首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anterior segment of the vertebrate eye is constructed by proper spatial development of cells derived from the surface ectoderm, which become corneal epithelium and lens, neuroectoderm (posterior iris and ciliary body) and cranial neural crest (corneal stroma, corneal endothelium and anterior iris). Although coordinated interactions between these different cell types are presumed to be essential for proper spatial positioning and differentiation, the requisite intercellular signals remain undefined. We have generated transgenic mice that express either transforming growth factor (alpha) (TGF(alpha)) or epidermal growth factor (EGF) in the ocular lens using the mouse (alpha)A-crystallin promoter. Expression of either growth factor alters the normal developmental fate of the innermost corneal mesenchymal cells so that these cells often fail to differentiate into corneal endothelial cells. Both sets of transgenic mice subsequently manifest multiple anterior segment defects, including attachment of the iris and lens to the cornea, a reduction in the thickness of the corneal epithelium, corneal opacity, and modest disorganization in the corneal stroma. Our data suggest that formation of a corneal endothelium during early ocular morphogenesis is required to prevent attachment of the lens and iris to the corneal stroma, therefore permitting the normal formation of the anterior segment.  相似文献   

2.
Upon morphogenesis, the simple neuroepithelium of the optic vesicle gives rise to four basic tissues in the vertebrate optic cup: pigmented epithelium, sensory neural retina, secretory ciliary body and muscular iris. Pigmented epithelium and neural retina are established through interactions with specific environments and signals: periocular mesenchyme/BMP specifies pigmented epithelium and surface ectoderm/FGF specifies neural retina. The anterior portions (iris and ciliary body) are specified through interactions with lens although the molecular mechanisms of induction have not been deciphered. As lens is a source of FGF, we examined whether this factor was involved in inducing ciliary body. We forced the pigmented epithelium of the embryonic chick eye to express FGF4. Infected cells and their immediate neighbors were transformed into neural retina. At a distance from the FGF signal, the tissue transitioned back into pigmented epithelium. Ciliary body tissue was found in the transitioning zone. The ectopic ciliary body was never in contact with the lens tissue. In order to assess the contribution of the lens on the specification of normal ciliary body, we created optic cups in which the lens had been removed while still pre-lens ectoderm. Ciliary body tissue was identified in the anterior portion of lens-less optic cups. We propose that the ciliary body may be specified at optic vesicle stages, at the same developmental stage when the neural retina and pigmented epithelium are specified and we present a model as to how this could be accomplished through overlapping BMP and FGF signals.  相似文献   

3.
4.
Hydroxyproline (Hyp) concentrations (total, free, peptide-bound and protein-bound) in camel eye tissues were determined. Total Hyp concentration was highest in iris, followed by ciliary body, sclera, cornea, lens and retina; the difference between total Hyp concentration of iris and sclera (P < 0.05) and cornea, lens and retina (P < 0.001) was statistically significant. Cornea had the highest concentration of free Hyp, followed by ciliary body, retina, iris, sclera and lens (P < 0.001). Peptide-bound Hyp concentration was highest in iris, followed by lens, cornea, ciliary body, retina and sclera (P < 0.001). Iris also had the highest concentration of protein-bound Hyp, followed by ciliary body, sclera, cornea, retina and lens; the difference in the protein-bound Hyp concentration between iris and sclera (P < 0.05) and cornea, retina and lens (P < 0.001) was statistically significant. Iris was also found to have the highest concentration of collagen, followed by ciliary body, sclera, cornea, lens and retina; the difference between the collagen concentration of iris and sclera (P < 0.05) and cornea, lens and retina (P < 0.001) was statistically significant. These variations may result from differences in the collagen structure and/or composition in these tissues.  相似文献   

5.
The role of the lens in early eye development was examined in transgenic mice carrying the cytotoxic diphtheria toxin A gene driven by hamster alpha A-crystallin promoter sequences. Mice hemizygous for this construct are microphthalmic and contain a vacuolated and highly disorganized lens, whereas adult homozygous mice are completely ablated of the lens and lack a pupil, aqueous and posterior chamber, vitreous humor, iris, and ciliary body and show extensive convolution of the sensory retina. Developmental analysis of animals homozygous for the transgene revealed that the optic cup and lens vesicle form normally and that ablation of the lens occurs as a gradual degenerative process beginning between Days 12 and 13 of gestation. Degeneration of the lens vesicle coincides with retarded growth and development of the neuroretina, sclera, and cornea. The anterior lip of the optic cup fails to differentiate into the normal epithelium of the iris and ciliary body and the vitreous body does not develop. Although the retinal layers apparently form normally, retinal folding becomes prominent following lens degeneration. These results suggest that development of a functional lens from Embryonic Day 12.5 onward is critical for formation of the ciliary epithelium, iris, and vitreous body, as well as for appropriate growth, development, and maintenance of morphology of the retina, cornea, sclera, and optic nerve. Our results also provide information on the time course of DT-A-mediated cell destruction in vivo and are discussed in context with previous lens ablation studies and the importance of developmental analysis for interpretation of the extent to which morphogenetic aberrations are concurrent with or secondary to genetic ablation of the target tissue.  相似文献   

6.
7.
The development of the chamber angle was studied in the eyes of heterozygous Pax6(lacZ/+) mutant mice (Nature 387 (1997) 406). Mutations in PAX6 cause aniridia, a condition that is frequently associated with glaucoma, a blinding disease that may be associated with chamber angle defects. Mesenchymal cells were seen in the chamber angle at P1-P5. In wild-type mice, these cells differentiated into typical trabecular meshwork (TM) cells next to Schlemm's canal. In Pax6(lacZ/+) mice, TM cells remained undifferentiated and Schlemm's canal was absent. From P1 to P4, staining for beta-galactosidase and immunoreactivity for Pax6 were observed in chamber angle mesenchyme, but were absent later. Cultured murine TM cells expressed Pax6. The defects in chamber angle and TM differentiation were associated with a wide spectrum of other anterior eye defects, which included various degrees of iris hypoplasia and corneal haze, isolated iridocorneal adhesions and atypical coloboma, and a vascularized cornea in all adult animals. A third of the animals showed Peters' anomaly including corneal opacity and iridocorneal adhesions. The separation of the lens from the cornea was incomplete, and epithelial layers of lens and cornea were continuous. Pax6 activity is directly required for differentiation of the chamber angle. Variations in phenotype of Pax6(lacZ/+) mice appear not to involve direct dominant-negative or dose-dependent effects.  相似文献   

8.
9.
10.
Bone marrow derived cells (BMDCs) can be found in almost every tissue showing a distinct turnover and density. Since caveolin-1 regulates junction-associated proteins in endothelial and epithelial cells, its role for BMDC was investigated in the eyes of caveolin-1 knock-out mice transplanted with GFP-marked BMDC. Distribution and turnover of BMDC in connective tissues (cornea, iris, ciliary body and choroid) was not altered. The absence of caveolin-1, however, caused a significant decrease of BMDC turnover in cornea epithelium, ciliary epithelium, and in the retina. This finding emphasizes an important, hitherto unknown role of caveolin-1 in neuronal and epithelial tissues.  相似文献   

11.
We aimed to examine the distribution of SEPT4, SEPT5, and SEPT8 in the human eye. For each septin, five to six normal human eyes were examined by immunohistochemical staining of paraffin sections using polyclonal antibodies against SEPT4, SEPT5, and SEPT8 and an avidin biotin complex immunodetection system. SEPT4 immunoreactivity (IR) was detected primarily in the epithelium of cornea, lens, and nonpigmented ciliary epithelium; in the endothelium of cornea and vessels of iris and retina; and in the retinal nerve fiber layer, the outer plexiform layer, the outer segments of the photoreceptor cells, the inner limiting membrane of the optic nerve head, and optic nerve axons. SEPT5-IR was present in corneal endothelial cells, iris tissue, nonpigmented ciliary epithelium, and epithelial cells of the lens. SEPT8-IR almost paralleled that of SEPT4, except for a lower SEPT8-IR of the outer photoreceptor segments and a positive staining of the meningothelial cell nests in the subarachnoidal space of the bulbar segment of the orbital optic nerve. In conclusion, SEPT4, SEPT5, and SEPT8 are expressed in various ocular tissues, each revealing a distinct expression pattern. Both physiological and potential pathophysiological role of septins in the human eye deserve further investigation.  相似文献   

12.

Background  

The ocular anterior segment is critical for focusing incoming light onto the neural retina and for regulating intraocular pressure. It is comprised of the cornea, lens, iris, ciliary body, and highly specialized tissue at the iridocorneal angle. During development, cells from diverse embryonic lineages interact to form the anterior segment. Abnormal migration, proliferation, differentiation, or survival of these cells contribute to diseases of the anterior segment such as corneal dystrophy, lens cataract, and glaucoma. Zebrafish represent a powerful model organism for investigating the genetics and cell biology of development and disease. To lay the foundation for genetic studies of anterior segment development, we have described the morphogenesis of this structure in zebrafish.  相似文献   

13.
The anterior segment of the vertebrate eye includes the cornea, iris, ciliary body, trabecular meshwork, and lens. Although malformations of these structures have been implicated in many human eye diseases, little is known about the molecular mechanisms that control their development. To identify genes involved in anterior segment formation, we developed a large-scale in situ hybridization screen and examined the spatial and temporal expression of over 1000 genes during eye development. This screen identified 62 genes with distinct expression patterns in specific eye structures, including several expressed in novel patterns in the anterior segment. Using these genes as developmental markers, we tested for the presence of inductive signals that control the differentiation of anterior segment tissues. Organ culture recombination experiments showed that a chick lens is capable of inducing the expression of markers of the presumptive iris and ciliary body in the developing mouse neural retina. The inducing activity from the lens acts only over short ranges and is present at multiple stages of eye development. These studies provide molecular evidence that an evolutionarily conserved signal from the lens controls tissue specification in the developing optic cup.  相似文献   

14.
Transgenic mice carrying the diphtheria toxin A gene driven by mouse gamma 2-crystallin promoter sequences manifest microphthalmia due to ablation of fiber cells in the ocular lens. Here we map ablation events in the lens by crossing animals hemizygous for the ablation construct with transgenic mice homozygous for the in situ lacZ reporter gene driven by identical gamma 2-crystallin promoter sequences. By comparing the spatial distribution of lacZ-expressing cells and the profile of gamma-crystallin gene expression in the lenses of normal and microphthalmic offspring, the contributions of specific cell types to lens development were examined. The results suggest that phenotypically and developmentally distinct populations of lens fiber cells are able to contribute to the lens nucleus during organogenesis. We also show that dosage of the transgene and its site of integration influence the extent of ablation. In those mice homozygous for the transgene and completely lacking cells of the lens lineage, we show that the sclera, cornea, and ciliary epithelium are reduced in size but, otherwise, reasonably well formed. In contrast, the anterior chamber, iris, and vitreous body are not discernible while the sensory retina is highly convoluted and extensively fills the vitreous chamber.  相似文献   

15.
The Msh-like homeobox genes define domains in the developing vertebrate eye.   总被引:16,自引:0,他引:16  
The mouse Hox-7.1 gene has previously been shown to be related to the Drosophila Msh homeobox-containing gene. Here we report the isolation of a new member of this family which resides at an unlinked chromosomal location and has been designated Hox-8.1. Both Hox-7.1 and Hox-8.1 are expressed in the mouse embryo during the early stages of eye development in a distinct spatial and temporal relationship. Hox-8.1 is expressed in the surface ectoderm and in the optic vesicle before invagination occurs in regions corresponding to the prospective corneal epithelium and neural retina, respectively. Hox-7.1 is expressed after formation of the optic cup, marking the domain that will give rise to the ciliary body. The activity of these genes indicates that the inner layer of the optic cup is differentiated into three distinct compartments before overt cellular differentiation occurs. Our results suggest that these genes are involved in defining the region that gives rise to the inner layer of the optic cup and in patterning this tissue to define the iris, ciliary body and retina.  相似文献   

16.
17.
Anuran amphibians can regenerate the retina through differentiation of stem cells in the ciliary marginal zone and through transdifferentiation of the retinal pigmented epithelium. By contrast, the regeneration of the lens has been demonstrated only in larvae of species belonging to the Xenopus genus, where the lens regenerates through transdifferentiation of the outer cornea. Retinal pigmented epithelium to neural retina and outer cornea to lens transdifferentiation processes are triggered and sustained by signaling molecules belonging to the family of the fibroblast growth factor. Both during retina and lens regeneration there is a re-activation of many of the genes which are activated during development of the eye, even though the spatial and temporal pattern of gene expression is not a simple repetition of that found in development.  相似文献   

18.
The lens of 6-day-old normal mouse was implanted into the lentectomized eye of adult mouse to examine the effect of retina upon the growth of the implanted lens in vivo. The implanted lens grew normally and its transparency was kept for more than 5 months after implantation. The connection between the implanted lens and the ciliary part of the recipient iris was well established with the regeneration of zonular fibers from the recipient. In young lenses implanted reversely into adult eyes, the epithelial cells facing the retina elongated and a new epithelium was formed on the corneal side of the lens within 5 days. Young lenses implanted either in normal or reverse orientation into eyes from which the retina was previously removed did not grow. The cells of the original lens epithelium of these lenses were randomly accumulated beneath the posterior lens capsule, while the anterior portion of the implanted lenses became an epithelial structure without cell elongation. These results suggest that the growth of the implanted lens may be dependent on the retina of the adult eye.  相似文献   

19.
Liu W  Lagutin OV  Mende M  Streit A  Oliver G 《The EMBO journal》2006,25(22):5383-5395
The homeobox gene Six3 regulates forebrain development. Here we show that Six3 is also crucial for lens formation. Conditional deletion of mouse Six3 in the presumptive lens ectoderm (PLE) disrupted lens formation. In the most severe cases, lens induction and specification were defective, and the lens placode and lens were absent. In Six3-mutant embryos, Pax6 was downregulated, and Sox2 was absent in the lens preplacodal ectoderm. Using ChIP, electrophoretic mobility shift assay, and luciferase reporter assays, we determined that Six3 activates Pax6 and Sox2 expression. Misexpression of mouse Six3 into chick embryos promoted the ectopic expansion of the ectodermal Pax6 expression domain. Our results position Six3 at the top of the regulatory pathway leading to lens formation. We conclude that Six3 directly activates Pax6 and probably also Sox2 in the PLE and regulates cell autonomously the earliest stages of mammalian lens induction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号