共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Two woody Hibiscus species co-occur in the Bonin Islands of the northwestern Pacific Ocean: Hibiscus glaber Matsum. is endemic to the islands, and its putative ancestral species, Hibiscus tiliaceus L., is widely distributed in coastal areas of the tropics and subtropics. To infer isolating mechanisms that led to speciation of H. glaber and the processes that resulted in co-occurrence of the two closely related species on the Bonin Islands, we conducted molecular phylogenetic analyses on chloroplast DNA (cpDNA) sequences. Materials collected from a wide area of the Pacific and Indian Oceans were used, and two closely related species, Hibiscus hamabo Siebold Zucc. and Hibiscus macrophyllus Roxb., were also included in the analyses. The constructed tree suggested that H. glaber has been derived from H. tiliaceus, and that most of the modern Bonin populations of H. tiliaceus did not share most recent ancestry with H. glaber. Geographic isolation appears to be the most important mechanism in the speciation of H. glaber. The co-occurrence of the two species can be attributed to multiple migrations of different lineages into the islands. While a wide and overlapping geographical distribution of haplotypes was found in H. tiliaceus, localized geographical distribution of haplotypes was detected in H. glaber. It is hypothesized that a shift to inland habitats may have affected the mode of seed dispersal from ocean currents to gravity and hence resulted in geographical structuring of H. glaber haplotypes. 相似文献
2.
Motomi Ito 《Population Ecology》1998,40(2):205-212
The Bonin Islands are typical oceanic islands, located at the western part of the North Pacific Ocean and approximately 1,000
km south of mainland Japan. This archipelago consists of about 20 small islands. Although floristic diversity is low due to
the small area and limited environmental diversity, the Bonin Islands harbor unique endemic flora as in other well-known oceanic
islands. This paper presents a brief summary of the results obtained from recent studies on the endemic flora of the Bonin
Islands. The results are reviewed in relation to the four stages of the evolution of endemic flora in the oceanic islands;
migration, establishment, enlargement and diversification. The ancestors of the flora originated mostly from tropical and
subtropical Southeast Asia or mainland Japan by rare events of long distance dispersal. The proportion of bird-dispersed species
is relatively high as for other oceanic islands. Genetic data sets obtained from allozyme variation in some endemic species
suggest that migration occurred several million years ago and genetic diversity is correlated with current population size.
At the time of establishment, self-compatible plants are expected to have an advantage. However, the percentage of dioecious
plants is relatively high. This is partly due to evolutionary changes from hermaphroditic ancestors to dioecy which occurred
in two genera in the Bonin Islands. In addition, there are some examples of evolutionary changes from herbaceous ancestors
to woody endemics. Adaptive radiation is found in some genera, although the number of congeneric endemic species is less than
five. Studies of allozyme variation inPittosporum, Symplocos andCrepidiastrum showed that genetic identity is generally very high between congeneric species in spite of their distinct morphologies. This
result suggests that divergence of these species occurred rather recently and distinct morphological differences are based
on a limited number of genetic changes. 相似文献
3.
The diversification of the genus Monodelphis and the chronology of Didelphidae (Didelphimorphia) 下载免费PDF全文
Júlio Fernando Vilela João Alves de Oliveira Claudia Augusta de Moraes Russo 《Zoological Journal of the Linnean Society》2015,174(2):414-427
To evaluate the monophyletic status of the genus Monodelphis, and its species complexes, we used a 9.3‐kb multimarker alignment to build a phylogenetic tree based on the largest taxon sampling for this didelphid genus to date. Furthermore, using a Bayesian framework and six calibration points, we inferred the divergence times for the major Monodelphis lineages and their current geographical distribution to perform an ancestral state reconstruction for geographical areas. Our results indicate the monophyletic nature of Monodelphis and suggest ‘kunsi’ as a new species complex that includes Monodelphis kunsi and an undescribed species. Monodelphis is further subdivided into three clades showing a common vicariance pattern, with each major clade consisting of a northern South American lineage joined with an Atlantic Forest lineage. This geographic consistency suggests a vicariant event that might have been related to a warm period at the Oligocene/Miocene border, according to our time results. © 2015 The Linnean Society of London 相似文献
4.
Palaeo‐islands as refugia and sources of genetic diversity within volcanic archipelagos: the case of the widespread endemic Canarina canariensis (Campanulaceae) 下载免费PDF全文
M. Mairal J. J. Aldasoro V. Culshaw I. Manolopoulou M. Alarcón 《Molecular ecology》2015,24(15):3944-3963
Geographical isolation by oceanic barriers and climatic stability has been postulated as some of the main factors driving diversification within volcanic archipelagos. However, few studies have focused on the effect that catastrophic volcanic events have had on patterns of within‐island differentiation in geological time. This study employed data from the chloroplast (cpDNA haplotypes) and the nuclear (AFLPs) genomes to examine the patterns of genetic variation in Canarina canariensis, an iconic plant species associated with the endemic laurel forest of the Canary Islands. We found a strong geographical population structure, with a first divergence around 0.8 Ma that has Tenerife as its central axis and divides Canarian populations into eastern and western clades. Genetic diversity was greatest in the geologically stable ‘palaeo‐islands’ of Anaga, Teno and Roque del Conde; these areas were also inferred as the ancestral location of migrant alleles towards other disturbed areas within Tenerife or the nearby islands using a Bayesian approach to phylogeographical clustering. Oceanic barriers, in contrast, appear to have played a lesser role in structuring genetic variation, with intra‐island levels of genetic diversity larger than those between‐islands. We argue that volcanic eruptions and landslides after the merging of the palaeo‐islands 3.5 Ma played key roles in generating genetic boundaries within Tenerife, with the palaeo‐islands acting as refugia against extinction, and as cradles and sources of genetic diversity to other areas within the archipelago. 相似文献
5.
The Socotra Archipelago is an ancient continental fragment of Gondwanan origin and one of the most isolated landforms on Earth and a biodiversity hot spot. Yet, the biogeography and evolutionary history of its endemic fauna still remain largely overlooked. We investigate the origin, tempo and mode of diversification in the Hemidactylus geckos of the Socotra Archipelago. Concatenated and multilocus species coalescent analyses of Hemidactylus from Arabia and North Africa indicate that the Hemidactylus from Socotra do not form a monophyletic group and branch as three independent and well-supported clades instead. Both the chronogram inferred using the gene tree approach of BEAST and the age-calibrated multilocus species tree obtained using *BEAST suggest that the origin of Hemidactylus from Socotra may have involved a first vicariance event that occurred in the Early Miocene, followed by two independent transoceanic dispersal events that occurred more recently, during the Pliocene. Within Socotra, we analysed patterns of genetic diversity, the phylogeography and the demographic history in all seven nonintroduced species of Hemidactylus. Results based on two mitochondrial and two nuclear loci from 144 individuals revealed complex patterns of within-island diversification and high levels of intra-species genetic divergence. The interplay of both historical and ecological factors seems to have a role in the speciation process of this group of geckos. Interestingly, the case of H. forbesii and H. oxyrhinus, which inhabit the island of Abd al Kuri with an area of 133 km(2), may represent one of the most extreme cases of intra-island speciation in reptiles ever reported. 相似文献
6.
Nicole Andrus Alan Tye † Guy Nesom David Bogler ‡ Carl Lewis Richard Noyes Patricia Jaramillo Javier Francisco-Ortega 《Journal of Biogeography》2009,36(6):1055-1069
Aim The aims of this study were (1) to investigate whether the two growth forms of Darwiniothamnus Harling (Asteraceae) originated from the colonization of a single ancestor, (2) to identify the closest relative(s) of Darwiniothamnus, and (3) to review molecular phylogenies from other plant groups to infer the origin of Galápagos endemics. Location Darwiniothamnus is endemic to the Galápagos Islands. Methods All putative relatives of Darwiniothamnus plus 38 additional species were included. Nucleotide sequences of the internal transcribed spacers of the nuclear ribosomal DNA were used for Bayesian and parsimony analyses. Results Darwiniothamnus is polyphyletic. Two species (D. lancifolius (Hook. f.) Harling and D. tenuifolius (Hook. f.) Harling) are woody shrubs that usually grow to 1–2 m in height; they belong to a clade composed of species otherwise restricted to the Caribbean. These two species are sister to Erigeron bellidiastroides Griseb., a herbaceous species endemic to Cuba. The third species (D. alternifolius Lawesson & Adsersen) is a perennial herbaceous plant, woody at the base and reaching only up to 50 cm in height. It is sister to two Chilean (Coquimbo–Valparaiso region) species that also have a perennial herbaceous habit: E. fasciculatus Colla and E. luxurians (Skottsb.) Solbrig. They are placed in an assemblage restricted to South America. The review of previous molecular phylogenetic studies revealed that two of the endemic genera and endemic species of three non‐endemic genera have their closest relatives in South America. Endemic species belonging to three non‐endemic genera have sister species in North America or the West Indies. One endemic genus and endemic species in three non‐endemic genera have sister taxa with a widespread continental distribution, or their molecular phylogenies yielded equivocal results. Main conclusions The flora of Galápagos has affinities with both North America (including the Antilles) and South America. Darwiniothamnus exhibits both patterns: two species of this genus are sister to a taxon endemic to Cuba, supporting a connection between the Cocos plate and the West Indies; the third species, D. alternifolius, provides a link with the Coquimbo–Valparaiso region, suggesting a biogeographical connection between the Nazca plate and southern South America. 相似文献
7.
Recent methodological advances in molecular dating associated with the growing availability of sequence data have prompted the study of the evolution of New World Anthropoidea in recent years. Motivated by questions regarding historical biogeography or the mode of evolution, these works aimed to obtain a clearer scenario of Platyrrhini origins and diversification. Although some consensus was found, disputed issues, especially those relating to the evolutionary affinities of fossil taxa, remain. The use of fossil taxa for divergence time analysis is traditionally restricted to the provision of calibration priors. However, new analytical approaches have been developed that incorporate fossils as terminals and, thus, directly assign ages to the fossil tips. In this study, we conducted a combined analysis of molecular and morphological data, including fossils, to derive the timescale of New World anthropoids. Differently from previous studies that conducted total‐evidence analysis of molecules and morphology, our approach investigated the morphological clock alone. Our results corroborate the hypothesis that living platyrrhines diversified in the last 20 Ma and that Miocene Patagonian fossils compose an independent evolutionary radiation that diversified in the late Oligocene. When compared to the node ages inferred from the molecular timescale, the inclusion of fossils augmented the precision of the estimates for nodes constrained by the fossil tips. We show that morphological data can be analysed using the same methodological framework applied in relaxed molecular clock studies. 相似文献
8.
GAVIN GOUWS BARBARA A. STEWART SAVEL R. DANIELS 《Biological journal of the Linnean Society. Linnean Society of London》2010,101(2):385-402
The gilgie (Cherax quinquecarinatus) is among the more widespread of the six endemic south‐western Australian freshwater crayfish species. In the present study, the phylogeographic structure of the gilgie was investigated across its distribution to determine whether patterns reflected those identified earlier in a co‐distributed congeneric, the koonac (Cherax preissii). Gilgies were sampled from 20 localities, a 412‐bp fragment of the cytochrome c oxidase subunit I mitochondrial DNA gene was amplified from 75 individuals, and allozyme variation was assayed at nine loci. As in the koonac, three geographically‐restricted lineages were identified: from the north‐western, southern coastal, and intermediate/south‐western regions. Phylogeographic breaks appeared to be congruent with those in the koonac. The extent of genetic differentiation among lineages was comparable to that in the koonac, suggesting temporal congruence of the historical events responsible for the observed structure. A relaxed Bayesian molecular clock suggested that the major clades and lineages in each species diverged in the Late Miocene–Early Pliocene (4.0–9.6 Myr ago), possibly resulting from increasing pulses of aridity. The retrieval of almost‐identical phylogeographic structure in two co‐distributed species suggests that biogeographic regions can be more accurately defined in south‐western Australia. With the geographic fidelity of these lineages, the present data also provide evidence of the translocation of a single individual from the north‐west to the south coast. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 385–402. 相似文献
9.
Complex inter‐island colonization and peripatric founder speciation promote diversification of flightless Pachyrhynchus weevils in the Taiwan–Luzon volcanic belt 下载免费PDF全文
Hui‐Yun Tseng Wen‐San Huang Ming‐Luen Jeng Reagan Joseph T. Villanueva Olga M. Nuñeza Chung‐Ping Lin 《Journal of Biogeography》2018,45(1):89-100
Aim
We investigated the spatial and temporal patterns of diversification among colourful and flightless weevils, the Pachyrhynchus orbifer complex, to test the stepping‐stone hypothesis of colonization across the Taiwan–Luzon volcanic belt.Location
Southeast Asia.Methods
The phylogeny of the P. orbifer complex was reconstructed from a multi‐locus data set of mitochondrial and nuclear genes using maximum likelihood in RAxML and Bayesian inference in MRBAYES. Likelihood‐based tests in CONSEL were used to evaluate alternative tree topologies. Divergence times were estimated in beast based on a range of mutation rates. Ancestral range and biogeographical history were reconstructed using Bayesian binary MCMC (BBM) methods in RASP and in BioGeoBEARS. Demographic histories were inferred using the extended Bayesian skyline plot (EBSP). Species boundaries were tested using BPP.Results
The phylogeny of the P. orbifer complex indicated strong support for seven reciprocally monophyletic lineages grouped by current island boundaries (Camiguin, Fuga, Dalupiri, Calayan, Babuyan, Orchid and Yaeyama Islands), except for a sister Green + Itbayat lineage. Complex and stochastic colonization of P. orbifer was inferred to have involved both northward and southward directions with short‐ and long‐distance dispersal events, which are strongly inconsistent with the strict stepping‐stone hypothesis. Divergence time estimates for all extant island lineages (<1 Myr of Middle Pleistocene) are much more recent than the geological ages (22.4–1.7 Myr) and subaerial existence (c. 3 Myr) of the islands. The statistically delimited seven cryptic species imply that the diversity of Pachyrhynchus from small peripheral islands continues to be largely under‐estimated.Main conclusions
The non‐linear, more complex spatial and temporal settings of the archipelago and stochastic dispersal were probable key factors shaping the colonization history of the P. orbifer complex. Speciation of the P. orbifer complex may have occurred only between islands, indicating that peripatric speciation through the founders of stochastic dispersals was the major evolutionary driver. 相似文献10.
Remko Leys Steve J. B. Cooper Mike P. Schwarz 《Biological journal of the Linnean Society. Linnean Society of London》2002,77(2):249-266
The biogeographical history of major groups of bees with worldwide distributions have often been explained through hypotheses based on Gondwanan vicariance or long distance dispersal events, but until recently these hypotheses have been very difficult, if not impossible, to distinguish. New fossil data, comprehensive information on Mesozoic and Cenozoic coastline positions and the availability of phylogenetically informative DNA markers now makes it feasible to test these hypotheses for some groups of bees. This paper presents historical biogeographical analyses of the genus Xylocopa Latreille, based on phylogenetic analyses of species belonging to 22 subgenera using molecular data from two nuclear genes, elongation factor‐1α (EF‐1α) and phosphoenolpyruvate carboxykinase (PEPCK), combined with previously published morphological and mitochondrial data sets. Phylogenetic analyses based on parsimony and likelihood approaches resulted in several groups of subgenera supported by high bootstrap values (>85%): an American group with the Oriental/Palaearctic subgenera Nyctomelitta and Proxylocopa as sister taxa; a geographically diverse group (Xylocopa s.l); and a group consisting of African and Oriental subgenera. The relationships among these three clades and the subgenus Perixylocopa remained unresolved. The Oriental subgenus Biluna was found to be the sister group of all other carpenter bee subgenera included in this study. Using a relaxed molecular clock calibrated using fossil carpenter bees, we show that the major splits in the carpenter bee phylogeny occurred well after the final breakup of Gondwanaland (the separation of South America and Africa, 100 Mya), but before important Miocene fusion events. Ancestral area analysis showed that the genus Xylocopa most likely had an Oriental‐Palaearctic origin and that the present world distribution of Xylocopa subgenera resulted mainly from independent dispersal events. The influence of Pleistocene glaciations on carpenter bee distributions is also discussed. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 249–266. 相似文献
11.
Genetic structure of Micromeria (Lamiaceae) in Tenerife,the imprint of geological history and hybridization on within‐island diversification 下载免费PDF全文
Geological history of oceanic islands can have a profound effect on the evolutionary history of insular flora, especially in complex islands such as Tenerife in the Canary Islands. Tenerife results from the secondary connection of three paleo‐islands by a central volcano, and other geological events that further shaped it. This geological history has been shown to influence the phylogenetic history of several taxa, including genus Micromeria (Lamiaceae). Screening 15 microsatellite markers in 289 individuals representing the eight species of Micromeria present in Tenerife, this study aims to assess the genetic diversity and structure of these species and its relation with the geological events on the island. In addition, we evaluate the extent of hybridization among species and discuss its influence on the speciation process. We found that the species restricted to the paleo‐islands present lower levels of genetic diversity but the highest levels of genetic differentiation suggesting that their ranges might have contracted over time. The two most widespread species in the island, M. hyssopifolia and M. varia, present the highest genetic diversity levels and a genetic structure that seems correlated with the geological composition of the island. Samples from M. hyssopifolia from the oldest paleo‐island, Adeje, appear as distinct while samples from M. varia segregate into two main clusters corresponding to the paleo‐islands of Anaga and Teno. Evidence of hybridization and intraspecific migration between species was found. We argue that species boundaries would be retained despite hybridization in response to the habitat's specific conditions causing postzygotic isolation and preserving morphological differentiation. 相似文献
12.
How to define nativeness in vagile organisms: lessons from the cosmopolitan moss Bryum argenteum on the island of Tenerife (Canary Islands) 下载免费PDF全文
S. Pisa A. Vanderpoorten J. Patiño O. Werner J. M. González‐Mancebo R. M. Ros 《Plant biology (Stuttgart, Germany)》2015,17(5):1057-1065
The distinction between native and introduced biotas presents unique challenges that culminate in organisms with high long‐distance dispersal capacities in a rapidly changing world. Bryophytes, in particular, exhibit large distribution ranges, and some species can truly be qualified as cosmopolitan. Cosmopolitan species, however, typically occur in disturbed environments, raising the question of their nativeness throughout their range. Here, we employ genetic data to address the question of the origin of the cosmopolitan, weedy moss Bryum argenteum on the island of Tenerife. The genetic diversity of B. argenteum on Tenerife was comparable to that found in continental areas due to recurrent colonisation events, erasing any signature of a bottleneck that would be expected in the case of a recent colonisation event. The molecular dating analyses indicated that the first colonisation of the island took place more than 100,000 years ago, i.e. well before the first human settlements. Furthermore, the significant signal for isolation‐by‐distance found in B. argenteum within Tenerife points to the substantial role of genetic drift in establishing the observed patterns of genetic variation. Together, the results support the hypothesis that B. argenteum is native on Tenerife; although the existence of haplotypes shared between Tenerife and continental areas suggests that more recent, potentially man‐mediated introduction also took place. While defining nativeness in organisms that are not deliberately introduced, and wherein the fossil record is extremely scarce, is an exceedingly challenging task, our results suggest that population genetic analyses can represent a useful tool to help distinguish native from alien populations. 相似文献
13.
Persea boninensis (Lauraceae) is an endemic tree species distributed throughout the Bonin Islands. It grows in a wide range of environments from dry to mesic forests, and has multiple flowering peaks that may correspond to different habitats on Chichijima Island of the Bonin Islands. We predicted that P. boninensis is differentiated into two groups with different habitats on these islands. We examined and compared the flowering phenology, morphology, and genetics of populations of species growing in dry and mesic forests. We also performed preliminary artificial crossing experiments. Based on our results, P. boninensis on the Chichijima Islands can be clearly divided into two genetic groups with different habitats and flowering times. Although the flowering time difference could act as an effective pre‐zygotic isolation mechanism between the two groups, there was still a 1‐month overlap in flowering time. Furthermore, our artificial crossing experiments between the two groups resulted in plants that set seeds. Therefore, there was no evidence of reproductive isolation after fertilization. Differences in flowering time as well as in growth habitat will have to occur to maintain genetic differentiation between the two groups of P. boninensis. 相似文献
14.
Hsi-Te Shih Huei-Chuan Hung Christoph D. Schubart Chaolun Allen Chen Hsueh-Wen Chang 《Journal of Biogeography》2006,33(6):980-989
Aim Candidiopotamon rathbunae (Crustacea: Brachyura: Potamidae) is a freshwater crab endemic to Taiwan, with a distribution covering almost the entire island. Crab populations from different river systems cannot be distinguished morphologically. In this study, we investigate the phylogeography of C. rathbunae from 18 of the main river systems of Taiwan, in order to reveal geographical differentiation and cryptic endemism. We used specimens of two congeners (C. okinawense and C. kumejimense) and the closely related Amamiku amamensis from the Ryukyu Islands as outgroups. Location Taiwan, with the Ryukyu Islands (Japan) as the outgroup locality. Methods Mitochondrial DNA sequences encoding 553 basepairs of the large subunit rRNA (16S rRNA) gene were obtained from 96 specimens throughout Taiwan and the Ryukyus. We compared these sequences by means of phylogenetic analyses (minimum evolution, maximum likelihood, maximum parsimony, and a genealogical parsimony network) and molecular‐clock time estimates. Results The estimated timing of the corresponding separations clearly correlates with geological events during the Penglai Orogeny of Taiwan (c. 5 Ma) following the collision of the Philippine Sea plate with the Eurasian continental plate. A deep split of 6.29% sequence divergence was found between the eastern clade (S, SE, and E groups) and the western clade (NW, W, and SW groups) of C. rathbunae. Separation of these groups reflects the isolating effect of the uplift of the Taiwan Central Range (c. 5 Ma). The separation of the SW group from the W group, and of the E group from the SE group can also be explained by geological events during the Taiwanese orogeny, the estimated geological timing being in close accordance with our molecular dating. Main conclusions According to the molecular results, the ancestral Candidiopotamon was among the earliest non‐marine colonizers of Taiwan, settling on this island no later than the early Pliocene. Our molecular data reveal that C. rathbunae can be subdivided into six groups in accordance with geography. 相似文献
15.
Cospeciation of figs and fig-wasps: a case study of endemic species pairs in the Ogasawara Islands 总被引:2,自引:0,他引:2
Jun Yokoyama 《Population Ecology》2003,45(3):249-256
The interactions between figs (Ficus, Moraceae) and fig-wasps (Agaonidae, Chalcidoidea, Hymenoptera) are special plant-pollinator relationships that are highly species-specific, in that each fig species is pollinated by a single fig-wasp species that can breed only in that particular fig species. This study examined the degree of pre-mating isolation and genetic differentiation for three fig/fig-wasp pairs endemic to the Ogasawara Islands. Simple Y-tube tests revealed that fig-wasps from Ficus nishimurae and Higashidaira type chose their own host figs significantly more often, while fig-wasps from F. boninsimae did not. Based on RAPD markers, the genetic differentiation among the fig species was low, but F. boninsimae formed a cluster within the F. nishimurae cluster. The Higashidaira type has been derived from a subpopulation of F. nishimurae. Five mitochondrial DNA haplotypes were found in the fig-wasps and each haplotype correlated well with the fig species on their island of origin. These results led to a three-step hypothesis on the cospeciation process: (1) spatial separation of fig/fig-wasp populations arises; (2) gene flow is restricted and character differentiation of fig-wasps occurs; (3) there is further restriction of gene flow and genetic and character differentiation of figs. 相似文献
16.
Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes) 下载免费PDF全文
Petter Z. Marki Pierre‐Henri Fabre Knud A. Jønsson Carsten Rahbek Jon Fjeldså Jonathan D. Kennedy 《Evolution; international journal of organic evolution》2015,69(7):1874-1924
Birds vary greatly in their life‐history strategies, including their breeding systems, which range from brood parasitism to a system with multiple nonbreeding helpers at the nest. By far the most common arrangement, however, is where both parents participate in raising the young. The traits associated with parental care have been suggested to affect dispersal propensity and lineage diversification, but to date tests of this potential relationship at broad temporal and spatial scales have been limited. Here, using data from a globally distributed group of corvoid birds in concordance with state‐dependent speciation and extinction models, we suggest that pair breeding is associated with elevated speciation rates. Estimates of transition between breeding systems imply that cooperative lineages frequently evolve biparental care, whereas pair breeders rarely become cooperative. We further highlight that these groups have differences in their spatial distributions, with pair breeders overrepresented on islands, and cooperative breeders mainly found on continents. Finally, we find that speciation rates appear to be significantly higher on islands compared to continents. These results imply that the transition from cooperative breeding to pair breeding was likely a significant contributing factor facilitating dispersal across tropical archipelagos, and subsequent world‐wide phylogenetic expansion among the core Corvoidea. 相似文献
17.
Alexandra N. Muellner Caroline M. Pannell Annette Coleman Mark W. Chase 《Journal of Biogeography》2008,35(10):1769-1789
Aim The role of long‐distance dispersal in the Indomalesian, Australasian and Pacific flora is currently hotly debated. The lack of well‐resolved phylogenetic trees for Pacific plants has been a major limitation for biogeographical analysis. Here, we present a well‐resolved phylogenetic tree for the tribe Aglaieae in the mahogany family, Meliaceae, and use it to investigate the origin, evolution and dispersal history of biotas in this area. The subfamily Melioideae, including the tribe Aglaieae (Meliaceae, Sapindales), is a plant group with good representation in the region in terms of biomass and species numbers, wide ecological attributes and known animal vectors. The family has a good fossil record (especially from North America and Europe). Genera and species in the tribe Aglaieae therefore provide an excellent model group for addressing this debate. Location Indomalesia, Australasia, Pacific islands. Methods Results from nuclear internal transcribed spacer ribosomal DNA analyses of 82 taxa, based on sequence alignment guided by secondary structure models, were combined with evidence from fossils and distribution data. We used strict and relaxed molecular clock approaches to estimate divergence times within Aglaieae. Putative ancestral areas were investigated through area‐based and event‐based biogeographical approaches. Information on dispersal routes and their direction was inferred from the investigation of dispersal asymmetries between areas. Results Our study indicates that the crown group of Aglaieae dates back at least to the Late Eocene, with major divergence events occurring during the Oligocene and Miocene. It also suggests that dispersal routes existed during Miocene–Pliocene times from the area including Peninsular Malaysia, Sumatra and Borneo to Wallacea, India and Indochina, and from the area including New Guinea, New Ireland and New Britain further east to the Pacific islands at the peripheries of the distribution range. The origin of the Fijian species dates back to the Pliocene. Main conclusions Dispersal over oceanic water barriers has occurred during geological time and seems to have been a major driving force for divergence events in Aglaieae, with some old Gondwanan land masses (e.g. Australia) colonized only during recent times. Movement from the ancestral area was predominantly towards the east. Extant Fijian species of Aglaia are monophyletic and share morphological features rarely found in species of other areas, suggesting speciation within an endemic clade. Divergence of living taxa from their closest living relatives took place during both the Miocene and the Pliocene, and peaked in the Pliocene. The present‐day distribution of many species in the tribe must therefore have arisen as a result of dispersal rather than vicariance events. Furthermore, colonization from Indomalesia to Australasia and the Pacific has frequently been followed by speciation. 相似文献
18.
Biogeography and systematics of endemic island damselflies: The Nesobasis and Melanesobasis (Odonata: Zygoptera) of Fiji 下载免费PDF全文
Christopher D. Beatty Melissa Sánchez Herrera Jeffrey H. Skevington Arash Rashed Hans Van Gossum Scott Kelso Thomas N. Sherratt 《Ecology and evolution》2017,7(17):7117-7129
The study of island fauna has greatly informed our understanding of the evolution of diversity. We here examine the phylogenetics, biogeography, and diversification of the damselfly genera Nesobasis and Melanesobasis, endemic to the Fiji Islands, to explore mechanisms of speciation in these highly speciose groups. Using mitochondrial (COI, 12S) and nuclear (ITS) replicons, we recovered Garli ‐part maximum likelihood and Mrbayes Bayesian phylogenetic hypotheses for 26 species of Nesobasis and eight species/subspecies of Melanesobasis. Biogeographical patterns were explored using Lagrange and Bayes ‐Lagrange and interpreted through beast relaxed clock dating analyses. We found that Nesobasis and Melanesobasis have radiated throughout Fiji, but are not sister groups. For Nesobasis, while the two largest islands of the archipelago—Viti Levu and Vanua Levu—currently host two distinct species assemblages, they do not represent phylogenetic clades; of the three major groupings each contains some Viti Levu and some Vanua Levu species, suggesting independent colonization events across the archipelago. Our Beast analysis suggests a high level of species diversification around 2–6 Ma. Our ancestral area reconstruction (Rasp ‐Lagrange ) suggests that both dispersal and vicariance events contributed to the evolution of diversity. We thus conclude that the evolutionary history of Nesobasis and Melanesobasis is complex; while inter‐island dispersal followed by speciation (i.e., peripatry) has contributed to diversity, speciation within islands appears to have taken place a number of times as well. This speciation has taken place relatively recently and appears to be driven more by reproductive isolation than by ecological differentiation: while species in Nesobasis are morphologically distinct from one another, they are ecologically very similar, and currently are found to exist sympatrically throughout the islands on which they are distributed. We consider the potential for allopatric speciation within islands, as well as the influence of parasitic endosymbionts, to explain the high rates of speciation in these damselflies. 相似文献
19.
Origin and evolution of the endemic Macaronesian Inuleae (Asteraceae): evidence from the internal transcribed spacers of nuclear ribosomal DNA 总被引:2,自引:0,他引:2
JAVIER FRANCISCO-ORTEGA SEON-JOO PARK ARNOLDO SANTOS-GUERRA ABDELMALEK BENABID ROBERT K. JANSEN 《Biological journal of the Linnean Society. Linnean Society of London》2001,72(1):77-97
The tribe Inuleae (Asteraceae) has 10 species endemic to the Macaronesian islands, including the three endemic genera Allagopappus, Schizogyne, and Vierea. Phylogenetic analyses of DNA sequence data from the internal transcribed spacers (ITS) of the nuclear ribosomal DNA of 47 taxa were performed using all Macaronesian endemics and representative species from 21 of the 36 genera of the Inuleae. The resulting ITS phylogeny reveals that Allagopappus is sister to a large clade that contains all genera with a predominantly Mediterranean distribution. This finding suggests that Allagopappus may represent an ancient lineage that found refuge in the Canary Islands following the major climatic and/or geologic changes in the Mediterranean basin after the Tertiary. The Macaronesian endemic genus Schizogyne is sister to Limbarda from the Mediterranean. The third Macaronesian endemic genus, Vierea, is sister to Perralderia, which is restricted to Morocco and Algeria. Pulicaria canariensis is sister to P. mauritanica, a species endemic to Morocco and Algeria. In contrast, P. diffusa from the Cape Verde Islands is sister to a broadly distributed species, P. crispa, that occurs from North Africa to the Arabian peninsula. Based on the ITS data, the genera Blumea, Inula, and Pulicaria are not monophyletic. The ITS trees suggested that Blumea mollis belongs to the tribe Plucheeae, a finding that is congruent with recent morphological evidence. A possible southern African origin for the core of the Laurasian taxa of the Inuleae is also suggested. 相似文献
20.
Susanne S. Renner Joeri S. Strijk Dominique Strasberg Christophe Thébaud 《Journal of Biogeography》2010,37(7):1227-1238
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs. 相似文献