首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The crystal structure of human group X (hGX) secreted phospholipase A2 (sPLA2) has been solved to a resolution of 1.97 A. As expected the protein fold is similar to previously reported sPLA2 structures. The active site architecture, including the positions of the catalytic residues and the first and second shell water around the Ca2+ cofactor, are highly conserved and remarkably similar to the group IB and group IIA enzymes. Differences are seen in the structures following the (1-12)-N-terminal helix and at the C terminus. These regions are proposed to interact with the substrate membrane surface. The opening to the active site slot is considerably larger in hGX than in human group IIA sPLA2. Furthermore, the electrostatic surface potential of the hGX interfacial-binding surface does not resemble that of the human group IIA sPLA2; the former is highly neutral, whereas the latter is highly cationic. The cationic residues on this face of group IB and IIA enzymes have been implicated in membrane binding and in k(cat*) allostery. In contrast, hGX does not show activation by the anionic charge at the lipid interface when acting on phospholipid vesicles or short-chain phospholipid micelles. Together, the crystal structure and kinetic results of hGX supports the conclusion that it is as active on zwitterionic as on anionic interfaces, and thus it is predicted to target the zwitterionic membrane surfaces of mammalian cells.  相似文献   

2.
Platelet Activating Factor (PAF) is a potent mediator of inflammation whose biological activity depends on the acetyl group esterified at the sn-2 position of the molecule. PAF-acetylhydrolase (PAF-AH), a secreted calcium-independent phospholipase A(2), is known to inactivate PAF by formation of lyso-PAF and acetate. However, PAF-AH deficient patients are not susceptible to the biological effects of inhaled PAF in airway inflammation, suggesting that other enzymes may regulate extracellular levels of PAF. We therefore examined the hydrolytic activity of the recently described human group X secreted phospholipase A(2) (hGX sPLA(2)) towards PAF. Among different sPLA(2)s, hGX sPLA(2) has the highest affinity towards phosphatidylcholine (PC), the major phospholipid of cellular membranes and plasma lipoproteins. Our results show that unlike group IIA, group V, and the pancreatic group IB sPLA(2), recombinant hGX sPLA(2) can efficiently hydrolyze PAF. The hydrolysis of PAF by hGX sPLA(2) rises abruptly when the concentration of PAF passes through its critical micelle concentration suggesting that the enzyme undergoes interfacial binding and activation to PAF. In conclusion, our study shows that hGX sPLA(2) may be a novel player in PAF regulation during inflammatory processes.  相似文献   

3.
Mammals contain 9-10 secreted phospholipases A(2) (sPLA(2)s) that display widely different affinities for membranes, depending on the phospholipid composition. The much higher enzymatic activity of human group X sPLA(2) (hGX) compared with human group IIA sPLA(2) (hGIIA) on phosphatidylcholine (PC)-rich vesicles is due in large part to the higher affinity of the former enzyme for such vesicles; this result also holds when vesicles contain cholesterol and sphingomyelin. The inclusion of anionic phosphatidylserine in PC vesicles dramatically enhances interfacial binding and catalysis of hGIIA but not of hGX. This is the result of the large number of lysine and arginine residues scattered over the entire surface of hGIIA, which cause the enzyme to form a supramolecular aggregate with multiple vesicles. Thus, high affinity binding of hGIIA to anionic vesicles is a complex process and cannot be attributed to a few basic residues on its interfacial binding surface, as is also evident from mutagenesis studies. The main reason hGIIA binds poorly to PC-rich vesicles is that it lacks a tryptophan residue on its interfacial binding surface, a residue that contributes to the high affinity binding of hGX to PC-rich vesicles. Results show that the lag in the onset of hydrolysis of PC vesicles by hGIIA is due in part to the poor affinity of this enzyme for these vesicles. Binding affinity of hGIIA, hGX, and their mutants to PC-rich vesicles is well correlated to the ability of these enzymes to act on the PC-rich outer plasma membrane of mammalian cells.  相似文献   

4.
Group IIA secreted phospholipase A(2) (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bacteria is group IIA > X > V > XII > IIE > IB, IIF (for murine sPLA2s: IIA > IID > V > IIE > IIC, X > IB, IIF), and only human group XII displays detectable bactericidal activity against the Gram-negative bacterium E. coli. These studies show that highly basic sPLA2s display potent bactericidal activity with the exception of the ability of the acidic human group X sPLA2 to kill Gram-positive bacteria. By studying the Bacillus subtilis and S. aureus bactericidal potencies of a large panel of human group IIA mutants in which basic residues were mutated to acidic residues, it was found that: 1) the overall positive charge of the sPLA2 is the dominant factor in dictating bactericidal potency; 2) basic residues on the putative membrane binding surface of the sPLA2 are modestly more important for bactericidal activity than are other basic residues; 3) relative bactericidal potency tracks well with the ability of these mutants to degrade phospholipids in the bacterial membrane; and 4) exposure of the bacterial membrane of Gram-positive bacteria by disruption of the cell wall dramatically reduces the negative effect of charge reversal mutagenesis on bactericidal potency.  相似文献   

5.
Snake venom and mammalian secreted phospholipases A2 (sPLA2s) have been associated with toxic (neurotoxicity, myotoxicity, etc.), pathological (inflammation, cancer, etc.), and physiological (proliferation, contraction, secretion, etc.) processes. Specific membrane receptors (M and N types) for sPLA2s have been initially identified with snake venom sPLA2s as ligands, and the M-type 180-kDa receptor was cloned from different animal species. This paper addresses the problem of the endogenous ligands of the M-type receptor. Recombinant group IB and group IIA sPLA2s from human and mouse species have been prepared and analyzed for their binding properties to M-type receptors from different animal species. Both mouse group IB and group IIA sPLA2s are high affinity ligands (in the 1-10 nM range) for the mouse M-type receptor. These two sPLA2s are expressed in the mouse tissues where the M-type receptor is also expressed, making it likely that both types of sPLA2s are physiological ligands of the mouse M-type receptor. This conclusion does not hold for human group IB and IIA sPLA2s and the cloned human M-type receptor. The two mouse sPLA2s have relatively high affinities for the mouse M-type receptor, but they can have much lower affinities for receptors from other animal species, indicating that species specificity exists for sPLA2 binding to M-type receptors. Caution should thus be exerted in avoiding mixing sPLA2s, cells, or tissues from different animal species in studies of the biological roles of mammalian sPLA2s associated with an action through their membrane receptors.  相似文献   

6.
Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A(2) (sPLA(2)s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA(2)s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicles of differing phospholipid composition by these enzymes varies by up to 4 orders of magnitude, and yet all enzymes display similar catalytic site specificity toward phospholipids with different polar head groups. Discrimination between sn-2 polyunsaturated versus saturated fatty acyl chains is <6-fold. These enzymes display apparent dissociation constants for activation by calcium in the 1-225 microm range, depending on the phospholipid substrate. Analysis of the inhibition by a set of 12 active site-directed, competitive inhibitors reveals a large variation in the potency among the mammalian sPLA(2)s, with Me-Indoxam being the most generally potent sPLA(2) inhibitor. A dramatic correlation exists between the ability of the sPLA(2)s to hydrolyze phosphatidylcholine-rich vesicles efficiently in vitro and the ability to release arachidonic acid when added exogenously to mammalian cells; the group V and X sPLA(2)s are uniquely efficient in this regard.  相似文献   

7.
We investigated the hydrolysis of the minor glycerophospholipids of human HDL(3), total HDL and LDL using human group IIA, V and X secretory phospholipases A(2) (sPLA(2)s). For this purpose we employed the enzyme and substrate concentrations and incubation times optimized for hydrolysis of phosphatidylcholine (PtdCho), the major glycerophospholipid of plasma lipoproteins. In contrast to PtdCho, which was readily hydrolyzed by group V and X sPLA(2)s, and to a lesser extent by group IIA sPLA(2), the minor ethanolamine, inositol and serine glycerophospholipids exhibited marked resistance to hydrolysis by all three sPLA(2)s. Thus, when PtdCho was hydrolyzed about 80%, the ethanolamine and inositol glycerophospholipids reached a maximum of 40% hydrolysis. The hydrolysis of phosphatidylserine (PtdSer), which was examined to a more limited extent, showed similar resistance to group IIA, V and X sPLA(2)s, although the group V sPLA(2) attacked it more readily than group X sPLA(2) (52% versus 39% hydrolysis, respectively). Surprisingly, the group IIA sPLA(2) hydrolysis remained minimal at 10-15% for all minor glycerophospholipids, and was of the order seen for the PtdCho hydrolysis by group IIA sPLA(2) at the 4-h digestion time. All three enzymes attacked the oligo- and polyenoic species in proportion to their mole percentage in the lipoproteins, although there were exceptions. There was evidence of a more rapid destruction of the palmitoyl compared to the stearoyl arachidonoyl glycerophospholipids. Overall, the characteristics of hydrolysis of the molecular species of the lipoprotein-bound diradyl GroPEtn, GroPIns and GroPSer by group V and X sPLA(2)s differed significantly from those observed with lipoprotein-bound PtdCho. As a result, the acidic inositol and serine glycerophospholipids accumulated in the digestion residues of both LDL and HDL, and presumably increased the acidity of the residual particles. An accumulation of the ethanolamine glycerophospholipids in the sPLA(2) digestion residues also had not been previously reported. These results further emphasize the diversity in the enzymatic activity of the group IIA, V and X sPLA(2)s. Since these sPLA(2)s possess comparable tissue distribution, their combined activity may exacerbate their known proinflammatory and proatherosclerotic function.  相似文献   

8.
Pulmonary surfactant's complex mixture of phospholipids and proteins reduces the work of breathing by lowering alveolar surface tension during respiration. One mechanism of surfactant damage appears to be the hydrolysis of phospholipid by phospholipases activated in the inflamed lung. Humans have several candidate secretory phospholipase A(2) (sPLA(2)) enzymes in lung cells and infiltrating leukocytes that could damage extracellular surfactant. We considered two mechanisms of surfactant disruption by five human sPLA(2)s, including generation of lysophospholipids and the depletion of specific phospholipids. All five sPLA(2)s studied ultimately caused surfactant dysfunction. Each enzyme exhibited a different pattern of hydrolysis of surfactant phospholipids. Phosphatidylcholine, the major phospholipid in surfactant and the greatest potential source for generation of lysophospholipids, was susceptible to hydrolysis by group IB, group V, and group X sPLA(2)s, but not group IIA or IID. Group IIA hydrolyzed both phosphatidylethanolamine and phosphatidylglycerol, whereas group IID was active against only phosphatidylglycerol. Thus, with groups IB and X, the generation of lysophospholipids corresponded with surfactant dysfunction. However, hydrolysis of and depletion of phosphatidylglycerol had a greater correlation with surfactant dysfunction for groups IIA and IID. Surfactant dysfunction caused by group V sPLA(2) is less clear and may be the combined result of both mechanisms.  相似文献   

9.
Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA.  相似文献   

10.
Although the cyclooxygenase-2 (COX-2) pathway of the arachidonic acid cascade has been suggested to play an important role in colon carcinogenesis, there is little information concerning the identity of phospholipase A(2) (PLA(2)) involved in the arachidonic acid release in colon tumors. Here, we compared the potencies of three types of secretory PLA(2)s (group IB, IIA and X sPLA(2)s) for the arachidonic acid release from cultured human colon adenocarcinoma cells, and found that group X sPLA(2) has the most powerful potency in the release of arachidonic acid leading to COX-2-dependent prostaglandin E(2) (PGE(2)) formation. Furthermore, immunohistological analysis revealed the elevated expression of group X sPLA(2) in human colon adenocarcinoma neoplastic cells in concert with augmented expression of COX-2. These findings suggest a critical role of group X sPLA(2) in the PGE(2) biosynthesis during colon tumorigenesis.  相似文献   

11.
To date, 12 secreted phospholipases A2 (sPLA2s) have been identified in the mouse species and divided into three structural collections (I/II/V/X, III, and XII). On the basis of their different molecular properties and tissue distributions, each sPLA2 is likely to exert distinct functions by acting as an enzyme or ligand for specific soluble proteins or receptors, among which the M-type receptor is the best-characterized target. Here, we present the properties of binding of the full set of mouse sPLA2s to the mouse M-type receptor. All enzymes have been produced in Escherichia coli or insect cells, and their properties of binding to the cloned and native M-type receptor have been determined. sPLA2s IB, IIA, IIE, IIF, and X are high-affinity ligands (K0.5 = 0.3-3 nM); sPLA2s IIC and V are low-affinity ligands (K0.5 = 30-75 nM), and sPLA2s IID, III, XIIA, and XIIB bind only very weakly or do not bind to the M-type receptor (K0.5 > 100 nM). Three exogenous parvoviral group XIII PLA2s and two fungal group XIV sPLA2s do not bind to the receptor. Together, these results indicate that the mouse M-type receptor is selective for only a subset of mouse sPLA2s from the group I/II/V/X structural collection. Binding of mouse sPLA2s to a recombinant soluble mouse M-type receptor leads in all cases to inhibition of enzymatic activity, and the extent of deglycosylation of the receptor decreases yet does not abolish sPLA2 binding. The physiological meaning of binding of sPLA2 to the M-type receptor is discussed on the basis of our current knowledge of sPLA2 functions.  相似文献   

12.
Human groups IIA, V and X secretory phospholipases A2 (sPLA2s) were incubated with human HDL3, total HDL and LDL over a range of enzyme and substrate concentrations and exposure times. The residual phosphatidylcholines (PtdChos) were assayed by high performance liquid chromatography with electrospray ionization mass spectrometry (LC/ESI-MS). The enzymes varied markedly in their rates of hydrolysis of the different molecular species and in the production of lysoPtdCho. The sPLA2s were compared at a concentration of 1 microg/ml and an incubation time of 4 h, when all three enzymes showed significant activity. The groups V and X sPLA2 were up to 20 times more reactive than group IIA sPLA2. Group X sPLA2 hydrolyzed arachidonate and linoleate containing species preferentially, while group V hydrolyzed the linoleates in preference to polyunsaturates. In all instances, the arachidonoyl and linoleoyl palmitates were hydrolyzed in preference to the corresponding stearates by group X sPLA2. The group IIA enzyme appeared to hydrolyze randomly all diacyl molecular species. The minor alkylacyl and alkenylacyl glycerophosphocholines (GroPChos) were poor substrates for groups V and X sPLA2s and these phospholipids tended to accumulate. The present study demonstrates a preferential release of arachidonate from plasma lipoprotein PtdCho by group X sPLA2, as well as a relative resistance of polyunsaturated PtdChos to hydrolysis by group V enzyme, which had not been previously documented. The use of lipoprotein PtdCho as substrate with LC/ESI-MS identification of hydrolyzed molecular species eliminates much of the uncertainty about sPLA2 specificity arising from past analyses of fatty acid release from unknown or ill-defined sources.  相似文献   

13.
Rat mesangial cells synthesize and secrete a secretory phospholipase A(2) upon stimulation of the cells with cytokines, like IL-1beta and TNF and with cAMP elevating agents like forskolin. This enzyme was previously characterized to belong to group IIA sPLA(2). The discovery of several other low molecular weight phospholipases, like group IIC in murine testis and group V in human and rat heart, prompted investigations on the presence of group IIC and group V sPLA(2) in rat mesangial cells. This was done by isolating the RNA from stimulated cells and performing RT-PCR, using primers specific for group IIC and V sPLA(2). The results indicate that rat mesangial cells upon stimulation express next to group IIA also group V sPLA(2). No indications were obtained for the expression of group IIC sPLA(2). The regulation of the expression of group V sPLA(2) at the mRNA level was further investigated by examining the time-dependent expression, the influence of dexamethasone and the signaling route of the IL-1beta stimulation. The results show that the IL-1beta induced expression of group V sPLA(2) mRNA was time dependent and, similar to that of group IIA sPLA(2) mRNA, involves activation of NF-kappaB. However, in contrast to the group IIA sPLA(2), the expression of group V sPLA(2) was not influenced by the presence of dexamethasone. The expression of both phospholipases was also examined at the protein level in stimulated mesangial cells. Western blot analysis shows that stimulated mesangial cells synthesize both group IIA and group V sPLA(2) protein but the expression of group V is lower compared to that of group IIA sPLA(2). In addition, the extent of secretion into the medium appears to be considerably higher for group IIA than for group V sPLA(2).  相似文献   

14.
Over the last decade, an expanding diversity of secreted phospholipases A(2) (sPLA(2)s) has been identified in mammals. Here, we report the cloning in mice of three additional sPLA(2)s called mouse group IIE (mGIIE), IIF (mGIIF), and X (mGX) sPLA(2)s, thus giving rise to eight distinct sPLA(2)s in this species. Both mGIIE and mGIIF sPLA(2)s contain the typical cysteines of group II sPLA(2)s, but have relatively low levels of identity (less than 51%) with other mouse sPLA(2)s, indicating that these enzymes are novel group II sPLA(2)s. However, a unique feature of mGIIF sPLA(2) is the presence of a C-terminal extension of 23 amino acids containing a single cysteine. mGX sPLA(2) has 72% identity with the previously cloned human group X (hGX) sPLA(2) and displays similar structural features, making it likely that mGX sPLA(2) is the ortholog of hGX sPLA(2). Genes for mGIIE and mGIIF sPLA(2)s are located on chromosome 4, and that of mGX sPLA(2) on chromosome 16. Northern and dot blot experiments with 22 tissues indicate that all eight mouse sPLA(2)s have different tissue distributions, suggesting specific functions for each. mGIIE sPLA(2) is highly expressed in uterus, and at lower levels in various other tissues. mGIIF sPLA(2) is strongly expressed during embryogenesis and in adult testis. mGX sPLA(2) is mostly expressed in adult testis and stomach. When the cDNAs for the eight mouse sPLA(2)s were transiently transfected in COS cells, sPLA(2) activity was found to accumulate in cell medium, indicating that each enzyme is secreted and catalytically active. Using COS cell medium as a source of enzymes, pH rate profile and phospholipid headgroup specificity of the novel sPLA(2)s were analyzed and compared with the other mouse sPLA(2)s.  相似文献   

15.
Structure-guided design was employed in a search for potent and selective inhibitors of mammalian secreted phospholipases A(2) (sPLA(2)s). Using the X-ray structures of human groups IIA and X sPLA(2)s (hGIIA and hGX) as templates, homology structural models were made for the other human and mouse sPLA(2)s (hGIB, mGIB, mGIIA, mGIIC, hGIID, mGIID, hGIIE, mGIIE, hGIIF, mGIIF, hGV, mGV, and mGX). Me-Indoxam is a previously discovered indole analogue that binds tightly to many sPLA(2)s, and the X-ray structure of the hGX-Me-Indoxam complex was determined at a resolution of 2.0 A. Modeling suggests that the residues near the N(1)-substituent of Me-Indoxam vary significantly among the mammalian sPLA(2)s, and therefore a library of 83N(1)-variants was prepared by parallel synthesis. Several Me-Indoxam analogues bearing a 4-(2-oxy-ethanoic acid) side chain were potent inhibitors (IC(50) <0.05 microM) of hGIIA, mGIIA, mGIIC, hGIIE, mGIIE, hGV, and mGV, while they displayed intermediate potency (0.05-5 microM) against hGIB, mGIB, hGX, and mGX, and poorly inhibited (>5 microM) hGIID, mGIID, hGIIF, and mGIIF. Me-Indoxam analogues bearing a 5-(4-oxy-butanoic acid) side chain were generally less potent inhibitors. Although no compounds were found to be highly specific for a single human or mouse sPLA(2), combinations of Me-Indoxam analogues were discovered that could be used to distinguish the action of various sPLA(2)s in cellular events. For example, Me-Indoxam and compound 5 are approximately 5-fold more potent on hGIIA than on hGV, and compound 21 is 10-fold more potent on hGV versus hGIIA.  相似文献   

16.
We have recently reported that members of the heparin-binding group II subfamily of secretory PLA(2)s (sPLA(2)s) (types IIA and V), when transfected into 293 cells, released [(3)H]arachidonic acid (AA) preferentially in response to interleukin-1 (IL-1) and acted as "signaling" PLA(2)s that were functionally coupled with prostaglandin biosynthesis. Here we show that these group II subfamily sPLA(2)s and the type X sPLA(2) behave in a different manner, the former being more efficiently coupled with the prostaglandin-biosynthetic pathway than the latter, in 293 transfectants. Type X sPLA(2), which bound only minimally to cell surface proteoglycans, augmented the release of both [(3)H]AA and [(3)H]oleic acid in the presence of serum but not IL-1. Both types IIA and V sPLA(2), the AA released by which was efficiently converted to prostaglandin E(2), markedly augmented IL-1-induced expression of cyclooxygenase (COX)-2 in a heparin-sensitive fashion, whereas type X sPLA(2) lacked the ability to augment COX-2 expression, thereby exhibiting the poor prostaglandin E(2)-biosynthetic response unless either of the COX isozymes was forcibly introduced into type X sPLA(2)-expressing cells. Implication of phospholipid scramblase, an enzyme responsible for the perturbation of plasma membrane asymmetry, revealed that the scramblase-transfected cells became more sensitive to types IIA and V, but not X, sPLA(2), releasing both [(3)H]AA and [(3)H]oleic acid in an IL-1-independent manner. Thus, although phospholipid scramblase-mediated alteration in plasma membrane asymmetry actually led to the increased cellular susceptibility to the group II subfamily of sPLA(2)s, several lines of evidence suggest that it does not entirely mimic their actions on cells after IL-1 signaling. Interestingly, coexpression of type IIA or V, but not X, sPLA(2) and phospholipid scramblase resulted in a marked reduction in cell growth, revealing an unexplored antiproliferative aspect of particular classes of sPLA(2).  相似文献   

17.
This study tested the hypothesis that certain secretory phospholipase A(2) (sPLA(2)) isotypes act in a cytokine-like fashion through cell surface receptors to influence mast cell survival. Initial experiments revealed that sPLA(2) activity and sPLA(2) receptor expression are increased, and mast cells lost their capacity to maintain membrane asymmetry upon cytokine depletion. Groups IB and III, but not group IIA PLA(2), prevented the loss of membrane asymmetry. Similarly, group IB prevented nucleosomal DNA fragmentation in mast cells. Providing putative products of sPLA(2) hydrolysis to cytokine-depleted mast cells did not influence survival. Furthermore, catalytic inactivation of sPLA(2) did not alter its capacity to prevent apoptosis. Inhibition of protein synthesis using cycloheximide or actinomycin reversed the antiapoptotic effect of sPLA(2). Additionally, both wild-type and catalytically inactive group IB PLA(2) induced IL-3 synthesis in mast cells. However, adding IL-3-neutralizing Ab did not change Annexin V(FITC) binding and only partially inhibited thymidine incorporation in sPLA(2)-supplemented mast cells. In contrast, IL-3-neutralizing Ab inhibited both Annexin V(FITC) binding and thymidine incorporation in mast cells maintained with IL-3. sPLA(2) enhanced phosphoinositide 3'-kinase activity, and a specific inhibitor of phosphoinositide 3'-kinase reversed the antiapoptotic effects of sPLA(2). Likewise, sPLA(2) increased the degradation of I-kappaBalpha, and specific inhibitors of nuclear factor kappa activation (NF-kappaB) reversed the antiapoptotic effects of sPLA(2). Together, these experiments reveal that certain isotypes of sPLA(2) enhance the survival of mast cells in a cytokine-like fashion by activating antiapoptotic signaling pathways independent of IL-3 and probably via sPLA(2) receptors rather than sPLA(2) catalytic products.  相似文献   

18.
Mesangial cells can be induced to express group IIA and group V secretory phospholipase A(2) (sPLA(2)) at the mRNA level and at the protein level. In this report we quantitatively analyze the expression of both proteins in stimulated cells by Western blot techniques. We found that 75-80% of the total amount of synthesized group IIA sPLA(2) was secreted. The synthesized group V sPLA(2), however, was present almost exclusively intracellularly. The amount of group V present in the cell was comparable to the intracellular amount of group IIA sPLA(2). We furthermore studied the localization and routing of both proteins. Using fusion proteins of the group IIA or group V pre-sPLA(2) with green fluorescent protein it was established that both presequences are able to direct the proteins to the Golgi system. In immunofluorescence studies group V sPLA(2) expressed by rat mesangial cells was located in a punctate pattern in the cytosol with an enrichment near the nucleus. Immunofluorescent confocal laser scanning microscopy revealed that the group V and IIA sPLA(2) show partial colocalization in a Golgi-like structure in the inner part in the cell, but no colocalization was seen in the vesicles in the cytoplasm. The images also showed that group IIA sPLA(2) was located throughout the cell while group V was mainly present in the inner part of the cell. After treatment of the cells with brefeldin A or monensin the group IIA enzyme could no longer be detected, while group V sPLA(2) was still present although its localization was somewhat dependent on the treatment. Collectively, these results indicate that the two enzymes differ in both localization and routing in the cell, which underscores the hypothesis that the enzymes might have different functions.  相似文献   

19.
Venomous snakes have various types of phospholipase A(2) inhibitory proteins (PLIs) in their circulatory system to protect them from attack by their own phospholipase A(2)s (PLA(2)s). Here we show the first evidence for the existence of circulating PLI against secretory PLA(2)s (sPLA(2)s) in mammals. In mouse serum, we detected specific binding activities of group IB and X sPLA(2)s, which was in contrast with the absence of binding activities in serum prepared from mice deficient in PLA(2) receptor (PLA(2)R), a type I transmembrane glycoprotein related to the C-type animal lectin family. Western blot analysis after partial purification with group IB sPLA(2) affinity column confirmed the identity of serum sPLA(2)-binding protein as a soluble form of PLA(2)R (sPLA(2)R) that retained all of the extracellular domains of the membrane-bound receptor. Both purified sPLA(2)R and the recombinant soluble receptor having all of the extracellular portions blocked the biological functions of group X sPLA(2), including its potent enzymatic activity and its binding to the membrane-bound receptor. Protease inhibitor tests with PLA(2)R-overexpressing Chinese hamster ovary cells suggested that sPLA(2)R is produced by cleavage of the membrane-bound receptor by metalloproteinases. Thus, sPLA(2)R is the first example of circulating PLI that acts as an endogenous inhibitor for enzymatic activities and receptor-mediated functions of sPLA(2)s in mice.  相似文献   

20.
Beers SA  Buckland AG  Giles N  Gelb MH  Wilton DC 《Biochemistry》2003,42(24):7326-7338
An important characteristic of the human group IIA secreted phospholipase A(2) (IIA PLA(2)) is the extremely low activity of this enzyme with phosphatidylcholine (PC) vesicles, mammalian cell membranes, and serum lipoproteins. This characteristic is reflected in the lack of ability of this enzyme to bind productively to zwitterionic interfaces. Part of the molecular basis for this lack of activity is an absence of tryptophan, a residue with a known preference for residing in the interfacial region of zwitterionic phospholipid bilayers. In this paper we have replaced the eight residues that make up the hydrophobic collar on the interfacial binding surface of the enzyme with tryptophan. The catalytic and interfacial binding properties of these mutants have been investigated, particularly those properties associated with binding to and hydrolysis of zwitterionic interfaces. Only the insertion of a tryptophan at position 3 or 31 produces mutants that significantly enhance the activity of the human IIA enzyme against zwitterionic interfaces and intact cell membranes. Importantly, the ability of the enzyme mutants to hydrolyze PC-rich interfaces such as the outer plasma membrane of mammalian cells was paralleled by enhanced interfacial binding to zwitterionic interfaces. The corresponding double tryptophan mutant (V3,31W) displays a specific activity on PC vesicles comparable to that of the human group V sPLA2. This enhanced activity includes the ability to interact with human embryonic kidney HEK293 cells, previously reported for the group V enzyme [Kim, Y. J., Kim, K. P., Rhee, H. J., Das, S., Rafter, J. D., Oh, Y. S., and Cho, W. (2002) J. Biol. Chem. 277, 9358-9365].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号