrent release of both proteases and chitinases suggested that both may be important in the penetration of the larval integument by germinating conidia ofN. rileyi. Expression of proteases and chitinases, especially aminopeptidase and endochitinase was probably a specific response to cuticle, because little or no activity was expressed on the non-host, cellulose substrate.This article reports the results of research only. Mention of a proprietary product in this paper does not constitute a recommendation for use by the US Department of Agriculture.  相似文献   

11.
C. Schäfer  U. Lüttge 《Oecologia》1986,71(1):127-132
Summary Measurements of gas exchange, xylem tension and nocturnal malate synthesis were conducted with well-watered and droughted plants of Kalanchoë uniflora. Corresponding results were obtained with plants grown in 9 h and 12 h photoperiods. In well-watered plants, 50 to 90% of total CO2-uptake occurred during the light period. Nocturnal CO2-uptake and malate synthesis were higher and respiration rate was lower in old leaves (leaf pairs 6 to 10) compared to young leaves (leaf pairs 1 to 5). Within four days of drought distinct physiological changes occurred. Gas exchange during the light period decreased and CO2-uptake during the dark period increased. Nocturnal malate synthesis significantly increased in young leaves.Respiration rate decreased during periods of drought, this decrease being more pronounced in young leaves compared to old leaves. Restriction of gas exchange during the light period resulted in a decrease of transpiration ratio from more than 100 to about 20. The difference between osmotic pressure and xylem tension decreased in young leaves, indicating a reduction in bulk leaf turgor-pressure.We conclude that both the CAM-enhancement in young leaves and the decrease of respiration rate are responsible for the increase of nocturnal CO2-uptake during water stress. During short drought periods, which frequently occur in humid habitats, the observed physiological changes result in a marked reduction of water loss while net CO2-uptake is maintained. This might be relevant for plant growth in the natural habitat.Abbreviations LP light period - DP dark period - CAM crassulacean acid metabolism  相似文献   

12.
13.
The majority of plant species lose their ability to tolerate severe water deficit after germination at the beginning of seedling growth, in the time of emergence of the radical from the seed. The experiment was designed to compare the differences in proteolytic response between 4-and 6-days old spring wheat (Triticum aestivum L.) seedlings of Eta cultivar, respectively tolerant and sensitive to severe drought inducing up to 90% water saturation deficit (WSD). In coleoptiles the changes of proteolytic activity had the same trend regardless on the seedlings age and increased about fourfold upon 85% WSD as compared to the control, from about 4 to 19 (U/mg protein h). The dehydration of roots of 4 day old seedlings resulted in sharp, fivefold activity increase at 85% WSD (from 11 to >50 U/mg protein h). In roots of 6 days old seedlings dehydrated to 55% WSD the proteolytic activity raised twofold and was about 2.5 times higher than in roots of 4 days old seedlings dehydrated to the same WSD. In coleoptiles of both the 4- and 6-days old seedlings subjected to drought appearance of new bands of serine proteinases was observed. Presented results indicate that roots are more sensitive to drought than coleoptiles, which brings an argument for breeders showing that programs involving roots phenotyping have a full biochemical rationale.  相似文献   

14.
The relationships between changes in irreversible and reversible organ length, turgor (P), osmotic pressure (pi), and metabolic activity of the cells were investigated in intact coleoptiles of rye seedlings ( Secale cereale L.) that were either grown in darkness or irradiated with continuous white light. Cessation of growth at day 4 after sowing was associated with an apparent mechanical stiffening of the cell walls. Turgor pressure was measured in epidermal and mesophyll cells with a miniaturized pressure probe. No gradient of turgor was found between the peripheral and internal cells. In juvenile (growing) coleoptiles, average turgor was 0.60 MPa and a negative water potential (P - pi) was established in these cells. Upon emergence of the primary leaf, turgor declined, but P was maintained at values of 0.43 and 0.52 MPa in 7-day-old light- and dark-grown coleoptiles, respectively. Water potential in non-growing cells approached zero. The rate of dark respiration and elongation growth were not correlated. Surgical removal of the mature coleoptile revealed that the erect position of the 7-day-old shoot was dependent on the presence of this sturdy, turgid organ sheath. It is concluded that, during the first week of seedling development, the pierced, metabolically active coleoptile fulfills an essential function as an elastic basal tube for the juvenile shoot.  相似文献   

15.
16.
Summary Plant regeneration in Kentucky bluegrass (Poa pratensis L. cv. Touchdown) via culture of seedling tissues was investigated. When coleoptile, leaf, and stem sections of dark-germinated seedlings were cultured on Murashige and Skoog (MS) medium, different types of callus were produced, depending on the expiant source and growth regulator combinations. Only compact-friable callus (type 3) and moderately compact, friable callus (type 2) produced shoots upon subculture. The nonstructured watery callus (type 4) produced roots without shoots. Shoot differentiation from callus tissues was highest when the culture medium contained 0.2 mgL–1 picloram + 0.01 mgL–1 -naphthaleneacetic acid (NAA). Calli grown from coleoptiles had higher shoot regeneration frequency (32%) than that obtained from either stem sections (12%) or young leaf tissues (2%) of the same seedlings. Some organogenic callus lines produced exclusively green plants, while others produced albino shoots or a mixture of green and albino shoots. The green plants were multiplied in a medium containing 0.1 mgL–1 BAP plus either 0.2 mgL–1 picloram or 0.1 mgL–1 indole-3-acetic acid (IAA). Over 90% of the cultures in the shoot proliferation medium produced roots in 4 weeks. The rooted plants were successfully established in soil medium and grown in the greenhouse.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige and Skoog (1962) medium - NAA -naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid - TDZ thidiazuron  相似文献   

17.
18.
Barley seedlings (Hordeum vulgare L. cv. Boone) were grown at 20°C with a 16h/8h light/dark cycle of either high (H) intensity (550 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) or low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod and a 3 cm apical segment removed for analysis. H control plants had greater chlorophyll (Chl) per leaf area and higher Chl a/b ratios than L controls. Analysis of Chl-protein complexes revealed that H and L plants had the same percentage of total Chl (62–65%) associated with Photosystem II (PS II), but that the organization of Chl within PS II was different. H plants contained lower levels of light-harvesting complex (LHC-II) and higher levels of the PS II complex CPa compared with L plants. Leaf Chl content and Chl organization within PS II were sensitive to changes in light intensity. In H L plants, leaf Chl content decreased, Chl a/b ratio decreased, and a redistribution of Chl from CPa to LHC-II occurred during acclimation to low light. Acclimation of L H plants to high light involved an increase in leaf Chl content, an increase in Chl a/b ratio, and a decrease in LHC-II. In contrast, the level of photosystem I related Chl-protein complexes (CP1 + CP1a) was similar in all light treatments. The light acclimation process occurred slowly over a period of 6 to 8 d in H L and L H plants.Abbreviations DMF dimethylformamide - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L control plants grown under low light intensity - L H plants transferred from low to high light intensity Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11989 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

19.
The effects of a high temperature (3 h, 40°C) and water deficit (45 h on 3% PEG 6000) on the pool of chlorophyllous pigments in the leaves of 4-, 7-, and 11-day-old barley (Hordeum vulgare L.) seedlings were studied. Heating resulted in a decrease in the total content of chlorophylls (Chl) (a + b) in 4-day-old plants but not in the older leaves. Water deficit induced an increase in the pigment content in young seedlings but reduced it in the leaves of 11-day-old plants. In young seedlings, hyperthermia and dehydration affected similarly Chl (a + b) degradation, leading to a marked inhibition of the chlorophyllase (Chlase) activity hydrolyzing Chl to chlorophyllides and phytol. In old leaves, an activation of this enzyme was observed. The stress factors under study affected different stages of pigment biosynthesis. High temperature inhibited the activity of dark and light stages of Chl(a + b) biosynthesis. Dehydration did not change markedly the resynthesis of protochlorophyllide, while the enzymes of the light stage of Chl biosynthesis were activated in young but inhibited in old barley leaves. The results thus obtained allowed us to conclude that heat treatment and dehydration specifically affected the Chl biosynthesis. At the same time, the Chlase response was nonspecific.  相似文献   

20.
Summary The effect of exogenous KNO3, the terminal acceptor of electrons in oxygen-free medium, on mitochondrial ultrastructure and on the growth rate of 4-day-old rice coleoptiles under strictly anoxic conditions was studied. Exogenous nitrate (10 mM) did not exert any significant effect on the growth rate of coleoptiles of intact seedlings compared to their growth in KNO3-free medium. Anaerobic incubation of detached coleoptiles in KNO3-free medium for 48 h resulted in the complete destruction of mitochondrial and other cell membranes. In the presence of KNO3, no mitochondrial-membrane destruction was observed even after 48 h anoxia although the mitochondrial ultrastructure was modifed. Cristae were arranged in parallel rows and elongated dumbbell-shaped mitochondria appeared in some cells. The data obtained indicate a protective role of exogenous nitrate as electron acceptors in oxygen-free medium. The results of the present investigation are discussed and compared with reports of either markedly damaging or favorable effects of exogenous nitrate on the growth, metabolism, and energetics of rice and other plants under hypoxic and anoxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号