首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein–protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.  相似文献   

2.
烟草4CL蛋白免疫荧光定位研究   总被引:1,自引:0,他引:1  
4-香豆酸辅酶A连接酶(4CL)是维管植物木质素生物合成途径的关键酶,应用原核表达系统获得了毛白杨可溶性4CL1融合蛋白,以Ni2 -Agrose亲和柱层析纯化得到的SDS-PAGE电泳纯的毛白杨4CL1融合蛋白为抗原,免疫家兔获得毛白杨4CL1多克隆抗体,Western blotting鉴定表明兔抗毛白杨4CL1多克隆抗体具有高度特异性,免疫荧光定位发现普通烟草4CL1蛋白特异性地在木质部表达.为进一步应用木质部特异表达启动子定向调控木质素生物合成奠定了理论基础.  相似文献   

3.
Abstract The 4‐coumarate:coenzyme A ligase (4CL) is the branch point enzyme that channels the general phenylpropanoid metabolism into specific lignin and flavonoid biosynthesis branches. Genetic engineering experiments on the 4CL gene have been carried out in many species, but the precise functions of different gene members are still unresolved. To investigate the evolutionary relationships and functional differentiation of the 4CL gene family, we made a comprehensive evolutionary analysis of this gene family from 27 species representing the major lineages of land plants. The phylogenetic analysis indicates that both vascular and seed plant 4CL genes form monophyletic groups, and that three and two 4CL classes can be recognized in gymnosperms and angiosperms, respectively. The evolutionary rate and frequency of duplication of the 4CL gene family are much more conserved than that of the CAD/SAD (cinnamyl/sinapyl alcohol dehydrogenase) gene family, which catalyzes the last step in monolignol biosynthesis. This may be due to different selective pressures on these genes whose products catalyze different steps in the biosynthesis pathway. In addition, we found two new major classes of 4CL genes in gymnosperms.  相似文献   

4.
Reducing the lignin content of trees could provide both economic and environmental benefits. To this end, the coumarate:coenzyme A ligase 1 gene (4CL1) was isolated from Pinus massoniana Lamb (Pm4CL1). The sequence of the full-length Pm4CL1 cDNA (accession no. FJ810495) contained an entire open reading frame (ORF) of 1,614 bp, which encoded a polypeptide of 537 amino acid residues. Tobacco (Nicotiana tabacum L.) as a model plant was used for functional characterization of the Pm4CL1 gene in transgenic plants. Results revealed that 4CL1 enzyme activity and lignin content in most antisense Pm4CL1 transgenic tobacco lines were decreased as compared to wild-type; the average 4CL1 enzyme activity was decreased by 48.75% and lignin content was decreased by 24.5%. In contrast, in the sense Pm4CL1 transgenic tobacco lines, average 4CL1 enzyme activity was increased by 72.3% and lignin content was increased by 27.6%. These results suggest that the Pm4CL1 gene from P. massoniana could be applied to regulate lignin biosynthesis in transgenic trees.  相似文献   

5.
Lignin, a major constituent of plant call wall, is a phenolic heteropolymer. It plays a major role in the development of plants and their defense mechanism against pathogens. Therefore Lignin biosynthesis is one of the critical metabolic pathways. In lignin biosynthesis, the Cinnamoyl CoA reductase is a key enzyme which catalyzes the first step in the pathway. Cinnamoyl CoA reductase provides the substrates which represent the main transitional molecules of lignin biosynthesis pathway, exhibits a high in vitro kinetic preference for feruloyl CoA. In present study, the three-dimensional model of cinnamoyl CoA reductase was constructed based on the crystal structure of Grape Dihydroflavonol 4-Reductase. Furthermore, the docking studies were performed to understand the substrate interactions to the active site of CCR. It showed that residues ARG51, ASN52, ASP54 and ASN58 were involved in substrate binding. We also suggest that residue ARG51 in CCR is the determinant residue in competitive inhibition of other substrates. This structural and docking information have prospective implications to understand the mechanism of CCR enzymatic reaction with feruloyl CoA, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.  相似文献   

6.
4-Coumarate : coenzyme A Ilgase (4CL) Is one of the key enzymes In phenylpropanoid metabolism leading to series of phenollcs, Including water-soluble phenolic acids, which are important compounds determining the medicinal quality of Danshen (Salvia miltiorrhiza Bunge), a traditional Chinese medicinal herb. To Investigate the function of 4CL in the biosynthesis of water-soluble phenolic acid in Danshen, we have cloned two cDNAs (Sm4CL1 and Sm4CL2) encoding divergent 4CL members by applying nested reverse transcrlptlon-polymerase chain reaction (RT-PCR) with degenerate primers followed by 5′/3′rapid amplification of cDNA ends (RACE) (Note, these sequence data have been submitted to the GenBank database under accession numbers AY237163 and AY237164). Either of the coding regions was inserted into a pRSET vector and a kinetic assay was performed with purified recombinant proteins. The substrate utilization profile of Sm4CL1 was distinct from that of Sm4CL2. The Km values of Sm4CL1 and Sm4CL2 to 4-coumarlc acid were (72.20±4.10) and (6.50±1.45) μmol/L, respectively. These results, In conjunction with Northern blotting and other information, imply that Sm4CL2 may play an Important role in the biosynthesis of watersoluble phenolic compounds, whereas Sm4CL1 may play a minor role in the pathway. Southern blotting analysis suggested that both Sm4CL1 and Sm4CL2 genes are present as a single copy and are located at different sites In the genome.  相似文献   

7.
4-Coumarate:CoA ligase (4CL) is a key enzyme in the phenylpropanoid synthesis pathway. The Pto4CL2 promoter was cloned from Populus tomentosa Carr. and fused to the reporter gene encoding β-glucuronidase (GUS); the complex expression patterns directed by the Pto4CL2 promoter were then characterized in Nicotiana tabacum Xanthi by histochemical assays. The promoter 5′-deletion and histochemical assay conducted on transformants indicated that the ?317 to ?292 nt region supports Pto4CL2 expression in the epidermis and petals and the deletion of the ?266 to ?252 nt region resulted in the loss of tissue specificity and a dramatic reduction in GUS activity. Furthermore, electrophoretic mobility shift assays testified that an adenine and cytosine-rich element (?264 to ?255 nt) and an abscisic acid-responsive element (?242 to ?235 nt) in the Pto4CL2 promoter would have functions for the complex expression profiling and efficient basal expression, respectively. These results further clarify the mode of the regulatory expression of class II 4CL promoters in higher plants.  相似文献   

8.
4-Coumarate:coenzyme A ligase (4CL) catalyzes the conversion of hydroxycinnamates into corresponding CoA esters for biosynthesis of flavonoids and lignin. In this study, five members of the 4CL gene family from rice were cloned and analyzed. Recombinant 4CL data revealed that 4-coumaric acid and ferulic acid were the two main substrates of 4CL (Os4CL1/3/4/5) for monolignol biosynthesis in rice. Os4CL2 was specifically expressed in the anther and was strongly activated by UV irradiation, suggesting its potential involvement in flavonoid formation. Moreover, bioinformatics analysis showed that the existence of valine residue at the substrate-binding pocket may mainly affect rice 4CL activities toward sinapic acid.  相似文献   

9.
In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome‐wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.  相似文献   

10.
为探究华南象草(Pennisetum purpureumcv.Huanan)木质素合成关键酶基因的调控机制,通过同源克隆得到华南象草4-香豆酸:CoA连接酶基因(Pp4CL)的cDNA序列,长度为1 943bp,其中编码区序列1 662bp。Pp4CL蛋白由553个氨基酸组成,分子量为59.57kD,等电点为5.2,属于疏水性蛋白。该蛋白含有AMP结合结构域,属于AFD ClassⅠ超家族。在系统进化分析中,Pp4CL与At4CL1、Os4CL1遗传距离最近,聚为一支。Pp4CL氨基酸序列具有SSGTGLPKGV和GEICIRG等2个保守基序,是典型的植物4CL。构建原核表达载体pGEX-4CL,得到约88kD的Pp4CL-GST融合蛋白,为Pp4CL酶活性测定及Western免疫印迹分析奠定了基础。同时构建植物表达载体pBA-4CL,并通过叶盘法对烟草进行了遗传转化,得到3个转基因阳性株系(OX-9、OX-7、OX-4),它们中叶柄木质素总含量分别比非转基因植株(对照)提高了10.0%、16.2%和94.6%,茎秆基部节木质素总含量分别比对照提高了0.9%、4.0%和13.5%。研究结果表明,Pp4CL蛋白与木质素合成有关,过表达Pp4CL基因能够显著提高植株木质素含量。该研究结果为华南象草木质素改良工作打下了基础,同时也为深入开展牧草分子育种提供了依据。  相似文献   

11.
Lu H  Zhao YL  Jiang XN 《Biotechnology letters》2004,26(14):1147-1152
The ability of 4-coumarate:coenzyme A ligase promoter from Populus tomentosa (Pto4CL1p) to drive expression of the GUS reporter gene and 4-coumarate:coenzyme A ligase gene in tobacco has been studied using transgenic plants produced by Agrobacterium-mediated transformation. Intense GUS histochemical staining was detected in the xylem of stem in transgenic tobacco plants carrying the 1140 bp Pto4CL1p promoter. To further investigate the regulation function of the tissue-specific expression promoter, Pto4CL1p, a binary vector containing Pto4CL1p promoter fused with 4CL1 gene was transferred into tobacco. The activity of the 4CL1 enzyme doubled in the stems of transgenic tobacco but did not increase in the leaves. The content of lignin was increased 25% in the stem but there was no increase in the leaves of transgenic tobacco.  相似文献   

12.
An Arabidopsis cDNA clone encoding 4-coumarate:CoA ligase (4CL), a key enzyme of phenylpropanoid metabolism, was identified and sequenced. The predicted amino acid sequence is similar to those of other cloned 4CL genes. Southern blot analysis indicated that 4CL is single-copy gene in Arabidopsis. Northern blots showed that 4CL expression was activated early during seedling development. The onset of 4CL expression was correlated with the onset of lignin deposition in cotyledons and roots 2–3 days after germination. The timing of the expression of a parsley 4CL1-GUS fusion in transgenic Arabidopsis seedlings was examined in parallel and was very similar to that of endogenous 4CL. In mature plants, highest 4CL expression was observed in bolting stems, where relatively large amounts of lignin accumulate. Both 4CL and 4CL1-GUS mRNA accumulation was strongly and transiently activated by wounding of mature Arabidopsis leaves. 4CL expression was specifically activated within 6 h after infiltration of Arabidopsis ecotype Columbia leaves with a Pseudomonas syringae pv. maculicola strain harboring the bacterial avirulence gene avrB, which causes in incompatible interaction. The timing of 4CL activation was identical to the previously observed activation of PAL gene expression in this interaction. No activation of 4CL expression was observed in a compatible interaction caused by a Pseudomonas syringae pv. maculicola strain without avrB.  相似文献   

13.
14.
Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5?% along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52–76?% improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.  相似文献   

15.
16.
Mutations in the brown midrib4 (bm4) gene affect the accumulation and composition of lignin in maize. Fine‐mapping analysis of bm4 narrowed the candidate region to an approximately 105 kb interval on chromosome 9 containing six genes. Only one of these six genes, GRMZM2G393334, showed decreased expression in mutants. At least four of 10 Mu‐induced bm4 mutant alleles contain a Mu insertion in the GRMZM2G393334 gene. Based on these results, we concluded that GRMZM2G393334 is the bm4 gene. GRMZM2G393334 encodes a putative folylpolyglutamate synthase (FPGS), which functions in one‐carbon (C1) metabolism to polyglutamylate substrates of folate‐dependent enzymes. Yeast complementation experiments demonstrated that expression of the maize bm4 gene in FPGS‐deficient met7 yeast is able to rescue the yeast mutant phenotype, thus demonstrating that bm4 encodes a functional FPGS. Consistent with earlier studies, bm4 mutants exhibit a modest decrease in lignin concentration and an overall increase in the S:G lignin ratio relative to wild‐type. Orthologs of bm4 include at least one paralogous gene in maize and various homologs in other grasses and dicots. Discovery of the gene underlying the bm4 maize phenotype illustrates a role for FPGS in lignin biosynthesis.  相似文献   

17.
18.
Lignin and related metabolites have diverse and important functions for plant growth and development. 4-Coumarate: CoA ligase (4CL, EC 6.2.1.12) is one of the key enzymes in phenylpropanoid metabolism and lignin biosynthesis. In a previous study, maize (Zea maize L. cv. Yellowcorn) growth was suppressed to a greater extent by root-applied chalcone than rice (Oryza sativa L. cv. Nipponbare). The objective of this study is to clarify the relationship between the growth suppression and 4CL properties. In crude extracts, total 4CL activity and total protein content of rice were higher 1.8- and 2.7-fold than that of maize, respectively. After a gel-filtration chromatography, a single peak of 4CL activity from maize and rice was evident coincidently for both species. After anion-exchange chromatography, a single peak of 4CL activity was also apparent for both species; however, the peak of maize did not coincide with that of rice. The enzyme activity of maize and rice exhibited similar order of substrate specificities when using p-coumaric, cinnamic, caffeic, ferulic and sinapic acids substrates. Chalcone inhibited 4CL activity in maize more strongly than in rice, and 4CL kinetic data in the presence and absence of chalcone exhibited uncompetitive inhibition in both maize and rice. These results suggest that total activity and the inhibitory property of 4CL contributes to differences in growth suppression by chalcone between maize and rice, although further efforts are needed to clarify the potential of 4CL as a novel action site of the growth suppression.  相似文献   

19.
Cinnamyl alcohol dehydrogenase (CAD) is involved in the biosynthesis of lignin, a component of plant cell wall which negatively impacts paper pulp processing and biomass fermentation to ethanol. Transgenic poplars with depressed CAD activity show structural alterations of lignin. Natural CAD mutants have been identified in several plants; however, no natural CAD mutants have been identified in poplar. We surveyed the natural genetic variation in CAD4, a gene coding for CAD, in 360 poplar trees from Western Europe. We measured linkage disequilibrium (LD) between single-nucleotide polymorphisms (SNPs), performed neutrality tests and estimated diversity indexes, and investigated their dependence from sample size. We identified 45 SNPs, six of which caused an amino acid substitution. Our results suggest a short span of LD in Populus nigra CAD4 gene. We identified carriers of different nonsynonymous SNPs in CAD4; those subjects are candidate to be used in classical breeding programs to obtain carriers of different combinations of functional polymorphisms. We showed that use of small sample size might lead to biased estimates of LD, neutrality tests, and diversity indexes.  相似文献   

20.
Lignin and flavonoids play a vital role in the adaption of plants to a terrestrial environment. 4‐Coumarate: coenzyme A ligase (4CL) is a key enzyme of general phenylpropanoid metabolism which provides the precursors for both lignin and flavonoids biosynthesis. However, very little is known about how such essential enzymatic functions evolve and diversify. Here, we analyze 4CL sequence variation patterns in a phylogenetic framework to further identify the evolutionary forces that lead to functional divergence. The results reveal that lignin‐biosynthetic 4CLs are under positive selection. The majority of the positively selected sites are located in the substrate‐binding pocket and the catalytic center, indicating that nonsynonymous substitutions might contribute to the functional evolution of 4CLs for lignin biosynthesis. The evolution of 4CLs involved in flavonoid biosynthesis is constrained by purifying selection and maintains the ancestral role of the protein in response to biotic and abiotic factors. Overall, our results demonstrate that protein sequence evolution via positive selection is an important evolutionary force driving adaptive diversification in 4CL proteins in angiosperms. This diversification is associated with adaption to a terrestrial environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号