首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian X-chromosome inactivation is controlled by a multilayered silencing pathway involving both short and long non-coding RNAs, which differentially recruit the epigenetic machinery to establish chromatin asymmetries. In response to developmentally regulated small RNAs, dicer, a key effector of RNA interference, locally silences Xist on the active X-chromosome and establishes the heterochromatin conformation along the silent X-chromosome. The 1.6 kb RepA RNA initiates silencing by targeting the PRC2 polycomb complex to the inactive X-chromosome. In addition, the nuclear microenvironment is implicated in the initiation and maintenance of X-chromosome asymmetries. Here we review new findings involving these various RNA species in terms of understanding Xist gene regulation and the establishment of X-chromosome inactivation.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
During the development of female mammals, one of the two X chromosomes is inactivated, serving as a dosage-compensation mechanism to equalize the expression of X-linked genes in females and males. While the choice of which X chromosome to inactivate is normally random, X chromosome inactivation can be skewed in F1 hybrid mice, as determined by alleles at the X chromosome controlling element (Xce), a locus defined genetically by Cattanach over 40 years ago. Four Xce alleles have been defined in inbred mice in order of the tendency of the X chromosome to remain active: Xcea < Xceb < Xcec < Xced. While the identity of the Xce locus remains unknown, previous efforts to map sequences responsible for the Xce effect in hybrid mice have localized the Xce to candidate regions that overlap the X chromosome inactivation center (Xic), which includes the Xist and Tsix genes. Here, we have intercrossed 129S1/SvImJ, which carries the Xcea allele, and Mus musculus castaneus EiJ, which carries the Xcec allele, to generate recombinant lines with single or double recombinant breakpoints near or within the Xce candidate region. In female progeny of 129S1/SvImJ females mated to recombinant males, we have measured the X chromosome inactivation ratio using allele-specific expression assays of genes on the X chromosome. We have identified regions, both proximal and distal to Xist/Tsix, that contribute to the choice of which X chromosome to inactivate, indicating that multiple elements on the X chromosome contribute to the Xce.  相似文献   

15.
16.
X-chromosome inactivation (XCI) ensures dosage compensation in mammals. Random XCI is a process where a single X chromosome is silenced in each cell of the epiblast of mouse female embryos. Operating at the level of an entire chromosome, XCI is a major paradigm for epigenetic processes. Here we review the most recent discoveries concerning the role of long noncoding RNAs, pluripotency factors, and chromosome structure in random XCI.  相似文献   

17.
In mice, dosage compensation of X‐linked gene expression is achieved through the inactivation of one of the two X‐chromosomes in XX female cells. The complex epigenetic process leading to X‐inactivation is largely controlled by Xist and Tsix, two non‐coding genes of opposing function. Xist RNA triggers X‐inactivation by coating the inactive X, while Tsix is critical for the designation of the active X‐chromosome through cis‐repression of Xist RNA accumulation. Recently, a plethora of trans‐acting factors and cis‐regulating elements have been suggested to act as key regulators of either Xist, Tsix or both; these include ubiquitous factors such as Yy1 and Ctcf, developmental proteins such as Nanog, Oct4 and Sox2, and X‐linked regulators such as Rnf12. In this paper we summarise recent advances in our knowledge of the regulation of Xist and Tsix in embryonic stem (ES) and differentiating ES cells.  相似文献   

18.
19.
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non‐coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2‐dependent H3K27me3 and SETD8‐dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3‐specific intracellular antibody or H3K27me3‐mintbody. By combining live‐cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP‐seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号