共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sirois J Côté JF Charest A Uetani N Bourdeau A Duncan SA Daniels E Tremblay ML 《Mechanisms of development》2006,123(12):869-880
PTP (protein-tyrosine phosphatase)-PEST is a ubiquitously expressed cellular regulator of integrin signalling. It has been shown to bind several molecules such as Shc, paxillin and Grb2, that are involved downstream of FAK (focal adhesion kinase) pathway. Through its specific association to p130cas and further dephosphorylation, PTP-PEST plays a critical role in cell-matrix interactions, which are essential during embryogenesis. We report here that ablation of the gene leads to early embryonic lethality, correlating well with the high expression of the protein during embryonic development. We observed an increased level of tyrosine phosphorylation of p130cas protein in E9.5 PTP-PEST(-/-) embryos, a first evidence of biochemical defect leading to abnormal growth and development. Analysis of null mutant embryos revealed that they reach gastrulation, initiate yolk sac formation, but fail to progress through normal subsequent developmental events. E9.5-10.5 PTP-PEST(-/-) embryos had morphological abnormalities such as defective embryo turning, improper somitogenesis and vasculogenesis, impaired liver development, accompanied by degeneration in both neuroepithelium and somatic epithelia. Moreover, in embryos surviving until E10.5, the caudal region was truncated, with severe mesenchyme deficiency and no successful liver formation. Defects in embryonic mesenchyme as well as subsequent failure of proper vascularization, liver development and somatogenesis, seemed likely to induce lethality at this stage of development, and these results confirm that PTP-PEST plays an essential function in early embryogenesis. 相似文献
3.
Measurement of intra-embryonic pH during the early stages of development in the chick embryo 总被引:1,自引:0,他引:1
Summary Measurements have been made of the pH in the extracellular space, adjacent to the neural tube, in 73 isolated chick embryos in vitro at stages from 4–22 somites. A pH of 7.8–8.4 was observed in the segmented region, while caudally, in the segmental plate, the pH was consistently lower falling by as much as 0.5 pH units at the regressing primitive streak. Variations were noted in the pH of embryos of the same age but the regional variation in pH was a consistent finding in all of the embryos examined. The buffering capacity of the extracellular space was found to be 12.9 mequiv/pH unit/1 in the segmented region and 13.9 mequiv/pH unit/1 in the segmental plate. Thus it is unlikely that the regional variations in pH result from local variations in the buffering power of the extracellular space. Varying the K+, Cl-, Mg2+ or HCO
3
-
ion concentrations in the bathing medium caused little change in the intra-embryonic pH, while reducing the concentrations of Na+ or Ca2+ caused a small acidification. This suggests that the ectoderm and endoderm form an effective barrier between the embryo and the external environment. Exposure of the embryo to KCN reduced the intra-embryonic pH suggesting that the alkaline environment is maintained by active processes. 相似文献
4.
The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier. 相似文献
5.
Summary Gonadotropins (FSH+LH) and thyrotropin (TSH) stimulated the development of 12-day embryonic gonads, whereas adrenocorticotropin (ACTH) did not show any significant effect. It is concluded that the gonads of 12-day chick embryos have the capacity to respond to both gonadotropic and thyrotropic stimulation. This suggests that at the time when the hypothalamo-pituitary-thyroid axis begins to develop, the capacity of gonadal receptors to distinguish between gonadotropins and thyrotropin has not been established. 相似文献
6.
Eukaryotic cells have multiple forms of endocytosis which maintain cell surface homeostasis. One explanation for this apparent redundancy is to allow independent retrieval of surface membranes derived from different types of vesicles. Consistent with this hypothesis we find that sea urchin eggs have at least two types of compensatory endocytosis. One is associated with retrieving cortical vesicle membranes, and formed large endosomes by a mechanism that was inhibited by agatoxin, cadmium, staurosporine and FK506. The second type is thought to compensate for constitutive exocytosis, and formed small endosomes using a mechanism that was insensitive to the above mentioned reagents, but was inhibited by phenylarsine oxide (PAO), and by microinjection of mRNA encoding Src kinase. Both mechanisms could act concurrently, and account for all of the endocytosis occurring during early development. Inhibition of either form did not trigger compensation by the other form, and phorbol ester treatment rescued the endocytotic activity blocked by agatoxin, but not the retrieval blocked by PAO. 相似文献
7.
In the vertebrate embryo, spinal cord elongation requires FGF signaling that promotes the continuous development of the posterior nervous system by maintaining a stem zone of proliferating neural progenitors. Those escaping the caudal neural stem zone, which is expressed to Shh signal, initiate ventral patterning in the neural groove before starting neuronal differentiation in the neural tube. Here we investigated the integration of D-type cyclins, known to govern cell cycle progression under the control of extracellular signals, in the program of spinal cord maturation. In chicken embryo, we find that cyclin D2 is preferentially expressed in the posterior neural plate, whereas cyclin D1 appears in the neural groove. We demonstrated by loss- and gain-of-function experiments that FGF signaling maintains cyclin D2 in the immature caudal neural epithelium, while Shh activates cyclin D1 in the neural groove. Moreover, forced maintenance of cyclin D1 or D2 in the neural tube favors proliferation at the expense of neuronal differentiation. These results contribute to our understanding of how the cell cycle control can be linked to the patterning programs to influence the balance between proliferation and neuronal differentiation in discrete progenitors domains. 相似文献
8.
9.
Miguel A. Cuadros Claude Martin Antonio Ríos Gervasio Martín-Partido Julio Navascués 《Cell and tissue research》1991,266(1):117-127
Summary An area of cell death is apparent in the lens vesicle margin and the lens stalk during closure and detachment of the lens anlage from the cephalic ectoderm. Free phagocytic cells closely associated with this area of cell death have been interpreted as cells migrating from the lens epithelium. Scanning and transmission electron microscopy, light-microscopic histochemical staining for acid phosphatase and immunostaining using MB1 (a monoclonal antibody specific for quail endothelial and hemopoietic cells) of chimeras of chick embryo and quail yolk sac were used to analyze these lens vesicle-associated free phagocytic cells. The cells have morphological features identical to those of macrophages in other embryonic tissues. In contrast to epithelial cells phagocytosing cell debris, they exhibit strong acid phosphatase activity, a feature typical of macrophages. In addition, free phagocytic cells are MB1 positive in chick embryo-quail yolk sac chimeras, hence they proceed from cells of hemangioblastic lineage originating in the yolk sac. These results indicate that the lens vesicle-associated free phagocytic cells are macrophages. Observations of MB1 positive amoeboid cells in the juxta-retinal mesenchyme and on the borders of the optic cup suggest that these macrophages migrate through the mesenchyme surrounding the eye primordium. Macrophages are seen in both the interspace between lens vesicle and ectoderm and in the lumen of the lens as well as within both the ectoderm and the lens epithelium. In these locations they remove cell debris, and thereby contribute to the complete disappearance of the area of cell death. Macrophages remain in the lens vesicle-ectoderm interspace until developmental stages at which it is invaded by corneal endothelial cells. 相似文献
10.
《朊病毒》2013,7(2):88-92
Transmissible Spongiform Encephalopathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist’s view of PrP functions might be clearer at a greater phylogenetic distance. 相似文献
11.
Transmissible Spongiform Encephal-opathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist''s view of PrP functions might be clearer at a greater phylogenetic distance.Key words: prion protein, zebrafish, gene expression, embryo development, neurogenesis 相似文献
12.
Minchiotti G Parisi S Liguori G Signore M Lania G Adamson ED Lago CT Persico MG 《Mechanisms of development》2000,90(2):390-142
cripto is the original member of the family of EGF-CFC genes, recently recognized as novel extracellular factors essential for vertebrate development. During the early stages of mouse gastrulation, cripto mRNA is detected in mesodermal cells; later, cripto mRNA is detected only in the truncus arteriosus of the developing heart. Here we describe the in vivo distribution of Cripto protein throughout mouse embryo development and show that cripto mRNA and protein colocalize. By means of immunofluorescence analysis and biochemical characterization, we show that Cripto is a membrane-bound protein anchored to the lipid bilayer by a glycosylphosphatidylinositol (GPI) moiety. We suggest that presentation of Cripto on the cell surface via a GPI-linkage is important in determining the spatial specificity of cell–cell interactions that play a critical role in the early patterning of the embryo. 相似文献
13.
14.
Impact of embryonic expression of enhanced green fluorescent protein on early mouse development 总被引:2,自引:0,他引:2
Devgan V Rao MR Seshagiri PB 《Biochemical and biophysical research communications》2004,313(4):1030-1036
The impact of embryonic enhanced green fluorescent protein (EGFP)-expression on development is not clear. In this study, we comprehensively assessed EGFP-expression pattern and its effect on early mouse development, following pronuclear-microinjection of the EGFP-transgene, containing chicken-beta-actin promoter and cytomegalovirus enhancer. Preimplantation embryos exhibited differential EGFP-expression patterns. While blastocyst development of non-expressing embryos was 77.3+/-1.8%, that of expressing embryos was only 43.9+/-1.6% (P<0.0001). Developmental competence of embryos negatively correlated (r=-0.99) with the levels of EGFP-expression. Faint-, moderate-, and intense-expressing embryos developed to 83.1+/-5.3%, 50+/-5%, and 9.5+/-3.9% blastocysts, respectively (P<0.002). Interestingly, blastocysts expressing faint-moderate levels of EGFP were developmentally competent through the post-implantation period and delivered viable transgenic 'green' mice, following embryo transfer. These results indicate that hyper-expression of EGFP affects preimplantation development and faint-moderate level of its expression is compatible with normal embryogenesis in the mouse. 相似文献
15.
16.
Makoto Takada Nancy B. Clark 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1992,162(6):496-501
Summary The transepithelial electrical characteristics of the isolated yolk sac membrane of normal in ovo or shell-less cultured chick embryos were investigated. In normal chicks the potential difference (blood side positive relative to yolk side) and short-circuit current of the membrane increased during development. Ouabain (10-4
M) on the blood side (basolateral side, serosal side) significantly decreased potential difference and short-circuit current but was without effect on the yolk side (brush border side, mucosal side). Substitution of choline for Na+ in the bathing solutions abolished the potential difference and the short-circuit current; when Na+ replaced choline this effect was reversed. Amiloride added to both sides of the yolk sac membrane had no effect on potential difference or short-circuit current. Injection of aldosterone (50 g) and T3 (10 M) into yolk did not induce amiloride sensitivity. The short-circuit current was not altered by addition of either glucose or alanine to the bath. The short-circuit current of the yolk sac membrane of shell-less cultured embryos was significantly lower than that of normal controls. Addition of Ca2+ to the serosal bathing medium did not reverse the foregoing condition, but decreased the short-circuit current. It is concluded that the yolk sac short-circuit current is Na+ dependent and increases with developmental age in the chick embryo.Abbreviations Hepes
N-2-hydroxyethylpiperazine-N-2-ethaneoulphonic acid
- PD
potential difference
-
R
resistance
- SCC
short-circuit current
- TRIS
tris-hydroxymethyl aminomethane
- T3
3,3-5-triiodo-l-thyronine 相似文献
17.
Marta Tajes Eva Ramos-Fernández Xian Weng-Jiang Mònica Bosch-Morató Biuse Guivernau Abel Eraso-Pichot 《Molecular membrane biology》2014,31(5):152-167
The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases. 相似文献
18.
An antibody prepared against nullipotential teratocarcinoma stem cells (A-N1) detects cell surface antigens expressed by early mouse embryos and inhibits in vitro development of embryos in the absence of complement [Calarco and Banka, 1979]. Here we report the immunoprecipitation and electrophoretic characterization of A-N1-detected antigens from preimplantation mouse embryos. Predominant antibody activity is directed against a 67,000-dalton glycoprotein (p67) with a mean pI of 5.3, which has not been previously described. This protein is not detected, at least as p67, after culture of embryos in tunicamycin. The p67 antigen is also expressed by pluripotential PSA1 teratocarcinoma cells but not by several different differentiated mouse cell types. 相似文献
19.
Maria Bloksgaard Ditte Neess Nils J. FærgemanSusanne Mandrup 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(3):369-376
The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different enzymatic systems; however, the precise function remains unknown. ACBP is expressed at relatively high levels in the epidermis, particularly in the suprabasal layers, which are highly active in lipid synthesis. Targeted disruption of the ACBP gene in mice leads to a pronounced skin and fur phenotype, which includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~ 50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced levels of non-esterified very long chain fatty acids in the stratum corneum of ACBP−/− mice. Here we review the current knowledge of ACBP with special focus on the function of ACBP in the epidermal barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. 相似文献
20.
Summary Acetylcholinesterase (AChE, EC 3.1.1.7) and choline acetyltransferase (CAT, EC 2.3.1.6) activities where studied in the early development of the chick embryo. A sharp increase in AChE activity occurred in the gastrulating embryo. The highest AChE activity was associated with hypoblast cells. By sucrose density gradient centrifugation three molecular forms of AChE with sedimentation coefficients 4.7 S, 6.8 S and 10.9 S were determined. During the gastrulation there was no remarkable change in the activity of CAT. A two-fold decrease in the CAT activity occurred at the end of gastrulation. 相似文献