首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Initial-rate studies were made of the oxidation of L-glutamate by NAD+ and NADP+ catalysed by highly purified preparations of dogfish liver glutamate dehydrogenase. With NAD+ as coenzyme the kinetics show the same features of coenzyme activation as seen with the bovine liver enzyme [Engel & Dalziel (1969) Biochem. J. 115, 621--631]. With NADP+ as coenzyme, initial rates are much slower than with NAD+, and Lineweaver--Burk plots are linear over extended ranges of substrate and coenzyme concentration. Stopped-flow studies with NADP+ as coenzyme give no evidence for the accumulation of significant concentrations of NADPH-containing complexes with the enzyme in the steady state. Protection studies against inactivation by pyridoxal 5'-phosphate indicate that NAD+ and NADP+ give the same degree of protection in the presence of sodium glutarate. The results are used to deduce information about the mechanism of glutamate oxidation by the enzyme. Initial-rate studies of the reductive amination of 2-oxoglutarate by NADH and NADPH catalysed by dogfish liver glutamate dehydrogenase showed that the kinetic features of the reaction are very similar with both coenzymes, but reactions with NADH are much faster. The data show that a number of possible mechanisms for the reaction may be discarded, including the compulsory mechanism (previously proposed for the enzyme) in which the sequence of binding is NAD(P)H, NH4+ and 2-oxoglutarate. The kinetic data suggest either a rapid-equilibrium random mechanism or the compulsory mechanism with the binding sequence NH4+, NAD(P)H, 2-oxoglutarate. However, binding studies and protection studies indicate that coenzyme and 2-oxoglutarate do bind to the free enzyme.  相似文献   

2.
1. Mouse C4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.7 and 25 degrees C loses activity gradually; 1mM-pyridoxal 5'-phosphate causes 83% inactivation, and higher concentrations of the reagent cause no further loss of activity. 2. The final extent of inactivation is very pH-dependent, greater inactivation occurring at the high pH values. 3. Inactivation may be fully reversed by addition of cysteine, or made permanent by reducing the enzyme with NaBH4. 4. The absorption spectrum of inactivated reduced enzyme indicates modification of lysine residues. Inactivation by 80% corresponds to modification of at least 1.8 mol of lysine/mol of enzyme subunit. 5. There is no loss of free thiol groups after inactivation with pyridoxal 5'-phosphate and reduction of the enzyme. 6. NAD+ or NADH gives complete protection against inactivation. protection studies with coenzyme fragments indicate that the AMP moiety is largely responsible for the protective effect. Lactate (10 mM) gives no protection in the absence of added nucleotides, but greatly enhances the protection given by ADP-ribose (1 mM). Thus ADP-ribose is able to trigger the binding of lactate. 7. Pyridoxal 5'-phosphate also acts as a non-covalent inhibitor of mouse C4 lactate dehydrogenase. The inhibition is non-competitive with respect to both NAD+ and lactate. 8. Km values for the enzyme at pH 8.0 and 25 degrees C, with the non-varied substrate saturating, are 0.3 mM-lactate and 5 microM-NAD+. 9. These results are discussed and compared with pyridoxal 5'-phosphate modification of other lactate dehydrogenase isoenzymes and related dehydrogenases.  相似文献   

3.
The effect of pyridoxal 5'-phosphate on the activity of ox liver glutamate dehydrogenase towards different amino acid substrates was investigated. Both alanine and glutamate activities decreased steadily in the presence of pyridoxal 5'-phosphate. The alanine/glutamate activity ratio increased as a function of inactivation by pyridoxal 5'-phosphate, indicating that glutamate activity is lost more rapidly than alanine activity. A mixture of NADH, GTP and 2-oxoglutarate completely protected the alanine and glutamate activities against inactivation by pyridoxal 5'-phosphate. The activity of glutamate dehydrogenase towards glutamate and leucine decreased steadily in a constant ratio in the presence of pyridoxal 5'-phosphate. The effect of leucine on the alanine and glutamate activities as a function of inactivation by pyridoxal 5'-phosphate was studied. The results are interpreted to suggest that the subunits of glutamate dehydrogenase hexamer are kinetically non-equivalent with regard to activity towards the two monocarboxylic amino acids as well as glutamate, and that all three substrates share the same active centre. However, leucine is also able to bind at a separate regulatory site.  相似文献   

4.
1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10 degrees C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.  相似文献   

5.
Essential Active-Site Lysine of Brain Glutamate Dehydrogenase Isoproteins   总被引:1,自引:1,他引:0  
Abstract: Two soluble forms of bovine brain glutamate dehydrogenase (GDH) isoproteins were inactivated by pyridoxal 5'-phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through Schiff's base formation with amino groups of the enzyme. Sodium borohydride reduction of the pyridoxal 5'-phosphate-inactivated GDH isoproteins produced a stable pyridoxyl enzyme derivative that could not be reactivated by dialysis. The pyridoxyl enzyme was studied through fluorescence spectroscopy. No substrates or coenzymes separately gave complete protection against pyridoxal 5'-phosphate. A combination of 10 m M 2-oxoglutarate with 2 m M NADH, however, gave complete protection against the inactivation. Tryptic peptides of the isoproteins, modified with and without protection, resulted in a selective modification of one lysine. In both GDH isoproteins, the sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other GDH species.  相似文献   

6.
It has been suggested that reactive lysine residue(s) may play an important role in the catalytic activities of glutamate dehydrogenase (GDH). There are, however, conflicting views as to whether the lysine residues are involved in Schiff's base formation with catalytic intermediates, stabilization of negatively charged groups or the carbonyl group of 2-oxoglutarate during catalysis, or some other function. We have expanded on these speculations by constructing a series of cassette mutations at Lys130, a residue that has been speculated to be responsible for the activity of GDH and the inactivation of GDH by pyridoxal 5'-phosphate (PLP). For these studies, a 1557-bp gene that encodes human GDH has been synthesized and inserted into Escherichia coli expression vectors. The mutant enzymes containing Glu, Gly, Met, Ser, or Tyr at position 130, as well as the wild-type human GDH encoded by the synthetic gene, were efficiently expressed as a soluble protein and are indistinguishable from that isolated from human and bovine tissues. Despite an approximately 400-fold decrease in the respective apparent Vmax of the Lys130 mutant enzymes, apparent Km values for NADH and 2-oxoglutarate were almost unchanged, suggesting the direct involvement of Lys130 in catalysis rather than in the binding of coenzyme or substrate. Unlike the wild-type GDH, the mutant enzymes were unable to interact with PLP, indicating that Lys130 plays an important role in PLP binding. The results with analogs of PLP suggest that the aldehyde moiety of PLP, but not the phosphate moiety, is required for efficient binding to GDH.  相似文献   

7.
Reaction of phenylglyoxal with glutamate dehydrogenase (EC 1.4.1.4), but not with glutamate synthase (EC 2.6.1.53), from Bacillus megaterium resulted in complete loss of enzyme activity. NADPH alone or together with 2-oxoglutarate provided substantial protection from inactivation by phenylglyoxal. Some 2mol of [14C]Phenylglyoxal was incorporated/mol of subunit of glutamate dehydrogenase. Addition of 1mM-NADPH decreased incorporation by 0.7mol. The Ki for phenylglyoxal was 6.7mM and Ks for competition with NADPH was 0.5mM. Complete inactivation of glutamate dehydrogenase by butane-2,3-dione was estimated by extrapolation to result from the loss of 3 of the 19 arginine residues/subunit. NADPH, but not NADH, provided almost complete protection against inactivation. Butane-2,3-dione had only a slight inactivating effect on glutamate synthase. The data suggest that an essential arginine residue may be involved in the binding of NADPH to glutamate dehydrogenase. The enzymes were inactivated by pyridoxal 5'-phosphate and this inactivation increased 3--4-fold in the borate buffer. NADPH completely prevented inactivation by pyridoxal 5'-phosphate.  相似文献   

8.
P F Guidinger  T Nowak 《Biochemistry》1991,30(36):8851-8861
The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 +/- 0.025 M-1 min-1. Inactivation by pyridoxal 5'-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7700 +/- 860 M-1 min-1. A second-order rate constant of inactivation for the irreversible reaction catalyzed by the enzyme is 1434 +/- 110 M-1 min-1. Treatment of the enzyme with pyridoxal 5'-phosphate gives incorporation of 1 mol of pyridoxal 5'-phosphate per mole of enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of kobs vs pH suggests this active-site lysine has a pKa of 8.1 and a pH-independent rate constant of inactivation of 47,700 M-1 min-1. The phosphate-containing substrates IDP, ITP, and phosphoenolpyruvate offer almost complete protection against inactivation by pyridoxal 5'-phosphate. Modified, inactive enzyme exhibits little change in Mn2+ binding as shown by EPR. Proton relaxation rate measurements suggest that pyridoxal 5'-phosphate modification alters binding of the phosphate-containing substrates. 31P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme.Mn2+.substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5'-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.  相似文献   

9.
1. Pig heart mitochondrial malate dehydrogenase incubated with pyridoxal 5'-phosphate at pH 8.0 and 25 degrees C gradually loses activity. Such inactivation can be largely reversed by dialysis or by addition of L-lysine or L-cysteine, and can be made permanent by NaBH4 reduction. 2. Modification of malate dehydrogenase with pyridoxal 5'-phosphate at 35 degrees C involves two phases, an initial inactivation which is reversible and a slower irreversible second stage. 3. The initial reaction between pyridoxal 5'-phosphate and malate dehydrogenase appears to involve reversible formation of a Schiff base with the epsilon-amino group of a lysine residue. 4. Inactivation of malate dehydrogenase by pyridoxal 5'-phosphate at 10 degrees C involves only the reversible reaction. 5. At 10 degrees C repeated cycles of treatment with pyridoxal 5'-phosphate and NaBH4 reduction lead to a stepwise decline in residual activity. 6. Apparent Km values for malate and NAD+ are unaltered in the partially inactivated enzyme. 7. NAD+ and NADH give only partial protection against pyridoxal 5'-phosphate inactivation. Substrates give no effect.  相似文献   

10.
The NCI-H69 cell alpha 1----3fucosyltransferase has been purified from a 0.2% Triton X-100R solubilized enzyme fraction by GDP-hexanolamine-Sepharose affinity chromatography and Superose 12 gel filtration. Photoaffinity labeling experiments with 125I-GDP-hexanolaminyl-4-azidosalicylic acid present in concentrations equivalent to 0.5 and 1 times Ki of the inhibitor for the enzyme indicated that labeling of the 45-kDa protein band could be inhibited by addition of 400 microM GDP-fucose but was not effected by similar concentrations of either GDP-mannose or GDP-glucose. The purified enzyme was applied to studies intended to define catalytically essential amino acid residues of the protein. Incubation of the enzyme in the presence of increasing concentrations of pyridoxal 5'-phosphate was found to result in irreversible inactivation of the enzyme after NaBH4 reduction. The donor substrate, GDP-fucose, was found to protect the enzyme from inactivation. Little or no protection was found for either GDP-mannose or the acceptor substrate nLc4. Pyridoxal 5'-phosphate was shown to behave as a competitive inhibitor with respect to GDP-fucose with a Ki of 105 microM. Labeling with 3H-pyridoxal 5'-phosphate resulted in the incorporation of approximately 8 mol pyridoxal 5'-phosphate per mole subunit. Parallel experiments containing GDP-fucose indicated protection of one site per subunit correlated with GDP-fucose binding. Acid hydrolysis and chromatographic analysis of the 3H-pyridoxylated protein indicated greater than 95% of the 3H label was recovered as pyridoxyl-lysine irrespective of whether GDP-fucose was present or not during labeling. These studies indicate the presence of a catalytically essential lysine residue associated with GDP-fucose binding to this enzyme. This information will be of value in further studies of this and other alpha 1----3fucosyltransferases and may suggest a practical basis for modulation of enzyme activity in the cell.  相似文献   

11.
Treatment of homogeneous preparations of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli, a pyridoxal 5'-phosphate-dependent enzyme, with phenylglyoxal, 4-(oxyacetyl)phenoxyacetic acid, 2,3-butanedione, or 1,2-cyclohexanedione results in a time- and concentration-dependent loss of enzymatic activity. Phenylglyoxal in 50 mM phosphate buffer (pH 7.0) is the most effective modifier, causing > 95% inactivation within 20 min at 25 degrees C. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced nonspecific alteration of the ligase. The substrate, acetyl CoA, or the coenzyme, pyridoxal 5'-phosphate, gives > 50% protection against inactivation. Enzyme partially inactivated by phenylglyoxal has the same Km value for glycine but the Vmax decreases in proportion to the observed level of inactivation. Whereas the native apoligase shows good recovery of activity with time in parallel with an increase in 428-nm absorptivity when incubated with pyridoxal 5'-phosphate, no such effects are seen with the phenylglyoxal-modified apoligase. Reaction of the enzyme with [14C]phenylglyoxal allowed for the isolation of a peptide which, by amino acid composition and sequencing data, was found to correspond to residues 349-378 in the intact enzyme. These results indicate that arginine residue-366 and/or residue-368 in the primary structure of E. coli 2-amino-3-ketobutyrate ligase is at the active site.  相似文献   

12.
1. Pig M4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.5 and 25 degrees C loses activity gradually. The maximum inactivation was 66%, and this did not increase with concentrations of pyridoxal 5'-phosphate above 1 mM. 2. Inactivation may be reversed by dialysis or made permanent by reducing the enzyme with NaBH4. 3. Spectral evidence indicates modification of lysine residues, and 6-N-pyridoxyl-lysine is present in the hydrolsate of inactivated, reduced enzyme. 4. A second cycle of treatment with pyridoxal 5'-phosphate and NaBH4 further decreases activity. After three cycles only 9% of the original activity remains. 5. Apparent Km values for lactate and NAD+ are unaltered in the partially inactivated enzyme. 6. These results suggest that the covalently modified enzyme is inactive; failure to achieve complete inactivation in a single treatment is due to the reversibility of Schiff-base formation and to the consequent presence of active non-covalently bonded enzyme-modifier complex in the equilibrium mixture. 7. Although several lysine residues per subunit are modified, only one appears to be essential for activity: pyruvate and NAD+ together (both 5mM) completely protect against inactivation, and there is a one-to-one relationship between enzyme protection and decreased lysine modification. 8. NAD+ or NADH alone gives only partial protection. Substrates give virtually none. 9. Pig H4 lactate dehydrogenase is also inactivated by pyridoxal 5'-phosphate. 10. The possible role of the essential lysine residue is discussed.  相似文献   

13.
1. Phospholipase C was inactivated by exposure to the three amino-group reagents, ethyl acetamidate, 2,4,6-trinitrobenzensulphonic acid and pyridoxal 5'-phosphate plus reduction. 2. Inactivation by pyridoxal 5'-phosphate showed the characteristics of Schiff's base formation with the enzyme. The pyridoxal 5'-phosphate-treated enzyme after reduction had an absorbance maximum at 325 mm and 6-N-pyridoxyl-lysine was the only fluorescent component after acid hydrolysis. 3. For complete inactivation, 2 mol of pyridoxal 5'-phosphate or 7 mol of 2,4,6-trinitrophenyl were incorporated/mol of enzyme. 4. The two apparently essential lysine residues were much more reactive to pyridoxal 5'-phosphate than the other 19 lysine residues in the enzyme. 5. Binding of phospholipase C to a substrate-based affinity gel caused marked protection against inactivation by pyridoxal 5'-phosphate. For complete inactivation of the gel-bound enzyme, 5 mol of pyridoxal 5'-phosphate were incorporated/mol of enzyme and there was no evidence of two especially reactive lysine residues. 6. On application of pyridoxal 5'-phosphate-treated enzyme (remaining activity 30% of original) to a column of the affinity gel, some material bound and some did not. The latter contained very little enzyme activity and was heavily incorporated with reagent (9.06 mol/mol of enzyme). The former had a specific activity of 34% of that of the control and contained 1.29 mol of reagent/mol of enzyme. 7. Thus phospholipase C appears to contain two lysine residues that are essential for enzyme activity, but probably not for substrate binding.  相似文献   

14.
Pyridoxal 5'-phosphate and other aromatic aldehydes inactivate rhodanese. The inactivation reaches higher extents if the enzyme is in the sulfur-free form. The identification of the reactive residue as an amino group has been made by spectrophotometric determination of the 5'-phosphorylated pyridoxyl derivative of the enzyme. The inactivation increases with pyridoxal 5'-phosphate concentration and can be partially removed by adding thiosulfate or valine. Prolonged dialysis against phosphate buffer also leads to the enzyme reactivation. The absorption spectra of the pyridoxal phosphate - rhodanese complex show a peak at 410 nm related to the Schiff base and a shoulder in the 330 nm region which is probably due to the reaction between pyridoxal 5'-phosphate and both the amino and thiol groups of the enzyme that appear reasonably close to each other. The relationship betweenloss of activity and pyridoxal 5'-phosphate binding to the enzyme shows that complete inactivation is achieved when four lysyl residues are linked to pyridoxal 5'-phosphate.  相似文献   

15.
Chemical modification of arginine and lysine residues of bovine heart 2-oxoglutarate dehydrogenase with phenylglyoxal and pyridoxal 5'-phosphate inactivated the enzyme, indicating the importance of these residues for the catalysis. Inactivation caused by pyridoxal 5'-phosphate was prevented in the presence of thiamine pyrophosphate and Mg2+ allowing the assumption that lysine residues participate in binding of the cofactor.  相似文献   

16.
In aspartate aminotransferase (AspAT), His143 is located within a hydrogen-bonding distance to Asp222 that forms a strong ion pair with the ring nitrogen of the coenzyme, pyridoxal 5'-phosphate (PLP) or pyridoxamine 5'-phosphate (PMP). His143 of Escherichia coli AspAT was replaced by Ala or Asn. The mutant enzyme H143A showed a slight increase in the maximum velocity of the overall transamination reaction between aspartate and 2-oxoglutarate, while H143N AspAT showed a decrease to 60% in the maximum rate of the overall reactions in both directions. In all of the half-transamination reactions with four substrates, aspartate, glutamate, oxalacetate, and 2-oxoglutarate, the catalytic competence as defined by kmax/Kd decreased by 3-18-fold upon replacing His143 by either Ala or Asn. The extent of the decrease varied from one substrate to another; it was largely contributed to by the decrease in affinities for all substrates. The equilibrium constants, [PMP-form] [keto acid]/[( PLP-form] [amino acid]), decreased by over 10-fold upon the mutations at position 143. Both H143A and H143N AspATs exhibited a considerably decreased affinity for 2-methylaspartate, an external-aldimine-forming substrate analogue, yet without appreciable alteration in the affinity for succinate and glutarate, which are non-aldimine-forming analogues. All these findings suggest that, although His143 is not essential for catalysis, it might assist the formation of enzyme-substrate complex.  相似文献   

17.
Pyridoxal 5'-phosphate rapidly abolished the DNA-hydrolyzing activities as well as DNA-dependent ATP-ase activity of the recBC enzyme of Escherichia coli. Pyridoxal also had an inhibitory effect on the enzyme but less effective than that of pyridoxal 5'-phosphate. Pyridoxamine 5'-phosphate, pyridoxamine, or pyridoxine had no effect on the activities of the enzyme. The inhibition was rapidly reversed by dilution but could be made irreversible by reduction with sodium borohydride prior to dilution. This suggests the formation of Schiff base between pyridoxal 5'-phosphate and an epsilon-amino group of a lysine residue which is essential for the enzyme activity. Pyridoxal 5'-phosphate is a competitive inhibitor of DNA substrate but not of ATP. Furthermore, the presence of DNA substrate protected the enzyme from inactivation by the reduction but the presence of ATP showed no effect. Thus, the recBC enzyme appears to have an essential lysine residue at or near the DNA binding site of the enzyme, and the enzyme possesses two independent catalytic sites, such as a DNA binding site and an ATP binding site.  相似文献   

18.
The stereochemistry for hydrogen removal from pyridoxamine 5'-phosphate with liver pyridoxine (pyridoxamine)-5'-phosphate oxidase was examined to determine whether or not there are significant steric constraints at the substrate region of the active site of the oxidase. For this, pyridoxal 5'-phosphate was reduced with tritium-labeled sodium borohydride in ammoniacal solution to yield racemically labeled [4',4'-3H]pyridoxamine 5'-phosphate which was then chemically or enzymatically oxidized to [4'-3H]pyridoxal 5'-phosphate. This latter was used as coenzyme with either L-aspartate (L-glutamate) aminotransferase and L-glutamate or L-glutamate decarboxylase and alpha-methyl-DL-glutamate to generate [4'-3H]pyridoxamine 5'-phosphate known to be labeled in the R-position. Reaction of the oxidase with the pro-R as well as the pro-R,S-labeled substrates followed by isolation of [4'-3H]pyridoxal 5'-phosphate and 3H2O revealed only half the radioactivity was abstracted from the original substrate in either case. Hence, the oxidase is not stereospecific and equally well catalyzes removal of either pro-R or pro-S hydrogen from the 4-methylene of pyridoxamine 5'-phosphate.  相似文献   

19.
The active site(s) of the bifunctional regulatory protein of pyruvate,orthophosphate dikinase catalyze(s) the Pi-dependent activation (dephosphorylation) and ADP-dependent inactivation (phosphorylation) of maize leaf dikinase. The chemical modification studies of the regulatory protein active sites presented in this paper are interpreted as showing the two sites to be physically distinct. Pyridoxal 5'-phosphate and 2-nitro-5-thiocyanatobenzoate (NTCB) selectively inhibit the dikinase activating site, which is protected by the nonprotein substrate, Pi. Phenylglyoxal blocks both the activation and inactivation sites; the former is protected selectively by Pi and the latter by both the nonprotein substrate, ADP, and Pi. The Pi that protects the inactivation site is distinct from the activation substrate. Inhibition studies show Pi to be a parabolic competitive inhibitor of the ADP-dependent inactivation of dikinase, implying that besides substrate Pi, a second phosphate also binds to the regulatory protein. The above chemical modifications are not mutually exclusive; neither NTCB, 5,5'-dithiobis-(2-nitrobenzoate), nor pyridoxal 5'-phosphate blocks subsequent modification of the activation site by phenylglyoxal. Similarly, prior modification with NTCB does not affect modification by pyridoxal 5'-phosphate.  相似文献   

20.
The reversible inactivation of porcine heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate yields an irreversible modification upon sodium borohydride reduction. A 200-fold molar excess of pyridoxal-5'-P over enzyme results in inactivation to the extent of 54%, and incorporation of 5.7 mol of inactivator per mol of enzyme. The same inactivation carried out in the presence of 80 mM coenzyme, NADH, produces malate dehydrogenase which is approximately 94% active and contains 4.6 mol of pyridoxal-5'-P per mol of enzyme. The incorporation difference between inactivated and protected samples suggests, for total inactivation, the modification of 2 residues per mol of enzyme (i.e. 1 residue per subunit, or 1 per enzymatic active site). This specificity was confirmed by the isolation of a single pyridoxyl-5'-P-labeled "difference peptide" obtained by comparison of the Dowex 1-X2 elution profiles of tryptic digests of protected and inactivated samples, respectively. Amino acid analysis of the peptide demonstrated the presence of N6-pyridoxyl-L-lysine (Lys(Pyx)), establishing the existence of an essential lysing residue in the active center of malate dehydrogenase. The amino acid sequence of the active center hexapeptide has been determined to be: H2NLys(Pyx)Pro-Gly-Met-Thr-Arg-COOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号