首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mouse photoreceptor function and survival critically depend on Ca(2+)-regulated retinal membrane guanylyl cyclase (RetGC), comprised of two isozymes, RetGC1 and RetGC2. We characterized the content, catalytic constants, and regulation of native RetGC1 and RetGC2 isozymes using mice lacking guanylyl cyclase activating proteins GCAP1 and GCAP2 and deficient for either GUCY2F or GUCY2E genes, respectively. We found that the characteristics of both native RetGC isozymes were considerably different from other reported estimates made for mammalian RetGCs: the content of RetGC1 per mouse rod outer segments (ROS) was at least 3-fold lower, the molar ratio (RetGC2:RetGC1) 6-fold higher, and the catalytic constants of both GCAP-activated isozymes between 12- and 19-fold higher than previously measured in bovine ROS. The native RetGC isozymes had different basal activity and were accelerated 5-28-fold at physiological concentrations of GCAPs. RetGC2 alone was capable of contributing as much as 135-165 μM cGMP s(-1) or almost 23-28% to the maximal cGMP synthesis rate in mouse ROS. At the maximal level of activation by GCAP, this isozyme alone could provide a significantly high rate of cGMP synthesis compared to what is expected for normal recovery of a mouse rod, and this can help explain some of the unresolved paradoxes of rod physiology. GCAP-activated native RetGC1 and RetGC2 were less sensitive to inhibition by Ca(2+) in the presence of GCAP1 (EC(50Ca) ~132-139 nM) than GCAP2 (EC(50Ca) ~50-59 nM), thus arguing that Ca(2+) sensor properties of GCAP in a functional RetGC/GCAP complex are defined not by a particular target isozyme but the intrinsic properties of GCAPs themselves.  相似文献   

2.
Guanylyl cyclase (GC) plays a central role in the responses of vertebrate rod and cone photoreceptors to light. cGMP is an internal messenger molecule of vertebrate phototransduction. Light stimulates hydrolysis of cGMP, causing the closure of cGMP-dependent cation channels in the plasma membranes of photoreceptor outer segments. Light also lowers the concentration of intracellular free Ca(2+) and by doing so it stimulates resynthesis of cGMP by guanylyl cyclase. The guanylyl cyclases that couple Ca(2+) to cGMP synthesis in photoreceptors are members of a family of transmembrane guanylyl cyclases that includes atrial natriuretic peptide receptors and the heat-stable enterotoxin receptor. The photoreceptor membrane guanylyl cyclases, RetGC-1 and RetGC-2 (also referred to as GC-E and GC-F), are regulated intracellularly by two Ca(2+)-binding proteins, GCAP-1 and GCAP-2. GCAPs bind Ca(2+) at three functional EF-hand structures. Several lines of biochemical evidence suggest that guanylyl cyclase activator proteins (GCAPs) bind constitutively to an intracellular domain of RetGCs. In the absence of Ca(2+) GCAP stimulates and in the presence of Ca(2+) it inhibits cyclase activity. Proper functioning of RetGC and GCAP is necessary not only for normal photoresponses but also for photoreceptor viability since mutations in RetGC and in GCAP cause photoreceptor degeneration.  相似文献   

3.
Among single-spanning transmembrane receptors (sTMRs), two guanylyl cyclase receptors, GC1 and GC2, are critically important during phototransduction in vertebrate retinal photoreceptor cells. Ca(2+)-free forms of guanylyl cyclase-activating proteins (GCAPs) stimulate GCs intracellularly by a molecular mechanism that is not fully understood. To gain further insight into the mechanism of activation and specificity among these proteins, for the first time, several soluble and active truncated GCs and fusion proteins between intracellular domains of GCs and full-length GCAPs were generated. The GC activity of myristoylated GCAP--(437-1054)GC displayed typical [Ca(2+)] dependence, and was further enhanced by ATP and inhibited by guanylyl cyclase inhibitor protein (GCIP). The myristoyl group of GCAP1 appeared to be critical for the inhibition of GCs at high [Ca(2+)], even without membranes. In contrast, calmodulin (CaM)--(437-1054)GC1 fusion protein was inactive, but could be stimulated by exogenous GCAP1. In a series of experiments, we showed that the activation of GCs by linked GCAPs involved intra- and intermolecular mechanisms. The catalytically productive GCAP1--(437-1054)GC1 complex can dissociate, allowing binding and stimulation of the GC1 fusion protein by free GCAP1. This suggests that the intramolecular interactions within the fusion protein have low affinity and are mimicking the native system. We present evidence that the mechanism of GC activation by GCAPs involves a dimeric form of GCs, involves direct interaction between GCs and GCAPs, and does not require membrane components. Thus, fusion proteins may provide an important advance for further structural studies of photoreceptor GCs and other sTMRs with and without different forms of regulatory proteins.  相似文献   

4.
Guanylyl cyclase-activating proteins (GCAPs) and recoverin are retina-specific Ca(2+)-binding proteins involved in phototransduction. We provide here evidence that in spite of structural similarities GCAPs and recoverin differently change their overall hydrophobic properties in response to Ca(2+). Using native bovine GCAP1, GCAP2 and recoverin we show that: i) the Ca(2+)-dependent binding of recoverin to Phenyl-Sepharose is distinct from such interactions of GCAPs; ii) fluorescence intensity of 1-anilinonaphthalene-8-sulfonate (ANS) is markedly higher at high [Ca(2+)](free) (10 microM) than at low [Ca(2+)](free) (10 nM) in the presence of recoverin, while an opposing effect is observed in the presence of GCAPs; iii) fluorescence resonance energy transfer from tryptophane residues to ANS is more efficient at high [Ca(2+)](free) in recoverin and at low [Ca(2+)](free) in GCAP2. Such different changes of hydrophobicity evoked by Ca(2+) appear to be the precondition for possible mechanisms by which GCAPs and recoverin control the activities of their target enzymes.  相似文献   

5.
Retinal membrane guanylyl cyclase (RetGC) in the outer segments of vertebrate photoreceptors is controlled by guanylyl cyclase activating proteins (GCAPs), responding to light-dependent changes of the intracellular Ca(2+) concentrations. We present evidence that a different RetGC binding protein, retinal degeneration 3 protein (RD3), is a high-affinity allosteric modulator of the cyclase which inhibits RetGC activity at submicromolar concentrations. It suppresses the basal activity of RetGC in the absence of GCAPs in a noncompetitive manner, and it inhibits the GCAP-stimulated RetGC at low intracellular Ca(2+) levels. RD3 opposes the allosteric activation of the cyclase by GCAP but does not significantly change Ca(2+) sensitivity of the GCAP-dependent regulation. We have tested a number of mutations in RD3 implicated in human retinal degenerative disorders and have found that several mutations prevent the stable expression of RD3 in HEK293 cells and decrease the affinity of RD3 for RetGC1. The RD3 mutant lacking the carboxy-terminal half of the protein and associated with Leber congenital amaurosis type 12 (LCA12) is unable to suppress the activity of the RetGC1/GCAP complex. Furthermore, the inhibitory activity of the G57V mutant implicated in cone-rod degeneration is strongly reduced. Our results suggest that inhibition of RetGC by RD3 may be utilized by photoreceptors to block RetGC activity during its maturation and/or incorporation into the photoreceptor outer segment rather than participate in dynamic regulation of the cyclase by Ca(2+) and GCAPs.  相似文献   

6.
Guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins with a fatty acid (mainly myristic acid) that is covalently attached at the N terminus. Myristoylated forms of GCAP were produced in E. coli by coexpression of yeast N-myristoyl-transferase. Proteins with nearly 100% degree of myristoylation were obtained after chromatography on a reversed phase column. Although proteins were denatured by this step, they could be successfully refolded. Nonmyristoylated GCAPs activated bovine photoreceptor guanylate cyclase 1 less efficiently than the myristoylated forms. Maximal activity of guanylate cyclase at low Ca(2+)-concentration decreased about twofold, when GCAPs lacked myristoylation. In addition, the x-fold activation of cyclase was lower with nonmyristoylated GCAPs. Myristoylation of GCAP-2 had no influence on the apparent affinity for photoreceptor guanylate cyclase 1, but GCAP-1 has an about sevenfold higher affinity for cyclase, when it is myristoylated. We conclude that myristoylation of GCAP-1 and GCAP-2 is important for fine tuning of guanylate cyclase activity.  相似文献   

7.
We explored the possibility that, in the regulation of an effector enzyme by a Ca(2+)-sensor protein, the actual Ca(2+) sensitivity of the effector enzyme can be determined not only by the affinity of the Ca(2+)-sensor protein for Ca(2+) but also by the relative affinities of its Ca(2+)-bound versus Ca(2+)-free form for the effector enzyme. As a model, we used Ca(2+)-sensitive activation of photoreceptor guanylyl cyclase (RetGC-1) by guanylyl cyclase activating proteins (GCAPs). A substitution Arg(838)Ser in RetGC-1 found in human patients with cone-rod dystrophy is known to shift the Ca(2+) sensitivity of RetGC-1 regulation by GCAP-1 to a higher Ca(2+) range. We find that at physiological concentrations of Mg(2+) this mutation increases the free Ca(2+) concentration required for half-maximal inhibition of the cyclase from 0.27 to 0.61 microM. Similar to rod outer segment cyclase, Ca(2+) sensitivity of recombinant RetGC-1 is strongly affected by Mg(2+), but the shift in Ca(2+) sensitivity for the R838S mutant relative to the wild type is Mg(2+)-independent. We determined the apparent affinity of the wild-type and the mutant RetGC-1 for both Ca(2+)-bound and Ca(2+)-free GCAP-1 and found that the net shift in Ca(2+) sensitivity of the R838S RetGC-1 observed in vitro can arise predominantly from the change in the affinity of the mutant cyclase for the Ca(2+)-free versus Ca(2+)-loaded GCAP-1. Our findings confirm that the dynamic range for RetGC regulation by Ca(2+)/GCAP is determined by both the affinity of GCAP for Ca(2+) and relative affinities of the effector enzyme for the Ca(2+)-free versus Ca(2+)-loaded GCAP.  相似文献   

8.
Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic-GMP (cGMP). This hydrolysis promotes the closing of cGMP-gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate cyclase-activating proteins (GCAPs) are a family of proteins that regulate retinal guanylate cyclase (GC) activity in a Ca2+-dependent manner. At high [Ca2+], typical of the dark-adapted state (approximately 500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (approximately 50 nM) that occurs after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish dark-state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 with Ca2+ bound. GCAP3 is an EF-hand Ca2+-binding protein with Ca2+ bound to EF2, 3 and 4, while Ca2+ binding to EF-hand 1 is disabled. GCAP3 contains two domains with the EF-hand motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of Ca2+-binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, cluster around EF1 in the N-terminal domain and may represent the interface with GCs. Five point mutations in the closely related GCAP1 have been linked to the etiology of cone dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by GCAP1 mutations.  相似文献   

9.
Guanylyl cyclase-activating proteins (GCAP) are EF-hand Ca(2+)-binding proteins that activate photoreceptor guanylyl cyclase (RetGC) in the absence of Ca(2+) and inhibit RetGC in a Ca(2+)-sensitive manner. The reported data for the RetGC inhibition by Ca(2+)/GCAPs in vitro are in disagreement with the free Ca(2+) levels found in mammalian photoreceptors (Woodruff, M. L., Sampath, A. P., Matthews, H. R., Krasnoperova, N. V., Lem, J., and Fain, G. L. (2002) J. Physiol. (Lond.) 542, 843-854). We have found that binding of Mg(2+) dramatically affects both Ca(2+)-dependent conformational changes in GCAP-1 and Ca(2+) sensitivity of RetGC regulation by GCAP-1 and GCAP-2. Lowering free Mg(2+) concentrations ([Mg](f)) from 5.0 mm to 0.5 mm decreases the free Ca(2+) concentration required for half-maximal inhibition of RetGC ([Ca]((1/2))) by recombinant GCAP-1 and GCAP-2 from 1.3 and 0.2 microm to 0.16 and 0.03 microm, respectively. A similar effect of Mg(2+) on Ca(2+) sensitivity of RetGC by endogenous GCAPs was observed in mouse retina. Analysis of the [Ca]((1/2)) changes as a function of [Mg](f) in mouse retina shows that the [Ca]((1/2)) becomes consistent with the range of 23-250 nm free Ca(2+) found in mouse photoreceptors only if the [Mg](f) in the photoreceptors is near 1 mm. Our data demonstrate that GCAPs are Ca(2+)/Mg(2+) sensor proteins. While Ca(2+) binding is essential for cyclase activation and inhibition, Mg(2+) binding to GCAPs is critical for setting the actual dynamic range of RetGC regulation by GCAPs at physiological levels of free Ca(2+).  相似文献   

10.
Photoreceptor guanylyl cyclase (ROS-GC), converting GTP into cGMP and pyrophosphate, is a key enzyme in the regulation of the visual transduction cascade. ROS-GC requires GC-activating proteins (GCAPs) and low free [Ca] for full activity. We found that when choline or potassium were the major cations present, light caused a 70% inhibition of stimulated ROS-GC in native unstripped membranes. In the presence of sodium ions, however, no inhibition was observed. ROS-GC activity of ROS membranes, stripped of transducin and other components, was not affected by light when reconstituted with GCAP1 only. However, when stripped ROS membranes were reconstituted with both GCAP1 and either transducin (T alpha beta gamma) or the T beta gamma-subunits, the inhibition of ROS-GC by light was restored. The T alpha-subunit alone was ineffective. These results suggest that under saturating light conditions, ROS-GC may be regulated by T beta gamma and cations, providing a possible mechanism of desensitization and light adaptation.  相似文献   

11.
It has been believed that retinal guanylyl cyclase (retGC), a key enzyme in the cGMP recovery to the dark state, is solely activated by guanylyl cyclase-activating proteins (GCAPs) in a Ca2+-sensitive manner. However, a question has arisen as to whether the observed GCAP stimulation of retGC is sufficient to account for the cGMP recovery because the stimulated activity measured in vitro is less than the light/GTP-activated cGMP phosphodiesterase activity. Here we report that the retGC activation by GCAPs is larger than previously reported and that a preincubation with adenine nucleotide is essential for the large activation. Under certain conditions, ATP is two times more effective than adenylyl imidodiphosphate (AMP-PNP), a hydrolysis-resistant ATP analog; however, this study mainly used AMP-PNP to focus on the role of adenine nucleotide binding to retGC. When photoreceptor outer segment homogenates are preincubated with AMP-PNP (EC50 = 0.65 +/- 0.20 mM), GCAP2 enhanced the retGC activity 10-13 times over the control rate. Without AMP-PNP, GCAP2 stimulated the control activity only 3-4-fold as in previous reports. The large activation is due to a GCAP2-dependent increase in Vmax without an alteration of retGC affinity for GCAP2 (EC50 = 47.9 +/- 2.7 nM). GCAP1 stimulated retGC activity in a similar fashion but with lower affinity (EC50 = 308 nM). In the AMP-PNP preincubation, low Ca2+ concentrations are not required, and retGC exists as a monomeric form. This large activation is accomplished through enhanced action of GCAPs as shown by Ca2+ inhibition of the activity (IC50 = 178 nM). We propose that retGC is activated by a two-step mechanism: a conformational change by ATP binding to its kinase homology domain under high Ca2+ concentrations that allows large enhancement of GCAP activation under low Ca2+ concentrations.  相似文献   

12.
Retinal membrane guanylyl cyclase 1 (RetGC1) regulated by guanylyl cyclase-activating proteins (GCAPs) controls photoreceptor recovery and when mutated causes blinding disorders. We evaluated the principal models of how GCAP1 and GCAP2 bind RetGC1: through a shared docking interface versus independent binding sites formed by distant portions of the cyclase intracellular domain. At near-saturating concentrations, GCAP1 and GCAP2 activated RetGC1 from HEK293 cells and RetGC2−/−GCAPs1,2−/− mouse retinas in a non-additive fashion. The M26R GCAP1, which binds but does not activate RetGC1, suppressed activation of recombinant and native RetGC1 by competing with both GCAP1 and GCAP2. Untagged GCAP1 displaced both GCAP1-GFP and GCAP2-GFP from the complex with RetGC1 in HEK293 cells. The intracellular segment of a natriuretic peptide receptor A guanylyl cyclase failed to bind GCAPs, but replacing its kinase homology and dimerization domains with those from RetGC1 restored GCAP1 and GCAP2 binding by the hybrid cyclase and its GCAP-dependent regulation. Deletion of the Tyr1016–Ser1103 fragment in RetGC1 did not block GCAP2 binding to the cyclase. In contrast, substitutions in the kinase homology domain, W708R and I734T, linked to Leber congenital amaurosis prevented binding of both GCAP1-GFP and GCAP2-GFP. Our results demonstrate that GCAPs cannot regulate RetGC1 using independent primary binding sites. Instead, GCAP1 and GCAP2 bind with the cyclase molecule in a mutually exclusive manner using a common or overlapping binding site(s) in the Arg488–Arg851 portion of RetGC1, and mutations in that region causing Leber congenital amaurosis blindness disrupt activation of the cyclase by both GCAP1 and GCAP2.  相似文献   

13.
In rod phototransduction, cyclic GMP synthesis by membrane bound guanylate cyclase ROS-GC1 is under Ca(2+)-dependent negative feedback control mediated by guanylate cyclase-activating proteins, GCAP-1 and GCAP-2. The cellular concentration of GCAP-1 and GCAP-2 approximately sums to the cellular concentration of a functional ROS-GC1 dimer. Both GCAPs increase the catalytic efficiency (kcat/Km) of ROS-GC1. However, the presence of a myristoyl group in GCAP-1 has a strong impact on the regulation of ROS-GC1, this is in contrast to GCAP-2. Catalytic efficiency of ROS-GC1 increases 25-fold when it is reconstituted with myristoylated GCAP-1, but only by a factor of 3.4 with nonmyristoylated GCAP-1. In contrast to GCAP1, myristoylation of GCAP-2 has only a minor effect on kcat/Km. The increase with both myristoylated and nonmyristoylated GCAP-2 is 10 to 13-fold. GCAPs also confer different Ca(2+)-sensitivities to ROS-GC1. Activation of the cyclase by GCAP-1 is half-maximal at 707 nM free [Ca(2+)], while that by GCAP-2 is at 100 nM. The findings show that differences in catalytic efficiency and Ca(2+)-sensitivity of ROS-GC1 are conferred by GCAP-1 and GCAP-2. The results further indicate the concerted operation of two 'GCAP modes' that would extend the dynamic range of cyclase regulation within the physiological range of free cytoplasmic Ca(2+) in photoreceptor cells.  相似文献   

14.
The guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins of the calmodulin (CaM) gene superfamily that function in the regulation of photoreceptor guanylate cyclases (GCs). In the mammalian retina, two GCAPs (GCAP 1-2) and two transmembrane GCs have been identified as part of a complex regulatory system responsive to fluctuating levels of free Ca(2+). A third GCAP, GCAP3, is expressed in human and zebrafish (Danio rerio) retinas, and a guanylate cyclase-inhibitory protein (GCIP) has been shown to be present in frog cones. To explore the diversity of GCAPs in more detail, we searched the pufferfish (Fugu rubripes) and zebrafish (Danio rerio) genomes for GCAP-related gene sequences (fuGCAPs and zGCAPs, respectively) and found that at least five additional GCAPs (GCAP4-8) are predicted to be present in these species. We identified genomic contigs encoding fuGCAPl-8, fuGCIP, zGCAPl-5, zGCAP7 and zGCIP. We describe cloning, expression and localization of three novel GCAPs present in the zebrafish retina (zGCAP4, zGCAP5, and zGCAP7). The results show that recombinant zGCAP4 stimulated bovine rod outer segment GC in a Ca(2+)-dependent manner. RT-PCR with zGCAP specific primers showed specific expression of zGCAPs and zGCIP in the retina, while zGCAPl mRNA is also present in the brain. In situ hybridization with anti-sense zGCAP4, zGCAP5 and zGCAP7 RNA showed exclusive expression in zebrafish cone photoreceptors. The presence of at least eight GCAP genes suggests an unexpected diversity within this subfamily of Ca(2+)-binding proteins in the teleost retina, and suggests additional functions for GCAPs apart from stimulation of GC. Based on genome searches and EST analyses, the mouse and human genomes do not harbor GCAP4-8 or GCIP genes.  相似文献   

15.
Guanylyl cyclase-activating proteins are EF-hand Ca(2+)-binding proteins that belong to the calmodulin superfamily. They are involved in the regulation of photoreceptor membrane-associated guanylyl cyclases that produce cGMP, a second messenger of vertebrate vision. Here, we investigated changes in GCAP1 structure using mutagenesis, chemical modifications, and spectroscopic methods. Two Cys residues of GCAP1 situated in spatially distinct regions of the N-terminal domain (positions 18 and 29) and two Cys residues located within the C-terminal lobe (positions 106 and 125) were employed to detect conformational changes upon Ca(2+) binding. GCAP1 mutants with only a single Cys residue at each of these positions, modified with N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine, an environmentally sensitive fluorophore, and with (1-oxy-2,2,5,5-tetramethylpyrroline-3-methyl)methanethiosulfonate, a spin label reagent, were studied using fluorescence and EPR spectroscopy, respectively. Only minor structural changes around Cys(18), Cys(29), Cys(106), and Cys(125) were observed as a function of Ca(2+) concentration. No Ca(2+)-dependent oligomerization of GCAP1 was observed at physiologically relevant Ca(2+) concentrations, in contrast to the observation reported by others for GCAP2. Based on these results and previous studies, we propose a photoreceptor activation model that assumes changes within the flexible central helix upon Ca(2+) dissociation, causing relative reorientation of two structural domains containing a pair of EF-hand motifs and thus switching its partner, guanylyl cyclase, from an inactive (or low activity) to an active conformation.  相似文献   

16.
Cyclic GMP serves as the second messenger in visual transduction, linking photon absorption by rhodopsin to the activity of ion channels. Synthesis of cGMP in photoreceptors is supported by a pair of retina-specific guanylyl cyclases, retGC1 and -2. Two neuronal calcium sensors, GCAP1 and GCAP2, confer Ca(2+) sensitivity to guanylyl cyclase activity, but the importance and the contribution of each GCAP is controversial. To explore this issue, the gene GUCA1B, coding for GCAP2, was disrupted in mice, and the capacity for knock-out rods to regulate retGC and generate photoresponses was tested. The knock-out did not compromise rod viability or alter outer segment ultrastructure. Levels of retGC1, retGC2, and GCAP-1 expression did not undergo compensatory changes, but the absence of GCAP2 affected guanylyl cyclase activity in two ways; (a) the maximal rate of cGMP synthesis at low [Ca(2+)] dropped 2-fold and (b) the half-maximal rate of cGMP synthesis was attained at a higher than normal [Ca(2+)]. The addition of an antibody raised against mouse GCAP2 produced similar effects on the guanylyl cyclase activity in wild type retinas. Flash responses of GCAP2 knock-out rods recovered more slowly than normal. Knock-out rods became more sensitive to flashes and to steps of illumination but tended to saturate at lower intensities, as compared with wild type rods. Therefore, GCAP2 regulation of guanylyl cyclase activity quickens the recovery of flash and step responses and adjusts the operating range of rods to higher intensities of ambient illumination.  相似文献   

17.
Rod outer segment membrane guanylate cyclase1 (ROS-GC1) is the original member of the membrane guanylate cyclase subfamily whose distinctive feature is that it transduces diverse intracellularly generated Ca(2+) signals in the sensory neurons. In the vertebrate retinal neurons, ROS-GC1 is pivotal for the operations of phototransduction and, most likely, of the synaptic activity. The phototransduction- and the synapse-linked domains are separate, and they are located in the intracellular region of ROS-GC1. These domains sense Ca(2+) signals via Ca(2+)-binding proteins. These proteins are ROS-GC activating proteins, GCAPs. GCAPs control ROS-GC1 activity through two opposing regulatory modes. In one mode, at nanomolar concentrations of Ca(2+), the GCAPs activate the cyclase and as the Ca(2+) concentrations rise, the cyclase is progressively inhibited. This mode operates in phototransduction via two GCAPs: 1 and 2. The second mode occurs at micromolar concentrations of Ca(2+) via S100beta. Here, the rise of Ca(2+) concentrations progressively stimulates the enzyme. This mode is linked with the retinal synaptic activity. In both modes, the final step in Ca(2+) signal transduction involves ROS-GC dimerization, which causes the cyclase activation. The identity of the dimerization domain is not known. A heterozygous, triple mutation -E786D, R787C, T788M- in ROS-GC1 has been connected with autosomal cone-rod dystrophy in a British family. The present study shows the biochemical consequences of this mutation on the phototransduction- and the synapse-linked components of the cyclase. (1) It severely damages the intrinsic cyclase activity. (2) It significantly raises the GCAP1- and GCAP2-dependent maximal velocity of the cyclase, but this compensation, however, is not sufficient to override the basal cyclase activity. (3) It converts the cyclase into a form that only marginally responds to S100beta. The mutant produces insufficient amounts of the cyclic GMP needed to drive the machinery of phototransduction and of the retinal synapse at an optimum level. The underlying cause of the breakdown of both types of machinery is that, in contrast to the native ROS-GC1, the mutant cyclase is unable to change from its monomeric to the dimeric form, the form required for the functional integrity of the enzyme. The study defines the CORD in molecular terms, at a most basic level identifies a region that is critical in its dimer formation, and, thus, discloses a single unifying mechanistic theme underlying the complex pathology of the disease.  相似文献   

18.
Dynamics of cyclic GMP synthesis in retinal rods   总被引:6,自引:0,他引:6  
Burns ME  Mendez A  Chen J  Baylor DA 《Neuron》2002,36(1):81-91
In retinal rods, Ca(2+) exerts negative feedback control on cGMP synthesis by guanylate cyclase (GC). This feedback loop was disrupted in mouse rods lacking guanylate cyclase activating proteins GCAP1 and GCAP2 (GCAPs(-/-)). Comparison of the behavior of wild-type and GCAPs(-/-) rods allowed us to investigate the role of the feedback loop in normal rod function. We have found that regulation of GC is apparently the only Ca(2+) feedback loop operating during the single photon response. Analysis of the rods' light responses and cellular dark noise suggests that GC normally responds to light-driven changes in [Ca(2+)] rapidly and highly cooperatively. Rapid feedback to GC speeds the rod's temporal responsiveness and improves its signal-to-noise ratio by minimizing fluctuations in cGMP.  相似文献   

19.
Guanylyl cyclase-activating proteins (GCAPs are 23-kDa Ca2+-binding proteins belonging to the calmodulin superfamily. Ca2+-free GCAPs are responsible for activation of photoreceptor guanylyl cyclase during light adaptation. In this study, we characterized GCAP1 mutants in which three endogenous nonessential Trp residues were replaced by Phe residues, eliminating intrinsic fluorescence. Subsequently, hydrophobic amino acids adjacent to each of the three functional Ca2+-binding loops were replaced by reporter Trp residues. Using fluorescence spectroscopy and biochemical assays, we found that binding of Ca2+ to GCAP1 causes a major conformational change especially in the region around the EF3-hand motif. This transition of GCAP1 from an activator to an inhibitor of GC requires an activation energy Ea = 9.3 kcal/mol. When Tyr99 adjacent to the EF3-hand motif was replaced by Cys, a mutation linked to autosomal dominant cone dystrophy in humans, Cys99 is unable to stabilize the inactive GCAP1-Ca2+ complex. Stopped-flow kinetic measurements indicated that GCAP1 rapidly loses its bound Ca2+ (k-1 = 72 s-1 at 37 degrees C) and was estimated to associate with Ca2+ at a rate (k1 > 2 x 10(8) M-1 s-1) close to the diffusion limit. Thus, GCAP1 displays thermodynamic and kinetic properties that are compatible with its involvement early in the phototransduction response.  相似文献   

20.
ROS-GC represents a membrane guanylate cyclase subfamily whose distinctive feature is that it transduces diverse intracellularly generated Ca(2+) signals into the production of the second messenger cyclic GMP. An intriguing feature of the first subfamily member, ROS-GC1, is that it is both stimulated and inhibited by these signals. The inhibitory signals are processed by the cyclase activating proteins, GCAPs. The only known stimulatory signal is by the Ca(2+)-dependent guanylate cyclase activating protein, CD-GCAP. There are two GCAPs, 1 and 2, which link the cyclase with phototransduction, and one CD-GCAP, which is predicted to link ROS-GC1 with its retinal synaptic activity. Individual switches for these GCAPs and CD-GCAP have been respectively defined as CRM1, CRM3, and CRM2. This report defines the identity of a new ROS-GC1 regulator: neurocalcin. A surprising feature of the regulator is that it structurally is a GCAP but functionally behaves as a CD-GCAP. Recombinant neurocalcin stimulates ROS-GC1 in a dose-dependent fashion; the stimulation is Ca(2+)-dependent with an EC(50) of 20 microM; and the modulated domain resides at the C-terminal segment, between amino acids 731 and 1054. Previously, the residence of CRM2 has also been defined in this segment of the cyclase. However, the present study shows that the neurocalcin-regulated domain is distinct from CRM2. This is now designated as CRM4. Thus, the signal transduction mechanisms of neurocalcin and CD-GCAP are different, occurring through different modules of ROS-GC1. Neurocalcin signaling of ROS-GC1 is highly specific. It does not influence the activity of its second subfamily member, ROS-GC2, and of the other retinal guanylate cyclase, atrial natriuretic factor-receptor guanylate cyclase. In conclusion, the findings extend the concept of ROS-GC1's sensing diverse Ca(2+) signals, reveal the identity of its unexpected new Ca(2+) regulator, and show that the regulator acts through its specific cyclase domain. This represents an additional transduction mechanism of Ca(2+) signaling via ROS-GC1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号