首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Proneural basic helix-loop-helix (bHLH) proteins are key regulators of neurogenesis. However, downstream target genes of the bHLH proteins remain poorly defined. Mbh1 confers commissural neuron identity in the spinal cord. Enhancer analysis using transgenic mice revealed that Mbh1 expression required an E-box 3' of the Mbh1 gene. Mbh1 expression was lost in Math1 knockout mice, whereas misexpression of Math1 induced ectopic expression of Mbh1. Moreover, Math1 bound the Mbh1 enhancer containing the E-box in vivo and activated gene expression. Generation of commissural neurons by Math1 was inhibited by a dominant negative form of Mbh1. These findings indicate that Mbh1 is necessary and sufficient for the specification of commissural neurons, as a direct downstream target of Math1.  相似文献   

3.
Lgl1 was initially identified as a tumour suppressor in flies and is characterised as a key regulator of epithelial polarity and asymmetric cell division. A previous study indicated that More-Cre-mediated Lgl1 knockout mice exhibited significant brain dysplasia and died within 24 h after birth. To overcome early neonatal lethality, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in almost all cells in the cerebellum, and we examined the functions of Lgl1 in the cerebellum. Impaired motor coordination was detected in the mutant mice. Consistent with this abnormal behaviour, homozygous mice possessed a smaller cerebellum with fewer lobes, reduced granule precursor cell (GPC) proliferation, decreased Purkinje cell (PC) quantity and dendritic dysplasia. Loss of Lgl1 in the cerebellum led to hyperproliferation and impaired differentiation of neural progenitors in ventricular zone. Based on the TUNEL assay, we observed increased apoptosis in the cerebellum of mutant mice. We proposed that impaired differentiation and increased apoptosis may contribute to decreased PC quantity. To clarify the effect of Lgl1 on cerebellar granule cells, we used Math1-Cre to specifically delete Lgl1 in granule cells. Interestingly, the Lgl1-Math1 conditional knockout mice exhibited normal proliferation of GPCs and cerebellar development. Thus, we speculated that the reduction in the proliferation of GPCs in Lgl1-Pax2 conditional knockout mice may be secondary to the decreased number of PCs, which secrete the mitogenic factor Sonic hedgehog to regulate GPC proliferation. Taken together, these findings suggest that Lgl1 plays a key role in cerebellar development and folia formation by regulating the development of PCs.  相似文献   

4.
5.
6.
7.
8.
Stromal cells follow a vascular smooth muscle differentiation pathway. However, cell culture models performed from human bone marrow do not allow the obtention of a large proportion of highly differentiated smooth muscle cells (SMC) and their differentiation pathways remain unclear. We have characterized a new model of SMC differentiation from human bone marrow stromal cells by using different factors (bFGF, EGF, insulin and BMP-4). A relative homogeneous population of differentiated SMC was reproducibly obtained in short-term culture with high expression of SMC markers. Id gene expression was investigated and showed that (1) Id2 mRNA expression was upregulated during SMC differentiation without change of Id1 mRNA and (2) Id1 gene expression highly increased concomitantly with a decrease of SMC markers while Id2 mRNA was slightly modulated. Our data suggested that Id genes are potentially implicated in the differentiation pathway of human SMC from bone marrow.  相似文献   

9.
10.
Naturally occurring neuronal death (NOND) has been described in the postnatal cerebellum of several species, mainly affecting the cerebellar granule cells (CGCs) by an apoptotic mechanism. However, little is known about the cellular pathway(s) of CGC apoptosis in vivo. By immunocytochemistry, in situ detection of fragmented DNA, electron microscopy, and Western blotting, we demonstrate here the existence of two different molecular mechanisms of apoptosis in the rabbit postnatal cerebellum. These two mechanisms affect CGCs at different stages of their maturation and migration. In the external granular layer, premigratory CGCs undergo apoptosis upon phosphorylation of checkpoint kinase 1 (Chk1), and hyperphosphorylation of retinoblastoma protein. In postmigratory CGCs within the internal granular layer, caspase 3 and to a lesser extent 7 and 9 are activated, eventually leading to poly‐ADP‐ribose polymerase‐1 (PARP‐1) cleavage and programmed cell death. We conclude that NOND of premigratory CGCs is linked to activation of DNA checkpoint and alteration of normal cell cycle, whereas in postmigratory CGCs apoptosis is, more classically, dependent upon caspase 3 activation. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 437–452, 2004  相似文献   

11.
12.
13.
14.
Muscle satellite cells are essential for muscle growth and regeneration and their morphology, behavior and gene expression have been extensively studied. However, the mechanisms involved in their proliferation and differentiation remain elusive. Six1 and Six4 proteins were expressed in the nuclei of myofibers of adult mice and the numbers of myoblasts positive for Six1 and Six4 increased during regeneration of skeletal muscles. Six1 and Six4 were expressed in quiescent, activated and differentiated muscle satellite cells isolated from adult skeletal muscle. Overexpression of Six4 and Six5 repressed the proliferation and differentiation of satellite cells. Conversely, knockdown of Six5 resulted in augmented proliferation, and that of Six4 inhibited differentiation. Muscle satellite cells isolated from Six4+/Six5/ mice proliferated to higher cell density though their differentiation was not altered. Meanwhile, overproduction of Six1 repressed proliferation and promoted differentiation of satellite cells. In addition, Six4 and Six5 repressed, while Six1 activated myogenin expression, suggesting that the differential regulation of myogenin expression is responsible for the differential effects of Six genes. The results indicated the involvement of Six genes in the behavior of satellite cells and identified Six genes as potential target for manipulation of proliferation and differentiation of muscle satellite cells for therapeutic applications.  相似文献   

15.
Proliferating germ cells in Caenorhabditiselegans provide a useful model system for deciphering fundamental mechanisms underlying the balance between proliferation and differentiation. Using gene expression profiling, we identified approximately 200 genes upregulated in the proliferating germ cells of C. elegans. Functional characterization using RNA-mediated interference demonstrated that over forty of these factors are required for normal germline proliferation and development. Detailed analysis of two of these factors defined an important regulatory relationship controlling germ cell proliferation. We established that the kinase VRK-1 is required for normal germ cell proliferation, and that it acts in part to regulate CEP-1(p53) activity. Loss of cep-1 significantly rescued the proliferation defects of vrk-1 mutants. We suggest that VRK-1 prevents CEP-1 from triggering an inappropriate cell cycle arrest, thereby promoting germ cell proliferation. This finding reveals a previously unsuspected mechanism for negative regulation of p53 activity in germ cells to control proliferation.  相似文献   

16.
In the developing rat cerebellum functional NMDA receptors (NMDARs) expressing the NR2C subunit have been identified on or after postnatal day 19. We obtained primary cultured cells from 19- to 35-day-old rat cerebellum that expressed few oligodendrocytes or astrocytes. Cultured cells were immunoreactive for neuron-specific proteins thus indicating a neuronal population. The primary neuron present was the granule cell as indicated by immunofluorescence for the GABAA alpha 6 subunit. Whole-cell patch-clamp experiments indicated that functional NMDARs were present. Functional characteristics of NMDARs expressed in cerebellar granule cells (CGCs) obtained from adolescent animals were similar to those previously reported for NMDARs expressed in CGCs obtained from neonatal rats. Cultured CGCs obtained from older animals contained NMDARs that were inhibited by EtOH and were less sensitive to the NR2B subunit-specific antagonist Ro 25-6981. Furthermore, NMDA-induced currents were smaller than those observed in CGCs. Western blot analysis indicated the presence of the NMDA NR2A and NR2C subunits, but not the NR2B in cultures obtained from the adolescent rats. CGCs obtained from adolescent rats express functional NMDARs consistent with a developmental profile observed in vivo .  相似文献   

17.
In Drosophila, the Polycomb group (PcG) of genes is required for the maintenance of homeotic gene repression during development. Here, we have characterized the Drosophila ortholog of the products of the mammalian Ring1/Ring1A and Rnf2/Ring1B genes. We show that Drosophila Ring corresponds to the Sex combs extra (Sce), a previously described PcG gene. We find that Ring/Sce is expressed and required throughout development and that the extreme Pc embryonic phenotype due to the lack of maternal and zygotic Sce can be rescued by ectopic expression of Ring/Sce. This phenotypic rescue is also obtained by ectopic expression of the murine Ring1/Ring1A, suggesting a functional conservation of the proteins during evolution. In addition, we find that Ring/Sce binds to about 100 sites on polytene chromosomes, 70% of which overlap those of other PcG products such as Polycomb, Posterior sex combs and Polyhomeotic, and 30% of which are unique. We also show that Ring/Sce interacts directly with PcG proteins, as it occurs in mammals.  相似文献   

18.
Engulfment and cell motility (ELMO) proteins bind to Dock180, a guanine nucleotide exchange factor (GEF) of the Rac family, and regulate GEF activity. The resultant ELMO/Dock180/Rac module regulates cytoskeletal reorganization responsible for the engulfment of apoptotic cells, cell migration, and neurite extension. The expression and function of Elmo family proteins in the nervous system, however, are not yet fully understood. Here, we characterize the comparative gene expression profiles of three Elmo family members (Elmo1, Elmo2, and Elmo3) in the brain of C57BL/6J mice, a widely used inbred strain, together with reeler mutant mice to understand gene expression in normal laminated brain areas compared with abnormal areas. Although all three Elmo genes showed widespread mRNA expression over various mouse tissues tested, Elmo1 and Elmo2 were the major types expressed in the brain, and three Elmo genes were up-regulated between the first postnatal week (infant stage) and the third postnatal week (juvenile, weaning stage). In addition, the mRNAs of Elmo genes showed distinct distribution patterns in various brain areas and cell-types; such as neurons including inhibitory interneurons as well as some non-neuronal cells. In the cerebral cortex, the three Elmo genes were widely expressed over many cortical regions, but the predominant areas of Elmo1 and Elmo2 expression tended to be distributed unevenly in the deep (a lower part of the VI) and superficial (II/III) layers, respectively, which also changed depending on the cortical areas and postnatal stages. In the dentate gyrus of the hippocampus, Elmo2 was expressed in dentate granule cells more in the mature stage rather than the immature-differentiating stage. In the thalamus, Elmo1 but not the other members was highly expressed in many nuclei. In the medial habenula, Elmo2 and Elmo3 were expressed at intermediate levels. In the cerebellar cortex, Elmo1 and Elmo2 were expressed in differentiating-mature granule cells and mature granule cells, respectively. In the Purkinje cell layer, Elmo1 and Elmo2 were expressed in Purkinje cells and Bergmann glia, respectively. Disturbed cellular distributions and laminar structures caused by the reeler mutation did not severely change expression in these cell types despite the disturbed cellular distributions and laminar structures, including those of the cerebrum, hippocampus, and cerebellum. Taken together, these results suggested that these three Elmo family members share their functional roles in various brain regions during prenatal-postnatal development.  相似文献   

19.
20.
The molecular mechanisms that couple growth arrest and cell differentiation were examined during adipogenesis. Here, to understand the cyclin-dependent kinase inhibitor (CKI) genes involved in the progression of adipogenic differentiation, we examined changes in the protein and mRNA expression levels of CKI genes in vitro. During the onset of growth arrest associated with adipogenic differentiation, two independent families of CKI genes, p27Kip1 and p18INK4c, were significantly increased. The expressions of p27Kip1 and p18INK4c, regulated at the level of protein and mRNA accumulation, were directly coupled to adipogenic differentiation. This finding was supported by the inhibition of adipogenic differentiation caused by short interfering RNA (siRNA). In this study, we investigated the regulatory effects of transforming growth factor beta-1 (TGFβ-1) on CKI genes involved in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs). Only the up-regulation of p18INK4c during adipogenic differentiation, and not that of the p27Kip1 gene was prevented by treatment with TGFβ-1, one of the factors that inhibit adipogenesis in vitro. This finding indicates a close correlation between adipogenic differentiation and p18INK4c induction in hMSCs. Thus, these data demonstrate a role for the differentiation-dependent cascade expression of cyclin-dependent kinase inhibitors in regulating adipogenic differentiation, thereby providing a molecular mechanism that couples growth arrest and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号