首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The placenta is a temporary vital organ for intra-uterine development and growth. The anatomical structure of the placenta has evolved substantially, resulting in broad inter-species diversity. In particular, human placental extravillous trophoblast cells (EVTs) have evolved aggressive features, although the mechanism underlying this aggressiveness remains elusive. In the present study, we compared the human and mouse homologous gene databases and obtained 2272 human-specific genes, 807 of which are expressed in the placenta according to the UniGene database. Using the human trophoblast cell line HTR8/SVneo, we further verified the expression and function of one of these genes, the leukocyte-associated immunoglobulin-like receptor 2 (LAIR2). This gene shows increased expression during pregnancy and its reduced expression is associated with pregnancy complications. Although LAIR2 was expressed in the human placenta villus and decidua in the first trimester of pregnancy, it was not expressed in mouse tissues. Knockdown of LAIR2 markedly improved cell viability and inhibited the invasive ability of HTR8/SVneo cells. These data suggest that species-specific genes are pivotal to the evolution of a more aggressive human placenta to match the physiological demands of human development. Further investigation is required to obtain evidence on the function of LAIR2 and other specific genes in the placenta, providing insight on the mechanism, properties, and possible applications of this in humans.  相似文献   

2.
3.
During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal-endothelial and stromal-trophoblast crosstalk critical for placenta development and establishment of pregnancy.  相似文献   

4.
5.
6.
7.
8.
9.
10.
BRUCE is a highly conserved 528-kDa peripheral membrane protein of the trans-Golgi network. Owing to the presence of an N-terminal single baculovirus inhibitor repeat, BRUCE functions as an inhibitor of apoptosis protein and blocks apoptosis when overexpressed. In addition, due to the presence of a C-terminal ubiquitin-conjugating domain, BRUCE can covalently attach ubiquitin to substrates. Here we report the generation and characterization of BRUCE-deficient mice. Complete inactivation of the BRUCE gene resulted in perinatal lethality and growth retardation discernible after embryonic day 14. The growth defect is linked to impaired placental development and may be caused by insufficient oxygen and nutrient transfer across the placenta. Chorioallantoic placentation initiated normally, but the mutant placenta showed an impaired maturation of the labyrinth layer and a significant reduction of the spongiotrophoblast. No evidence for an elevated apoptosis rate was detectable in embryonic and extraembryonic tissues and in knockout fibroblasts. Thus, although BRUCE is broadly expressed in embryonic, extraembryonic, and adult mouse tissues, this bifunctional protein might play a unique role in normal trophoblast differentiation and embryonic survival.  相似文献   

11.
Notch signaling is involved in cell lineage specification in many developing organs. In mice there are four known Notch receptor genes (Notch1–4) and five ligands genes (Dll1, 3, 4 and Jagged1 and 2). Notch2 is essential for development of placenta, an organ that mediates feto-maternal nutrient and gas exchange as well as maternal adaptations to pregnancy. However the role of other Notch receptors and ligands in placentation is not known. In order to gain better insight into the role of Notch signaling in mouse placenta we thoroughly analyzed mRNA expression of all Notch receptors and ligands in all trophoblast cell types from the embryonic day (E) 7.5 to E12.5, the period during which all of the substructures of the placenta develop. Here we show that Notch receptors and ligands are specifically and dynamically expressed in multiple cell layers of developing placenta. We found that the Notch2 receptor and Jagged1 and Jagged2 ligand genes are complementarily expressed in trophoblast cells of the chorion and its later derivatives in the labyrinth. Dll4 and Notch2 expression complement each other in the ectoplacental cone, while Dll1 and Notch2 are expressed in an ectoplacental cone derivative, the junctional zone. Moreover Dll4 and Notch2 are expressed at the ectoplacental cone–decidua interface at early stages of placentation. Additionally we show that Notch2 is dynamically expressed in all trophoblast giant cell subtypes, which is consistent with previous reports. Overall these expression pattern results suggest that Notch signaling may play several diverse roles during placenta development.  相似文献   

12.
13.
14.
15.
16.
17.
The insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) is a member of a highly conserved protein family that is expressed specifically in placenta, testis and various cancers, but is hardly detectable in normal adult tissues. IGF2BP3 has important roles in RNA stabilization and translation, especially during early stages of both human and mouse embryogenesis. Placenta is an indispensable organ in mammalian reproduction that connects developing fetus to the uterine wall, and is responsible for nutrient uptake, waste elimination and gas exchange. Fetus development in the maternal uterine cavity depends on the specialized functional trophoblast. Whether IGF2BP3 plays a role in trophoblast differentiation during placental development has never been examined. The data obtained in this study revealed that IGF2BP3 was highly expressed in human placental villi during early pregnancy, especially in cytotrophoblast cells (CTBs) and trophoblast column, but a much lower level of IGF2BP3 was detected in the third trimester placental villi. Furthermore, the expression level of IGF2BP3 in pre-eclamptic (PE) placentas was significantly lower than the gestational age-matched normal placentas. The role of IGF2BP3 in human trophoblast differentiation was shown by in vitro cell invasion and migration assays and an ex vivo explant culture model. Our data support a role of IGF2BP3 in promoting trophoblast invasion and suggest that abnormal expression of IGF2BP3 might be associated with the etiology of PE.  相似文献   

18.
Embryogenesis in placental mammals is sustained by exquisite interplay between the embryo proper and placenta. UTF1 is a developmentally regulated gene expressed in both cell lineages. Here, we analyzed the consequence of loss of the UTF1 gene during mouse development. We found that homozygous UTF1 mutant newborn mice were significantly smaller than wild-type or heterozygous mutant mice, suggesting that placental insufficiency caused by the loss of UTF1 expression in extra-embryonic ectodermal cells at least in part contributed to this phenotype. We also found that the effects of loss of UTF1 expression in embryonic stem cells on their pluripotency were very subtle. Genome structure and sequence comparisons revealed that the UTF1 gene exists only in placental mammals. Our analyses of a family of genes with homology to UTF1 revealed a possible mechanism by which placental mammals have evolved the UTF1 genes.  相似文献   

19.
20.
Malaria in pregnancy is exquisitely aggressive, causing a range of adverse maternal and fetal outcomes prominently linked to Plasmodium-infected erythrocyte cytoadherence to fetal trophoblast. To elucidate the physiopathology of infected erythrocytes (IE) sequestration in the placenta we devised an experimental system for intravital placental examination of P. berghei-infected mice. BALB/c females were mated to C57Bl/6 CFP+ male mice and infected with GFP+ P. berghei IE, and at gestational day 18, placentas were exposed for time-lapse imaging acquisition under two-photon microscopy. Real-time images and quantitative measurements revealed that trophoblast conformational changes transiently restrain blood flow in the mouse placental labyrinth. The complex dynamics of placental microcirculation promotes IE accumulation in maternal blood spaces with low blood flow and allows the establishment of stable IE-trophoblast contacts. Further, we show that the fate of sequestered IE includes engulfment by both macrophagic and trophoblastic fetal-derived cells. These findings reinforce the current paradigm that IE interact with the trophoblast and provide definitive evidence on two novel pathogenesis mechanisms: (1) trophoblast layer controls placental microcirculation promoting IE sequestration; and (2) fetal-derived placental cells engulf sequestered IE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号