首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the influence of blood flow on postpneumonectomy lung growth, we banded the left caudal lobe pulmonary artery of eight ferrets in such a way that blood flow to the caudal lobe did not increase when the right lung was excised 1 wk later. The fraction of the cardiac output received by the right lung before pneumonectomy was therefore directed entirely to the left cranial lobe. Three weeks after pneumonectomy the weight, volume, and protein and DNA contents of the two lobes of the left lung were measured and compared with those of five unoperated animals and eight animals after right pneumonectomy alone. Although its perfusion did not increase after pneumonectomy, the left caudal lobe of banded animals participated in compensatory growth, increasing in weight and protein and DNA contents. Although the cranial lobe of banded animals received 25% more of the cardiac output than the same lobe in pneumonectomized animals, cranial lobe volume and protein and DNA contents in the two groups were similar. Caudal lobes were smaller in banded than in simple pneumonectomized animals and tended to contain less protein, whereas the cranial lobes tended to be heavier. We conclude that increased pulmonary perfusion is not necessary for compensatory lung growth in adult ferrets, but it may modify this response.  相似文献   

2.
In the neonatal period, the incomplete aeration of the lung parenchyma and the presence of some pulmonary fluid could determine inequalities in the mechanical behavior of lung regions, favoring unevenness of ventilation distribution. We studied the pressure-volume (PV) curve of excised lungs of kittens in the 1st wk of life 1) by changing the volume a known amount and measuring the corresponding changes in transpulmonary pressure (PL) and 2) by ventilating them at a fixed PL at a rate of 20 cycles/min. An expiratory load equal to the value of PL at the resting volume of the respiratory system was added to avoid the collapse of the lung. A lobar bronchus was then tied, and the measurements were repeated. The difference in PV curves before and after ligature therefore represented the PV curve of the lobe. This was done for all the lobes (upper and middle right, lower right, lower left, upper left) in a random order. A total of 20 lungs and 61 lobes have been studied. Individual lobes were not different in terms of dry-to-wet weight ratio, compliance per unit weight, or per maximal volume and shape of the PV curve, indicating a similar mechanical behavior. Dynamic lung compliance averaged 76% +/- 15 SD of the static value, suggesting some degree of asynchronous behavior of lung regions or viscoelastic properties of the tissue.  相似文献   

3.
The bronchial ramification and lobular division in lungs of two chimpanzees (Pan troglodytes) were examined from the viewpoint of comparative anatomy, on the basis of the fundamental structure of bronchial ramification of the mammalian lung (Nakakuki, 1975, 1980). The right lung of the chimpanzee consists of the upper, middle, and lower lobes, whereas the left lung consists of the middle and lower lobes. The right and left lungs have the dorsal bronchiole system, lateral bronchiole system, and medial bronchiole system. The ventral bronchiole system is lacking on both sides. The right upper lobe is formed by the first branch of the dorsal bronchiole system. The right middle lobe is formed by the first branch of the lateral bronchiole system, and the right accessory lobe bronchiole is lacking. The remaining bronchioles constitute the right lower lobe. In the left lung, the upper and accessory lobes are lacking. The well developed middle lobe is formed by the first branch of the lateral bronchiole system. The left lower lobe is formed by the remaining bronchioles. Furthermore, these bronchioles are compared with those of the human lung byBoyden (1955).  相似文献   

4.
The lobular division, bronchial tree, and blood vessels in lungs of seven squirrel monkeys (Saimiri sciureus) were examined from the viewpoint of comparative anatomy. The right lung of the squirrel monkey consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of the upper, middle, and lower lobes. These lobes are completely separated by interlobular fissures. In three of seven examples examined the left middle lobe was lacking. The squirrel monkey lung has four bronchiole systems, i.e. dorsal, lateral, ventral, and medial, on both sides. The upper lobes are formed by the first branches of the dorsal bronchiole systems. The middle lobes are formed by the first branches of the lateral bronchiole systems. The remaining bronchioles constitute the lower lobes. In addition to the above lobes, in the right lung, the accessory lobe is present, being formed by the first branch of the ventral bronchiole system. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal bronchiole and lateral bronchiole systems along the dorso-lateral side of the right bronchus. During its course, the right pulmonary artery gives off the arterial branches which run along each bronchiole. These branches run mainly along the dorsal or lateral side of the bronchioles. In the left lung, the pulmonary artery and its branches run the same course as in the right lung. The pulmonary veins run mainly the ventral or medial side of the bronchioles, and between the bronchioles.  相似文献   

5.
The authors examined the lung of one Diana monkey (Cercopithecus diana). The right lung consists of upper, middle, lower, and accessory lobes, the upper and middle lobes being united dorsally. The accessory and lower lobes are separated from the other lobes by fissures. The left lung consists of a bi-lobed middle lobe and a lower lobe. These lobes are separated by an interlobular fissure. The Diana monkey has dorsal, lateral, ventral, and medial bronchiole systems on either side. The upper lobe is formed by the first bronchiole of the dorsal bronchiole system. The middle lobe is formed by the first bronchiole of the lateral bronchiole system and the accessory lobe is formed by the first bronchiole of the ventral bronchiole system. The remaining bronchioles of the four bronchiole systems constitute the lower lobe. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal and lateral bronchiole systems, along the dorso-lateral side of the right bronchus. During its course, the right pulmonary artery gives off arterial branches running along the dorsal or lateral side of each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole. Thereafter, it follows the same course as in the right lung, giving off arterial branches. The pulmonary veins run along the ventral or medial side of the bronchiole, and between the bronchioles.  相似文献   

6.
The bronchial ramification in one specimen of gorilla lung was examined from the viewpoint of comparative anatomy, on the basis of the fundamental structure of bronchial ramification in the mammalian lung (Nakakuki, 1975, 1980). The right lung of the gorilla consists of the upper, middle, lower, and accessory lobes. The right lung has the dorsal, lateral, and ventral bronchiole systems, but the medial bronchiole system is lacking. The upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is formed by the first branch of the lateral bronchiole system. The accessory lobe is formed by the first branch of the ventral bronchiole system. The remaining bronchioles constitute the lower lobe. The left lung consists of the middle and lower lobes; the upper and accessory lobes are lacking. The left lung has the dorsal and lateral bronchiole systems, but the ventral and medial bronchiole systems are lacking. The middle lobe is formed by the first branch of the lateral bronchiole system. The remaining bronchioles constitute the lower lobe. The bronchial ramifications of the gorilla lung are rather similar to those of the human lung.  相似文献   

7.
The author injected various colored celluloid solutions into the bronchial tree and blood vessels of the lungs of five adult Japanese monkeys (Macaca fuscata) in order to prepare cast specimens. These specimens were investigated from the comparative anatomical viewpoint to determine whether the bronchial ramification theory of the mammalian lung (Nakakuki, 1975, 1980) can be applied to the Japanese monkey lung or not. The bronchioles are arranged stereotaxically like those of other mammalian lungs. The four bronchiole systems, dorsal, ventral, medial, and lateral, arise from both bronchi, respectively, although some bronchioles are lacking. In the right lung, the bronchioles form the upper, middle, accessory, and lower lobes, while in the left lung, the upper and accessory lobes are lacking and bi-lobed middle and lower lobes are formed. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is the first branch of the lateral bronchiole system. The accessory lobe is the first branch of the ventral bronchiole system. The lower lobe is formed by the remaining bronchioles of the four bronchiole systems. In the left lung, the middle lobe is formed by the first branch of the lateral bronchiole system. The lower lobe is formed by the remaining bronchioles. Thus, the bronchial ramification theory of the mammalian lung applied well to the Japanese monkey lung. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole. It then runs along the dorso-lateral side of the right bronchus between the dorsal bronchiole system and the lateral bronchiole system. On its way, it gives off branches of the pulmonary artery which run along the dorsal or lateral side of each bronchiole except in the ventral bronchiole system. In the ventral bronchiole system, the branches run along the ventral side of the bronchioles. The distributions of the pulmonary artery in the left lung are the same as those in the right lung. The pulmonary veins do not always run along the bronchioles. Most of them run on the medial or ventral side of the bronchioles. Some of them run between the pulmonary segments. In the right lung, these pulmonary veins finally form the right upper lobe vein, right middle lobe vein and the right lower lobe pulmonary venous trunk before entering the left atrium. However, the right accessory lobe vein runs on the dorsal side of the bronchiole and pours into the right lower lobe pulmonary venous trunk. In four cases out of the five examples, part of the right lower lobe veins pour into the right middle lobe vein, while the others enter the right lower lobe pulmonary venous trunk. In the left lung, the branches of the pulmonary veins finally form the left middle lobe vein and the left lower lobe pulmonary venous trunk.  相似文献   

8.
After pneumonectomy (PNX), mechanical strain on the remaining lung is greatly increased. To assess whether remaining lobes expand uniformly after left or right PNX (removing 42 and 58% of lung mass, respectively), we performed high-resolution computed tomography (CT) scans at 45 ml/kg above end-expiratory lung volume on adult male foxhounds after left or right PNX, which were compared with adult Sham controls. Air and tissue volumes were separately measured in each lobe. After left PNX, air and tissue volumes in the right upper and cardiac lobes increased approximately 2.2-fold above and below the heart, whereas volumes in right middle and lower lobes did not change significantly. After right PNX, air and tissue volumes in the left upper and middle lobes increased 2.3- to 2.7-fold across the midline anterior to the heart, whereas the left lower lobe expanded approximately 1.9-fold posterior to the heart. Regional changes in volume density of tissue post-PNX estimated by CT scan parallel postmortem estimates by morphometric analyses. Data indicate heterogeneous regional distribution of mechanical lung strain, which could influence the differential cellular compensatory response following right and left PNX.  相似文献   

9.
To test the hypothesis that endogenous opioids modulate fetal lung development, separate groups of pregnant rabbits received daily injections of saline, morphine (1 mg/kg body wt), or the opioid antagonist naloxone (0.4 and 5.0 mg) for 10 days during their last trimester of pregnancy. The corresponding groups of fetuses were then delivered prematurely on day 28 of gestation (term approximately 31 days) and evaluated with respect to differences in body weight, lung weight, and the ratios of wet to dry lung weight and lung dry weight to body weight, the static inflation and deflation air and saline pressure-volume (P-V) characteristics of the lungs, and lung morphology. Mean values for body weight, lung weight, and the ratios of lung wet to dry weight and lung dry weight to body weight were not significantly different among the saline control (C), morphine (M)-, and naloxone (NLX)-treated fetuses. On the other hand, the fetal air P-V curves varied significantly (P less than 0.001), wherein the M-treated group depicted increased lung distensibility and alveolar stability on lung deflation, whereas the opposite was obtained in the NLX-treated fetuses. Moreover, morphometric analyses demonstrated that the mean alveolar air space-to-tissue ratio in lungs from M-treated fetuses were significantly greater than that observed either in C or in NLX-treated fetuses (P less than 0.05); however, the air space-to-tissue ratio did not significantly vary between the C and NLX-treated animals. These observations provide new evidence that endogenous opioids enhance fetal lung maturation.  相似文献   

10.
We previously reported that pulmonary arterial occlusion for 48 h followed by 4 h of reperfusion in awake dogs results in marked edema and inflammatory infiltrates in both reperfused and contralateral lungs (Am. Rev. Respir. Dis. 134: 752-756, 1986; J. Appl. Physiol. 63: 942-950, 1987). In this experiment we study the effects of alveolar hypoxia on this injury. Anesthetized dogs underwent thoracotomy and occlusion of the left pulmonary artery. Twenty-four hours later the dogs were reanesthetized, and a double-lumen endotracheal tube was placed. The right lung was continuously ventilated with an inspiratory O2 fraction (FIO2) of 0.35. In seven study animals the left lung was ventilated with an FIO2 of 0 for 3 h after the left pulmonary artery occluder was removed. In six control animals the left lung was ventilated with an FIO2 of 0.35 during the same reperfusion period. Postmortem bloodless wet-to-dry weight ratios were 5.87 +/- 0.20 for the left lower lobe and 5.32 +/- 0.12 for the right lower lobe in the dogs with hypoxic ventilation (P less than 0.05 for right vs. left lobes). These values were not significantly different from the control dog lung values of 5.94 +/- 0.22 for the left lower lobe and 5.11 +/- 0.07 for the right lower lobe (P less than 0.05 for right vs. left lobes). All values were significantly higher than our laboratory normal of 4.71 +/- 0.06. We conclude that reperfusion injury is unaffected by alveolar hypoxia during the reperfusion phase.  相似文献   

11.
Fatty acid embolism of the lung results in pulmonary edema. Isolated lung lobes ventilated and blood perfused at constant pressure were treated with 1 (n = 6) or 45 microliter/kg body wt (n = 6 oleic acid or saline (n = 7). Lobe weight increase linearly over 1-3 h following oleic with regression slopes indicating a more rapid rate of weight gain at the higher oleic acid dosage. Total lobe weight gain was greater in the 45 than in the 1 microliter/kg group (0.60 +/- 0.10 vs. 0.31 +/- 0.07 g/g initial lobe wt) and greater in the acid-treated lobes than in the controls (0.13 +/- 0.05 g/g initial lobe wt). Pulmonary vascular resistance increased 79% after 45 microliter/kg oleic acid but appeared unchanged following 1 microliter/kg oleic acid or saline. The decrease in arterial O2 partial pressure was greater in the 45 microliter/kg group than in the controls, 47 vs 22 Torr. High vascular pressures and increased flow velocities in patent vessels are not essential for oleic acid-associated edema, since weight increased at constant pressure perfusion. Weight gain related to oleic acid dosage suggests that oleic acid increases permeability by affecting the vascular endothelium either directly or through biochemical intermediates endogenous to the lung or blood.  相似文献   

12.
The bronchial tree and lobular division of the lungs of four white handed gibbons (Hylobates agilis) were examined from the viewpoint of comparative anatomy, based upon the fundamental structure of the bronchial ramifications of the mammalian lung (Nakakuki, 1975, 1980). The right lung of the white handed gibbon consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of the middle and lower lobes. Each lobe is separated by the interlobular fissure, on both sides. The right and left lungs have the dorsal bronchiole system, lateral bronchiole system, and ventral bronchiole system. The medial bronchiole system is lacking on both sides. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is formed by the first brach of the lateral bronchiole system, and the accessory lobe by the first branch of the ventral bronchiole system. The remaining bronchioles constitute the right lower lobe. In the left lung, the upper lobe bronchiole, which is the first branch of the dorsal bronchiole system, is lacking. Therefore, the middle lobe bronchiole, i.e. the first branch of the lateral bronchiole system, is well developed. The accessory lobe bronchiole, the first branch of the ventral bronchiole system, is also lacking. The remaining bronchioles constitute the left lower lobe. These features were compared with those of other apes and man.  相似文献   

13.
E I Al'tman  P G Men' 《Biofizika》1975,20(2):303-307
A new method of studying the aerodynamical characteristics of normal right bronchial tree in 17 natural preparations is described. The authors have found that 24 to 44 per cent of the total airflow entering the right main bronchus pass through the upper lobe bronchus, 9-26 per cent through the middle lobe bronchus and 38-56 per cent through the lower lobe bronchus. The data obtained show good agreement with the volume of the corresponding lobe expressed as percentage to the total right lung volume. Bronchial tree preparations differ greatly in their carrying capacities due to their corresponding aerodynamical resistances (+50% +25%). The relationship between resistance coefficient of the bronchial tree preparations and their geometrical parameters has been found.  相似文献   

14.
Circulating fatty acids are normally transported principally bound to serum albumin. We examined whether administering oleic acid (OA) in a concentrated albumin solution would attenuate its edemogenic potential in the isolated dog lung lobe perfused with a solution nearly depleted of blood cellular and protein components. The isolated ventilated lower left lobe (LLL) was perfused (7.3 +/- 0.6 ml X min-1 X g LLL-1) with a balanced salt solution containing 6% dextran and approximately 10% serum (vol/vol). Hourly weight gain, net LLL weight gain, and wet-to-dry weight ratio (W/D) were used as indices of extravascular lung fluid changes. Group I lobes (n = 5) were given saline, whereas both group II (n = 5) and III (n = 5) lobes were administered 1 microliter OA/kg body wt. The OA was incubated with 5 ml of albumin solution containing approximately 640 mg of bovine fatty acid-free albumin before infusion into group III lobes. Group I gained weight at rate of 10.8 +/- 0.5 g X h-1 X 100 g LLL-1 after saline, whereas group II exhibited a greater (P less than 0.005) rate of weight gain of 42 +/- 13 after OA. Group III weight gain of 8.4 +/- 0.5 g X h-1 X 100 g LLL-1 was not different (P greater than 0.05) from group I but was lower (P less than 0.005) than group II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Effect of dehydration on interstitial pressures in the isolated dog lung   总被引:1,自引:0,他引:1  
We have determined the effect of dehydration on regional lung interstitial pressures. We stopped blood flow in the isolated blood-perfused lobe of dog lung at vascular pressure of approximately 4 cmH2O. Then we recorded interstitial pressures by micropuncture at alveolar junctions (Pjct), in perimicrovascular adventitia (Padv), and at the hilum (Phil). After base-line measurements, we ventilated the lobes with dry gas to decrease extravascular lung water content by 14 +/- 5%. In one group (n = 10), at constant inflation pressure of 7 cmH2O, Pjct was 0.2 +/- 0.8 and Padv was -1.5 +/- 0.6 cmH2O. After dehydration the pressures fell to -5.0 +/- 1.0 and -5.3 +/- 1.3 cmH2O, respectively (P less than 0.01), and the junction-to-advential gradient (Pjct-Padv) was abolished. In a second group (n = 6) a combination of dehydration and lung expansion with inflation pressure of 15 cmH2O further decreased Pjct and Padv to -7.3 +/- 0.7 and -7.1 +/- 0.7 cmH2O, respectively. Phil followed changes in Padv. Interstitial compliance was 0.6 at the junctions, 0.8 in adventitia, and 0.9 ml.cmH2O-1.100 g-1 wet lung at the hilum. We conclude, that perialveolar interstitial pressures may provide an important mechanism for prevention of lung dehydration.  相似文献   

16.
The base-line capillary filtration coefficient (Kf) obtained from rates of lobe weight gain during stepwise vascular pressure elevation is reported to be threefold greater in isolated than in intact dog lung. To further evaluate the stepwise pressure elevation technique, we obtained Kf in control and oleic acid-injured isolated lung. The left lower lung lobe was removed, placed on a balance, ventilated, and pump perfused with autogenous blood. Saline (n = 6) or oleic acid (n = 6) was infused, and rate of lobe weight gain was obtained during stepwise pressure elevation. Kf averaged 0.071 +/- 0.012 and 0.243 +/- 0.027 ml X min-1 X Torr-1 X 100 g-1 in the control and injured lobes, respectively. Stepwise pressure elevation can yield a base-line Kf in isolated lung similar to Kf's obtained from this and other gravimetric methods in intact and isolated lung. Furthermore, Kf increased severalfold following lung injury with oleic acid. The stepwise pressure elevation technique for Kf determination in isolated lung can be a useful tool for quantitating changes in vascular permeability.  相似文献   

17.
It is a commonly held view that numbers are represented in an abstract way in both parietal lobes. This view is based on failures to find differences between various notational representations. Here we show that by using relatively smaller voxels together with an adaptation paradigm and analyzing subjects on an individual basis it is possible to detect specialized numerical representations. The current results reveal a left/right asymmetry in parietal lobe function. In contrast to an abstract representation in the left parietal lobe, the numerical representation in the right parietal lobe is notation dependent and thus includes nonabstract representations. Our results challenge the commonly held belief that numbers are represented solely in an abstract way in the human brain.  相似文献   

18.
Pulmonary edema has frequently been associated with air embolization of the lung. In the present study the hemodynamic effects of air emboli (AE) were studied in the isolated mechanically ventilated canine right lower lung lobe (RLL), pump perfused at a constant blood flow. Air was infused via the pulmonary artery (n = 7) at 0.6 ml/min until pulmonary arterial pressure (Pa) rose 250%. While Pa rose from 12.4 +/- 0.6 to 44.6 +/- 2.0 (SE) cmH2O (P less than 0.05), venous occlusion pressure remained constant (7.0 +/- 0.5 to 6.8 +/- 0.6 cmH2O; P greater than 0.05). Lobar vascular resistance (RT) increased from 2.8 +/- 0.3 to 12.1 +/- 0.2 Torr.ml-1.min.10(-2) (P less than 0.05), whereas the venous occlusion technique used to determine the segmental distribution of vascular resistance indicated the increase in RT was confined to vessels upstream to the veins. Control lobes (n = 7) administered saline at a similar rate showed no significant hemodynamic changes. As an index of microvascular injury the pulmonary filtration coefficient (Kf) was obtained by sequential elevations of lobar vascular pressures. The Kf was 0.11 +/- 0.01 and 0.07 +/- 0.01 ml.min-1.Torr-1.100 g RLL-1 in AE and control lobes, respectively (P less than 0.05). Despite a higher Kf in AE lobes, total lobe weight gains did not differ and airway fluid was not seen in the AE group. Although air embolization caused an increase in upstream resistance and vascular permeability, venous occlusion pressure did not increase, and marked edema did not occur.  相似文献   

19.
In the lung of the crab-eating monkey (Macaca fascicularis), the right pulmonary artery runs across the ventral side of the right upper lobe bronchiole and the dorsal side of the right middle lobe bronchiole. Thereafter, it courses along the dorso-lateral side of the right bronchus, between the dorsal and lateral bronchiole systems. During this course, the right pulmonary artery gives off arterial branches running mainly along the dorsal or lateral side of each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole, and is then distributed as in the right lower lobe. The pulmonary veins run mainly along the ventral or medial side of the bronchiole in the upper and middle lobes whereas, in the lower lobe, they run ventrally, and between the bronchioles. Finally they enter the left atrium as four large veins.  相似文献   

20.
Regional lung strain in dogs during deflation from total lung capacity   总被引:1,自引:0,他引:1  
Regional lung distortion during deflation from total lung capacity to functional residual capacity (FRC) in intact supine and prone anesthetized dogs was determined from the displacement of multiple metallic markers embedded in the lung parenchyma. Distortion was expressed as strain (epsilon), which is related to fractional length changes. In the supine position, transverse strain (epsilon yy) was larger than vertical strain (epsilon xx) and cephalocaudal strain (epsilon zz) in the upper lobe. The FRC of the lower lobe was smaller than FRC of the upper lobe and all strains were larger, but epsilon zz increased most and became equal to epsilon yy. In the prone position, epsilon yy was largest in all upper lobes and in three of four lower lobes. Strains and volumes of the upper and lower lobes were similar. The upper and lower lobes rotated slightly around different axes, indicating that interpleural fissures allow additional degrees of freedom for the lungs to conform to the thoracic cavity. In the prone position, there were no consistent gradients of strain or volume. These results indicate that, in determining the regional distribution of FRC in the recumbent dog, in addition to the effect of gravity on the lung, there are important interactions between lung and thoracic cavity shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号