首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The perichondrium and periosteum have recently been suggested to be involved in the regulation of limb growth, serving as potential sources of signaling molecules that are involved in chondrocyte proliferation, maturation, and hypertrophy. Previously, we observed that removal of the perichondrium and periosteum from tibiotarsi in organ culture resulted in an overall increase in longitudinal cartilage growth, suggesting negative regulation originating from these tissues. To determine if the perichondrium and periosteum regulate growth through the production of diffusible factors, we have tested various conditioned media from these tissues for the ability to modify cartilage growth in tibiotarsal organ cultures from which these tissues have been removed. Both negative and positive regulatory activities were detected. Negative regulation was observed with conditioned medium from (1) cell cultures of the region bordering both the perichondrium and the periosteum, (2) co-cultures of perichondrial and periosteal cells, and (3) a mixture of conditioned media from perichondrial cell cultures and periosteal cell cultures. The requirement for regulatory factors from both the perichondrium and periosteum suggests a novel mechanism of regulation. Positive regulation was observed with conditioned media from several cell types, with the most potent activity being from articular perichondrial cells and hypertrophic chondrocytes.  相似文献   

2.
We investigated the morphology and development of the scleral ossicles within the eyes of three species from three basal teleost orders, namely, the alewife (Alosa pseudoharengus; Clupeiformes), the surface morph of the Mexican tetra (Astyanax mexicanus; Characiformes) and zebrafish (Danio rerio; Cypriniformes). Two morphologies, circular and elongated, and one variation, fused elements, were identified. Zebrafish have small circular ossicles, whereas the alewife and the Mexican tetra have elongated ossicles. Surprisingly in the Mexican tetra these elements fuse at one end forming a continuous element with an antero-ventral opening; this may be typical for the Order Characiformes. Regardless of morphology, the ossicles develop via unilateral perichondral ossification of the scleral cartilage from two centers opposite one another in the eye. This unilateral type of ossification, in which only the perichondrium furthest from the retina contributes to the ossicles, has not previously been reported in any vertebrate. Because either the perichondrium and/or an extension of the perichondrium can transform into the scleral ossicle, we refer to the transitional tissue as periskeletal. Although the functional significance of the different shaped ossicles is unclear, skeletal muscle attaches directly to these bones, implying voluntary control. The morphological and developmental variation of teleost scleral ossicles makes them an ideal system for determining the genetic basis underlying phenotypic variation as well as for studying mechanisms underlying osteogenic and chondrogenic processes in teleosts. These data support our previous finding that scleral ossicles in teleosts may not be homologous to those in other vertebrates, such as reptiles.  相似文献   

3.
A role for retinoic acid in regulating the regeneration of deer antlers   总被引:14,自引:0,他引:14  
Deer antlers are the only mammalian organs that can be repeatedly regenerated; each year, these complex structures are shed and then regrow to be used for display and fighting. To date, the molecular mechanisms controlling antler regeneration are not well understood. Vitamin A and its derivatives, retinoic acids, play important roles in embryonic skeletal development. Here, we provide several lines of evidence consistent with retinoids playing a functional role in controlling cellular differentiation during bone formation in the regenerating antler. Three receptors (alpha, beta, gamma) for both the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families show distinct patterns of expression in the growing antler tip, the site of endochondral ossification. RAR alpha and RXR beta are expressed in skin ("velvet") and the underlying perichondrium. In cartilage, which is vascularised, RXR beta is specifically expressed in chondrocytes, which express type II collagen, and RAR alpha in perivascular cells, which also express type I collagen, a marker of the osteoblast phenotype. High-performance liquid chromatography analysis shows significant amounts of Vitamin A (retinol) in antler tissues at all stages of differentiation. The metabolites all-trans-RA and 4-oxo-RA are found in skin, perichondrium, cartilage, bone, and periosteum. The RXR ligand, 9-cis-RA, is found in perichondrium, mineralised cartilage, and bone. To further define sites of RA synthesis in antler, we immunolocalised retinaldehyde dehydrogenase type 2 (RALDH-2), a major retinoic acid-generating enzyme. RALDH-2 is expressed in the skin and perichondrium and in perivascular cells in cartilage, although chondroprogenitors and chondrocytes express very low levels. At sites of bone formation, differentiated osteoblasts which express the bone-specific protein osteocalcin express high levels of RALDH2. The effect of RA on antler cell differentiation was studied in vitro; all-trans-RA inhibits expression of the chondrocyte phenotype, an effect that is blocked by addition of the RAR antagonist Ro41-5253. In monolayer cultures of mesenchymal progenitor cells, all-trans-RA increases the expression of alkaline phosphatase, a marker of the osteoblastic phenotype. In summary, this study has shown that antler tissues contain endogenous retinoids, including 9-cis RA, and the enzyme RALDH2 that generates RA. Sites of RA synthesis in antler correspond closely with the localisation of cells which express receptors for these ligands and which respond to the effects of RA.  相似文献   

4.
5.
We describe a novel human gene, named SEL-OB/SVEP1, expressed by skeletal tissues in vivo and by cultured osteogenic cells. The mRNA expression was analyzed on frozen tissues retrieved by laser-capture microscope dissection (LCM) and was detected in osteogenic tissues (periosteum and bone) but not in cartilage or skeletal muscle. The SEL-OB/SVEP1 cDNA of 11,139 bp was in silico translated into a 3574AA protein with expected molecular weight of 370 kDa. The protein is composed of multiple domains including complement control protein (CCP) modules with selectin superfamily signature; sushi and other domains, such as vWA, EGF, PTX, and HYR. Stromal osteogenic cells were analyzed for the protein expression using anti-SEL-OB/SVEP1 for immuno-precipitation and Western blot application confirm the presence of high molecular weight protein. Immuno-histochemistry and fluorescence-activated cell sorting (FACS) were applied to detect SEL-OB/SVEP1 on the surface of stromal cells. ELISA quantified the dependence of protein expression on cell density. Bioinformatic analysis of SEL-OB/SVEP1 revealed domains compositions recognized in cell surface molecules and suggested its role in cell adhesion. Analysis of mesechymal osteogenic cells' adhesion in presence of anti-SEL-OB/SVEP1 antibody demonstrated its interference with initial adhesion stages. In summary, present study describes novel SEL-OB/SVEP1 protein with a unique composition of functional domains, restricted pattern of expression in skeletal cells and demonstrated involvement in attachment of mesenchymal cells. The unusual composition of functional domains puts SEL-OB/SVEP1 in the discrete new group of membrane proteins involved in cell adhesion processes. All together makes SEL-OB/SVEP1 an attractive marker for studying the role of stromal osteogenic cells and their interactions within the bone marrow microenvironment creating a network that regulates the skeletal homeostasis.  相似文献   

6.
During the initiation of endochondral ossification three events occur that are inextricably linked in time and space: chondrocytes undergo terminal differentiation and cell death, the skeletal vascular endothelium invades the hypertrophic cartilage matrix, and osteoblasts differentiate and begin to deposit a bony matrix. These developmental programs implicate three tissues, the cartilage, the perichondrium, and the vascular endothelium. Due to their intimate associations, the interactions among these three tissues are exceedingly difficult to distinguish and elucidate. We developed an ex vivo system to unlink the processes initiating endochondral ossification and establish more precisely the cellular and molecular contributions of the three tissues involved. In this ex vivo system, the renal capsule of adult mice was used as a host environment to grow skeletal elements. We first used a genetic strategy to follow the fate of cells derived from the perichondrium and from the vasculature. We found that the perichondrium, but not the host vasculature, is the source of both trabecular and cortical osteoblasts. Endothelial cells residing within the perichondrium are the first cells to participate in the invasion of the hypertrophic cartilage matrix, followed by endothelial cells derived from the host environment. We then combined these lineage analyses with a series of tissue manipulations to address how the absence of the perichondrium or the vascular endothelium affected skeletal development. We show that although the perichondrium influences the rate of chondrocytes maturation and hypertrophy, it is not essential for chondrocytes to undergo late hypertrophy. The perichondrium is crucial for the proper invasion of blood vessels into the hypertrophic cartilage and both the perichondrium and the vasculature are essential for endochondral ossification. Collectively, these studies clarify further the contributions of the cartilage, perichondrium, and vascular endothelium to long bone development.  相似文献   

7.
TGF-β has been implicated in the proliferation and differentiation of chondrocytes and osteoblasts. However, the in vivo function of TGF-β in skeletal development is unclear. In this study, we investigated the role of TGF-β signaling in growth plate development by creating mice with a conditional knockout of the TGF-β type I receptor ALK5 (ALK5CKO) in skeletal progenitor cells using Dermo1-Cre mice. ALK5CKO mice had short and wide long bones, reduced bone collars, and trabecular bones. In ALK5CKO growth plates, chondrocytes proliferated and differentiated, but ectopic cartilaginous tissues protruded into the perichondrium. In normal growth plates, ALK5 protein was strongly expressed in perichondrial progenitor cells for osteoblasts, and in a thin chondrocyte layer located adjacent to the perichondrium in the peripheral cartilage. ALK5CKO growth plates had an abnormally thin perichondrial cell layer and reduced proliferation and differentiation of osteoblasts. These defects in the perichondrium likely caused the short bones and ectopic cartilaginous protrusions. Using tamoxifen-inducible Cre-ER™-mediated ALK5-deficient primary calvarial cell cultures, we found that TGF-β signaling promoted osteoprogenitor proliferation, early differentiation, and commitment to the osteoblastic lineage through the selective MAPKs and Smad2/3 pathways. These results demonstrate the important roles of TGF-β signaling in perichondrium formation and differentiation, as well as in growth plate integrity during skeletal development.  相似文献   

8.
Osteogenin, a novel bone differentiation factor isolated from bone, has been recently purified and the amino acid sequence determined. Osteogenin in conjunction with a collagenous bone matrix substratum induces cartilage and bone formation in vivo. In order to understand the developmental role of osteogenin during cartilage and bone morphogenesis we examined the binding and distribution of iodinated osteogenin in developing rat embryos. Whole embryo tissue sections were made from 11, 12, 13, 15, 18, and 20 day fetuses. The specific binding of osteogenin at different stages of rat embryonic development was determined by autoradiography. Maximal binding was observed in mesodermal tissues such as cartilage, bone, perichondrium, and periosteum. During Days 11-15, peak binding was localized to perichondrium during limb and vertebral morphogenesis. By Day 18 periosteum exhibited the highest concentration of autoradiographic grains. Osteogenin was also localized in developing membranous bones of the calvarium and other craniofacial bones. Considerably less binding was observed, in decreasing order, in muscle, liver, spleen, skin, brain, heart, kidney, and intestine. The observed maximal binding during skeletal morphogenesis implies a developmental role for osteogenin.  相似文献   

9.
Skeletal development involves complex coordination among multiple cell types and tissues. In long bones, a cartilage template surrounded by the perichondrium is first laid down and is subsequently replaced by bone marrow and bone, during a process named endochondral ossification. Cells in the cartilage template and the surrounding perichondrium are derived from mesenchymal cells, which condense locally. In contrast, many cell types that make up mature bone and in particular the bone marrow are brought in by the vasculature. Three tissues appear to be the main players in the initiation of endochondral ossification: the cartilage, the adjacent perichondrium, and the invading vasculature. Interactions among these tissues are synchronized by a large number of secreted and intracellular factors, many of which have been identified in the past 10 years. Some of these factors primarily control cartilage differentiation, while others regulate bone formation and/or angiogenesis. Understanding how these factors operate during skeletal development through the analyses of genetically altered mice depends on being able to distinguish the effect of these molecules on the different cell types that comprise the skeleton. This review will discuss the complexity of skeletal phenotypes, which arises from the tightly regulated, complex interactions among the three tissues involved in bone development. Specific examples illustrate how gene functions may be further assessed using new approaches including genetic and tissue manipulations.  相似文献   

10.
Malate dehydrogenases (MDHs) play crucial roles in the physiological processes of plant growth and development. In this study, 13 and 25 MDH genes were identified from Gossypium raimondii and Gossypium hirsutum, respectively. Using these and 13 previously reported Gossypium arboretum MDH genes, a comparative molecular analysis between identified MDH genes from G. raimondii, G. hirsutum, and G. arboretum was performed. Based on multiple sequence alignments, cotton MDHs were divided into five subgroups: mitochondrial MDH, peroxisomal MDH, plastidial MDH, chloroplastic MDH and cytoplasmic MDH. Almost all of the MDHs within the same subgroup shared similar gene structure, amino acid sequence, and conserved motifs in their functional domains. An analysis of chromosomal localization suggested that segmental duplication played a major role in the expansion of cotton MDH gene families. Additionally, a selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of MDH gene families in cotton. Meanwhile, an expression analysis showed the distinct expression profiles of GhMDHs in different vegetative tissues and at different fiber developmental stages, suggesting the functional diversification of these genes in cotton growth and fiber development. Finally, a promoter analysis indicated redundant but typical cis-regulatory elements for the potential functions and stress activity of many MDH genes. This study provides fundamental information for a better understanding of cotton MDH gene families and aids in functional analyses of the MDH genes in cotton fiber development.  相似文献   

11.
The main purpose of this in situ hybridization study was to investigate MMPs and TIMPs mRNA expression in developing mandibular condylar cartilage and limb bud cartilage. At E14.0, MMP-2, -14, TIMP-1 and -2 mRNAs were expressed in the periosteum of mandibular bone, and in the condylar anlage. At E15.0 MMP-2, -14, TIMP-1 and -2 mRNAs were expressed in the perichondrium of newly formed condylar cartilage and the periosteum of developing bone collar, whereas, expression of MMP-14 and TIMP-1 mRNAs were restricted to the inner layer of the periosteum/perichondrium. This expression patterns continued until E18.0. Further, from E13.0 to 14.0, in the developing tibial cartilage, MMP-2, -14, and TIMP-2 mRNAs were expressed in the periosteum/perichondrium, but weak MMP-14 and no TIMP-1 mRNA expression was recognized in the perichondrium. These results confirmed that the perichondrium of condylar cartilage has characteristics of periosteum, and suggested that MMPs and/or TIMPs are more actively involved in the development of condylar (secondary) cartilage than tibial (primary) cartilage. MMP-9-positive cells were observed in the bone collar of both types of cartilage, and they were consistent with osteoclasts/chondroclasts. MMP-13 mRNA expression was restricted to the chondrocytes of the lower hypertrophic cell zone in tibial cartilage at E14.0, indicating MMP-13 can be used as a marker for lower hypertrophic cell zone. It was also expressed in chondrocytes of newly formed condylar cartilage at E15.0, and continuously expressed in the lower hypertrophic cell zone until E18.0. These results confirmed that progenitor cells of condylar cartilage are rapidly differentiated into hypertrophic chondrocytes, which is a unique structural feature of secondary cartilage different from that of primary cartilage.  相似文献   

12.
Pungency in peppers is due to the presence of capsaicinoid molecules, which are only produced in Capsicum species. The major gene Pun1 is required for the production of capsaicinoids. Three distinct mutant alleles of Pun1 have been found in three cultivated Capsicum species, one of which has been widely utilized by breeders. Although these mutations have been previously identified, a robust collection of molecular markers for the set of alleles is not available. This has been hindered by the existence of at least one paralogous locus that tends to amplify with Pun1. We present a suite of markers that can differentiate the four Pun1 alleles and test them on a diverse panel of pepper lines and in an F2 population segregating for pungency. These markers will be useful for pepper breeding, germplasm characterization, and seed purity testing.  相似文献   

13.
Tissue collection methods for antler research   总被引:13,自引:0,他引:13  
The rapid growth of deer antlers makes them potentially excellent models for studying tissue regeneration. In order to facilitate this, we have developed and refined antler tissue sampling methods through years of antler research. In the study, antler tissues were divided into three main groups: antler stem tissue, antler blastema and antler growth centre. For sampling stem tissue, entire initial antlerogenic periosteum (around 22 mm in diameter) could be readily peeled off from the underlying bone using a pair of rat-toothed forceps after delineating the boundary. Apical and peripheral periosteum/ perichondrium of pedicle and antler could only be peeled off intact when they were cut into 4 quadrants and 0.5 cm-wide strips respectively. Antler blastema included blastema per se, and potentiated and dormant periostea. Blastema per se was sampled after it was divided into 4 quadrants using a disposable microtome blade. Potentiated and dormant periostea were collected following the same method used for sampling peripheral periosteum of pedicle and antler. The antler growth centre was divided with a scalpel into 5 layers according to distinctive morphological markers. The apical skin layer could be further separated into dermis and epidermis using enzyme digestion for the study of tissue interaction. We believe that the application of modern techniques coupled with the tissue collection methods reported here will greatly facilitate the establishment of these valuable models.  相似文献   

14.
Immunoidentification of type XII collagen in embryonic tissues   总被引:5,自引:3,他引:2       下载免费PDF全文
We have generated a monoclonal antibody against a synthetic peptide whose sequence was derived from the nucleotide sequence of a cDNA encoding alpha 1(XII) collagen. The antibody, 75d7, has been used to identify the alpha 1(XII) chain on immunoblots of SDS-PAGE tendon extracts as a 220-kD polypeptide, under reducing conditions. Amino-terminal amino acid sequence analysis of an immunopurified cyanogen bromide fragment of type XII collagen from embryonic chick tendons gave a single sequence identical to that predicted from the cDNA, thus confirming that the antibody recognizes the type XII protein. Immunofluorescence studies with the antibody demonstrate that type XII collagen is localized in type I-containing dense connective tissue structures such as tendons, ligaments, perichondrium, and periosteum. With these data, taken together with previous results showing that a portion of the sequence domains of type XII collagen is similar to domains of type IX, a nonfibrillar collagen associated with cross-striated fibrils in cartilage, we suggest that types IX and XII collagens are members of a distinct class of extracellular matrix proteins found in association with quarter-staggered collagen fibrils.  相似文献   

15.
PlexinD1 is a membrane-bound receptor that mediates signals derived from class 3 secreted semaphorins. Although semaphorin signaling in axon guidance in the nervous system has been extensively studied, functions outside the nervous system including important roles in vascular patterning have also been demonstrated. Inactivation of plexinD1 leads to neo-natal lethality, structural defects of the cardiac outflow tract, peripheral vascular abnormalities, and axial skeletal morphogenesis defects. PlexinD1 is expressed by vascular endothelial cells, but additional domains of expression have also been demonstrated including in lymphocytes, osteoblasts, neural crest and the central nervous system. Hence, the cell-type specific functions of plexinD1 have remained unclear. Here, we describe the results of tissue-specific gene inactivation of plexinD1 in Tie2 expressing precursors, which recapitulates the null phenotype with respect to congenital heart, vascular, and skeletal abnormalities resulting in neonatal lethality. Interestingly, these mutants also have myocardial defects not previously reported. In addition, we demonstrate functions for plexinD1 in post-natal retinal vasculogenesis and adult angiogenesis through the use of inducible cre-mediated deletion. These results demonstrate an important role for PlexinD1 in embryonic and adult vasculature.  相似文献   

16.
The receptor tyrosine kinase-like orphan receptor (Ror) proteins are conserved tyrosine kinase receptors that play roles in a variety of cellular processes that pattern tissues and organs during vertebrate and invertebrate development. Ror signaling is required for skeleton and neuronal development and modulates cell migration, cell polarity, and convergent extension. Ror has also been implicated in two human skeletal disorders, brachydactyly type B and Robinow syndrome. Rors are widely expressed during metazoan development including domains in the nervous system. Here, we review recent progress in understanding the roles of the Ror receptors in neuronal migration, axonal pruning, axon guidance, and synaptic plasticity. The processes by which Ror signaling execute these diverse roles are still largely unknown, but they likely converge on cytoskeletal remodeling. In multiple species, Rors have been shown to act as Wnt receptors signaling via novel non-canonical Wnt pathways mediated in some tissues by the adapter protein disheveled and the non-receptor tyrosine kinase Src. Rors can either activate or repress Wnt target expression depending on the cellular context and can also modulate signal transduction by sequestering Wnt ligands away from their signaling receptors. Future challenges include the identification of signaling components of the Ror pathways and bettering our understanding of the roles of these pleiotropic receptors in patterning the nervous system.  相似文献   

17.
18.
Summary The Ki-67 monoclonal antibody which recognizes a human nuclear antigen expressed by cycling cells but not by resting cells was found to react immunohistochemically with tissues from the rabbitOryctolagus cuniculus. Ki-67 immunoreactivity was restricted to the nucleus. A comparative study with bromodeoxyuridine labelling patterns was carried out to study the association with proliferating cells. In lingual, jejunal and appendix mucosa, skin, adrenal gland, thymus, spleen, bone marrow, testis, growth cartilage, periosteum and perichondrium of long bones the distribution of Ki-67 positive and bromodeoxyuridine labelled cells was similar and consistent with the distribution of proliferating cells in these tissues. In tissue from the brain, kidney, skeletal or cardiac muscle and liver no Ki-67 positive or bromodeoxyuridine labelled cells were seen. In cartilage labelled in vivo with tritiated thymidine, all thymidine labelled cells were also Ki-67 positive. These results suggest that the Ki-67 antibody recognizes a nuclear antigen in the rabbit that is associated with cell proliferation and is expressed by cells in S-phase as well as in other phases of the cell cycle.  相似文献   

19.
20.
The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号