首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was shown that intense operator work in pulp and paper industry (bleachers and chlorinators) with changes in shift time (day, evening, night) causes fatigue. The fatigue in operators was indicated by increasing number of errors in sensomotor coordination test and coordination index, and among chlorinators it was accompanied by deterioration of state of health. Manifestations of 24 hours' rhythm of physiological functions were detected by changes in body temperature (among bleachers), heart rate, blood pressure and sensomotor coordination indices (all operators). Harmful chemical substances (chlorine and chlorine dioxide) in the air negatively influence psychophysiological status among clorinators.  相似文献   

2.
Operators of both sexes employed in the pulp industry were examined during a triple-shift cycle of shift work. Changes in the body temperature, heart rate, blood pressure, and sensorimotor coordination parameters were used as indicators of the circadian rhythms of their physiological functions. Sex-related differences were found with respect to a number of parameters (the muscular strength, critical flicker frequency, duration of the performance of a coordination test and coordination index, blood pressure and autonomic index, and physical general condition and mood scores). Fatigue in this type of operator activity was efficiently detected by the general condition, activity, mood (WAM) test score (especially in women), the number of errors in the test for sensorimotor coordination, and the coordination index.  相似文献   

3.
The research was carried out in accordance with the principles of biomedical ethics in healthy six-year-old children (n = 120). The following psychophysiological factors determining the school readiness of six-year-old children were identified in the course of the research: selectivity of voluntary attention (factor I); general work capacity (factor II); physiological maturity (factor III); and sensorimotor coordination of voluntary movement (factor IV). Factors I, II, and IV are related to the activities of the information, energy, and regulatory units of the central nervous system singled out by Luria in the context of the structural-functional model of performance of the brain as a substrate of mental activity. The research has revealed an interrelation between some indicators of school readiness and the parameters of the capacity for physical work.  相似文献   

4.
Oscillatory activity of the sensorimotor cortex shows coherence with muscle activity within the 15- to 35-Hz frequency band (β-band) during weak to moderate sustained isometric contraction. We aimed to examine the acute changes in this corticomuscular coupling due to muscle fatigue and its effect on the steadiness of the exerted force. We quantified the coherence between the electroencephalogram (EEG) recorded over the sensorimotor cortex and the rectified surface electromyogram (EMG) of the tibialis anterior muscle as well as the coefficient of variance of the dorsiflexion force (Force(CV)) and sum of the auto-power spectral density function of the force within the β-band (Force(β-PSD)) during 30% of maximal voluntary contraction (MVC) for 60 s before (prefatiguing task) and after (postfatiguing task) muscle fatigue induced by sustained isometric contraction at 50% of MVC until exhaustion in seven healthy male subjects. The magnitude of the EEG-EMG coherence increased in the postfatiguing task in six of seven subjects. The maximal peak of EEG-EMG coherence stayed within the β-band in both pre- and postfatiguing tasks. Interestingly, two subjects, who had no significant EEG-EMG coherence in the prefatiguing task, showed significant coherence in the postfatiguing task. Additionally, Force(CV) and Force(β-PSD) significantly increased after muscle fatigue. These data suggest that when muscle fatigue develops, the central nervous system enhances oscillatory muscular activity in the β-band stronger coupled with the sensorimotor cortex activity accomplishing the sustained isometric contraction at lower performance levels.  相似文献   

5.
In team sports, sensorimotor impairments resulting from previous injuries or muscular fatigue have been suggested to be factors contributing to an increased injury risk. Although it has been widely shown that physical fatigue affects static postural sway, it is still questionable as to what extent these adaptations are relevant for dynamic, sports-related situations. The objective of this study was to determine the effects of whole-body and localized fatigue on postural control in stable and unstable conditions. Nineteen male team handball players were assessed in 2 sessions separated by 1 week. Treadmill running and single-leg step-up exercises were used to induce physical fatigue. The main outcome measures were center of pressure (COP) sway velocity during a single-leg stance on a force plate and maximum reach distances of the star excursion balance test (SEBT). The COP sway velocity increased significantly (p < 0.05) after general (+47%) and localized fatigue (+10%). No fatigue effects were found for the SEBT. There were no significant correlations between COP sway velocity and SEBT mean reach in any condition. The results showed that although fatigue affects static postural control, sensorimotor mechanisms responsible for regaining dynamic balance in healthy athletes seem to remain predominantly intact. Thus, our data indicate that the exclusive use of static postural sway measures might not be sufficient to allow conclusive statements regarding sensorimotor control in the noninjured athlete population.  相似文献   

6.
This study compared the effect of repetitive work in thermoneutral and cold conditions on forearm muscle electromyogram (EMG) and fatigue. We hypothesize that cold and repetitive work together cause higher EMG activity and fatigue than repetitive work only, thus creating a higher risk for overuse injuries. Eight men performed six 20-min work bouts at 25 degrees C (W-25) and at 5 degrees C while exposed to systemic (C-5) and local cooling (LC-5). The work was wrist flexion-extension exercise at 10% maximal voluntary contraction. The EMG activity of the forearm flexors and extensors was higher during C-5 (31 and 30%, respectively) and LC-5 (25 and 28%, respectively) than during W-25 (P < 0.05). On the basis of fatigue index (calculated from changes in maximal flexor force and flexor EMG activity), the fatigue in the forearm flexors at the end of W-25 was 15%. The corresponding values at the end of C-5 and LC-5 were 37% (P < 0.05 in relation to W-25) and 20%, respectively. Thus repetitive work in the cold causes higher EMG activity and fatigue than repetitive work in thermoneutral conditions.  相似文献   

7.
Research was spent according to principles of biomedical ethics. Healthy children of 6 years have taken part in him (n = 120). In the course of research the psychophysiological factors defining readiness of children of 6 years to education at school are identified: "selectivity of voluntary attention" (the factor I); "the general working capacity" (the factor II); "a physiological maturity" (the factor III); "sensorimotor coordination of voluntary movement" (the factor IV). Factors I, II, IV correspond with activity of three blocks of the brain allocated with A.R. Lurija within the limits of structurally functional model of work of a brain as a substratum of mental activity. The carried out research has revealed interrelation of some indicators of readiness for education at school with parametres of physical working capacity.  相似文献   

8.
Changes in neuromuscular strategies employed with fatigue during multi-joint movements are still poorly understood. Studies have shown that motor variability of individual joints increases when performing upper limb tasks to fatigue, while movement parameters related to the task goal remain constant. However, how the inter-limb coordination and its variability change during specific movement phases with fatigue is still unclear. The aim of this study was to assess the effects of neck-shoulder fatigue on shoulder and elbow kinematic variabilities, shoulder-elbow coordination and its variability, and endpoint characteristics during different phases of a forward pointing movement. Nineteen healthy young adults continuously performed a repetitive pointing task until fatigue (Borg rating of 8/10). Changes in elbow-shoulder coordination through the movement were assessed using the continuous relative phase and statistical nonparametric mapping methods. At the end of the task, muscle fatigue was evidenced by significant increases in anterior deltoid (+13%) and biceps brachii (+30%) activity. Shoulder horizontal abduction, elbow flexion variability and shoulder-elbow coordination variability were increased with fatigue at different moments of the movement cycle (shoulder: during the first 17% and most of the second half movement, elbow: from 73% to 91%, coordination: almost the whole movement). However, movement timing errors and endpoint spatial variability were mostly preserved, even with fatigue. We showed that increased variability with fatigue is not only observed in the fatigued joint (shoulder), but also in the elbow and shoulder-elbow coordination, and may have a goal of preserving global task performance.  相似文献   

9.
In acute experiments on cats performed under nembutal anesthesia the stimulation of sensorimotor zone in cerebral hemisphere cortex changed the impulse activity of interneurons of bulbar cardiovascular centre and not of the afferent neurons. The analysis of the activity of afferent neurons and interneurons has shown a decrease in coordination between the reaction of these cells to the development of ischemic myocardial lesions during the cortex stimulation. In these conditions bulbar cardiovascular neurons could both increase and decrease the impulse activity. These changes seem to be the reason for the growing incidence of idioventricular ischemic arrhythmias during cortical stimulation.  相似文献   

10.
The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk.  相似文献   

11.

Introduction

Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP). This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control.

Methods

Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE), variable error (VE) as well as absolute error (AE) in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG).

Results

Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm) than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm). Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm) and AE (13.71 ± 3.45 Nm) mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm) and AE (16.29 ± 2.82 Nm) mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores.

Conclusions

Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle fatigue protocol. Muscle vibration stimulation during motor control exercises is likely to influence motor adaptation and could be considered in the treatment of cLBP. Further work is needed to clearly identify at what levels of the sensorimotor system these gains are achievable.  相似文献   

12.
Experiments on conscious rabbits were made to elaborate motor conditioned reflexes through pairing stimuli with electrocutaneous reinforcement applied every 30 s. Neuronal activity in the sensorimotor cortex and putamen was recorded during formation and reproduction of the conditioned reflexes before and after haloperidol injection (0.2 mg/kg i. v.). In the putamen, haloperidol increased the number of neurons exhibiting trace conditioned activity and made the intensity and duration of these processes rise. The changes seen in the sensorimotor cortex were opposite in nature. Inhibition of trace conditioned activity in the sensorimotor cortex depended mainly on the decreased amplitude of the reaction conditioned component. The role of the dopaminergic system in the interaction of the neostriatum and sensorimotor cortex and in formation and reproduction of trace conditioned activity of both the structures is discussed.  相似文献   

13.
Fatigue is one of the most frequent symptoms in multiple sclerosis (MS), and recent studies have described a relationship between the sensorimotor cortex and its afferent and efferent pathways as a substrate of fatigue. The objectives of this study were to assess the neural correlates of fatigue in MS through gray matter (GM) and white matter (WM) atrophy, and resting state functional connectivity (rs-FC) of the sensorimotor network (SMN). Eighteen healthy controls (HCs) and 60 relapsing-remitting patients were assessed with the Fatigue Severity Scale (FSS). Patients were classified as fatigued (F) or nonfatigued (NF). We investigated GM and WM atrophy using voxel-based morphometry, and rs-FC changes with a seed-based method and independent component analysis (ICA). F patients showed extended GM and WM atrophy focused on areas related to the SMN. High FSS scores were associated with reductions of WM in the supplementary motor area. Seed analysis of GM atrophy in the SMN showed that HCs presented increased rs-FC between the primary motor and somatosensory cortices while patients with high FSS scores were associated with decreased rs-FC between the supplementary motor area and associative somatosensory cortex. ICA results showed that NF patients presented higher rs-FC in the primary motor cortex compared to HCs and in the premotor cortex compared to F patients. Atrophy reduced functional connectivity in SMN pathways and MS patients consequently experienced high levels of fatigue. On the contrary, NF patients experienced high synchronization in this network that could be interpreted as a compensatory mechanism to reduce fatigue sensation.  相似文献   

14.
In the visual and sensorimotor areas of the neocortex and in the hippocampus of alert nonimmobilized rabbits, in response to combinations of light flashes with electrocutaneous limb stimulation an increase was observed of synchronization in the activity of the near-by neurones by activation by inhibitory type (coincidence of the presence and absence of impulse activity). In response to flashes against the light background--conditioned inhibitor--in the visual cortex synchronization of neurones increased by inhibitory type, and in the sensorimotor cortex and hippocampus changes of synchronization appeared, similar to the action of pain reinforcement but considerably weaker. The increase of synchronization by the activation type took place mainly in the neurones pairs with unidirected increase of impulses frequency and by the inhibitory one--with its decrease. Along with this, in a considerable part of neurones pairs both changes of synchronization appeared at the impulses frequency changes of different direction.  相似文献   

15.
Fenugreek is a medicinal plant whose seeds are widely used in traditional medicine, mainly for its laxative, galactagogue and antidiabetic effects. However, consumption of fenugreek seeds during pregnancy has been associated with a range of congenital malformations, including hydrocephalus, anencephaly and spina bifida in humans. The present study was conducted to evaluate the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults. Pregnant mice were treated by gavage with 1g/kg/day of lyophilized fenugreek seeds aqueous extract (FSAE) or distilled water during the gestational period. Behavioral tests revealed in prenatally treated mice a significant delay in righting, cliff avoidance, negative geotaxis responses and the swimming development. In addition, extracellular recording of motor output in spinal cord isolated from neonatal mice showed that the frequency of spontaneous activity and fictive locomotion was reduced in FSAE-exposed mice. On the other hand, the cross-correlation coefficient in control mice was significantly more negative than in treated animals indicating that alternating patterns are deteriorated in FSAE-treated animals. At advanced age, prenatally treated mice displayed altered locomotor coordination in the rotarod test and also changes in static and dynamic parameters assessed by the CatWalk automated gait analysis system. We conclude that FSAE impairs sensorimotor and coordination functions not only in neonates but also in adult mice. Moreover, spinal neuronal networks are less excitable in prenatally FSAE-exposed mice suggesting that modifications within the central nervous system are responsible, at least in part, for the motor impairments.  相似文献   

16.
A chronic reduction in neuromuscular activity through prolonged body immobilization in human alters motor task performance through a combination of peripheral and central factors. Studies performed in a rat model of sensorimotor restriction have shown functional and biochemical changes in sensorimotor cortex. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of Insulin-like Growth Factor 1 (IGF-1), a growth factor known to mediate neuronal excitability and synaptic plasticity by inducing phosphorylation cascades which include the PI3K–AKT pathway. In order to better understand the influence of IGF-1 in cortical plasticity in rats submitted to a sensorimotor restriction, we analyzed the effect of hindlimb unloading on IGF-1 and its main molecular pathway in structures implied in motor control (sensorimotor cortex, striatum, cerebellum). IGF-1 level was determined by ELISA, and phosphorylation of its receptor and proteins of the PI3K–AKT pathway by immunoblot. In the sensorimotor cortex, our results indicate that HU induces a decrease in IGF-1 level; this alteration is associated to a decrease in activation of PI3K-AKT pathway. The same effect was observed in the striatum, although to a lower extent. No variation was noticed in the cerebellum. These results suggest that IGF-1 might contribute to cortical and striatal plasticity induced by a chronic sensorimotor restriction.  相似文献   

17.
A study of the neurophysiological basis of reaction time change was undertaken as a means of exploring the physiological mechanisms of local muscular fatigue effects upon sensorimotor performance. The identification of electrophysiological indices of central and peripheral processes within the human electroencephalogram and electromyogram, enabled a fractionation of total reaction time into component latencies measuring sensory reception time, sensorimotor integration time, central motor outflow time and peripheral motor contraction time. Simple foot dorsiflexion reactions to visual stimuli were observed in 18 male college students. Foot responses under one condition were performed against a resistance which necessitated a moderate degree of muscular tension before movement could occur while a second condition required normal unresisted responses. Two intensities of serial isometric work resulting in the order of a 38% decrement in maximum voluntary contractile capability (MVC) were performed by each subject. While the rate and extent of MVC decrement varied with the inherent strength of the subject and the intensity of the exercise performed, unconditional changes were observed in the spatiotemporal dimensions of reaction time performance following exercise-induced fatigue. The quality of total reaction time was found to deteriorate, particularly when responses were resisted. Peripheral deficiencies, suggestive of a decreased rate of tension development, were evidenced by a marked elongation of resisted motor times, and less vigorous and extensive unresisted responses. Insofar as the energy of response electromyograms was also diminished, central mechanisms were implicated, possible due to a shift in motor unit recruitment. Concomitant changes were also observed in central processing.  相似文献   

18.

Rationale

Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies.

Objectives

The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats.

Materials and Methods

Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test.

Results

Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age.

Conclusion

The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.  相似文献   

19.
Neurophysiologic theory and some empirical evidence suggest that fatigue caused by physical work may be more effectively recovered during “diverting” periods of cognitive activity than during passive rest; a phenomenon of great interest in working life. We investigated the extent to which development and recovery of fatigue during repeated bouts of an occupationally relevant reaching task was influenced by the difficulty of a cognitive activity between these bouts. Eighteen male volunteers performed three experimental sessions, consisting of six 7-min bouts of reaching alternating with 3 minutes of a memory test differing in difficulty between sessions. Throughout each session, recordings were made of upper trapezius muscle activity using electromyography (EMG), heart rate and heart rate variability (HRV) using electrocardiography, arterial blood pressure, and perceived fatigue (Borg CR10 scale and SOFI). A test battery before, immediately after and 1 hour after the work period included measurements of maximal shoulder elevation strength (MVC), pressure pain threshold (PPT) over the trapezius muscles, and a submaximal isometric contraction. As expected, perceived fatigue and EMG amplitude increased during the physical work bouts. Recovery did occur between the bouts, but fatigue accumulated throughout the work period. Neither EMG changes nor recovery of perceived fatigue during breaks were influenced by cognitive task difficulty, while heart rate and HRV recovered the most during breaks with the most difficult task. Recovery of perceived fatigue after the 1 hour work period was also most pronounced for the most difficult cognitive condition, while MVC and PPT showed ambiguous patterns, and EMG recovered similarly after all three cognitive protocols. Thus, we could confirm that cognitive tasks between bouts of fatiguing physical work can, indeed, accelerate recovery of some factors associated with fatigue, even if benefits may be moderate and some responses may be equivocal. Our results encourage further research into combinations of physical and mental tasks in an occupational context.  相似文献   

20.
An enhanced facilitation system caused by motivational input plays an important role in supporting performance during physical fatigue. We tried to clarify the neural mechanisms of the facilitation system during physical fatigue using magnetoencephalography (MEG) and a classical conditioning technique. Twelve right-handed volunteers participated in this study. Participants underwent MEG recording during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The metronome sounds were used as conditioned stimuli and maximum handgrip trials as unconditioned stimuli. The next day, they were randomly assigned to two groups in a single-blinded, two-crossover fashion to undergo two types of MEG recordings, that is, for the control and motivation sessions, during the imagery of maximum grips of the right hand guided by metronome sounds for 10 min. The alpha-band event-related desynchronizations (ERDs) of the motivation session relative to the control session within the time windows of 500 to 700 and 800 to 900 ms after the onset of handgrip cue sounds were identified in the sensorimotor areas. In addition, the alpha-band ERD within the time window of 400 to 500 ms was identified in the right dorsolateral prefrontal cortex (Brodmann''s area 46). The ERD level in the right dorsolateral prefrontal cortex was positively associated with that in the sensorimotor areas within the time window of 500 to 700 ms. These results suggest that the right dorsolateral prefrontal cortex is involved in the neural substrates of the facilitation system and activates the sensorimotor areas during physical fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号