首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Pulmonary vasodilators in general and prostacyclin analogues in particular have improved the outcome of patients with pulmonary arterial hypertension (PAH). Endothelial dysfunction is a key feature of PAH and we previously described that circulating endothelial cell (CEC) level could be used as a biomarker of endothelial dysfunction in PAH. We now hypothesized that an efficient PAH-specific vasodilator therapy might decrease CEC level.

Methods/Results

CECs were prospectively quantified by immunomagnetic separation with mAb CD146-coated beads in peripheral blood from children with idiopathic PAH (iPAH, n = 30) or PAH secondary to congenital heart disease (PAH-CHD, n = 30): before, after treatment and during follow up. Controls were 23 children with reversible PAH. Oral treatment with endothelin receptor antagonists (ERA) and/or phosphodiesterase 5 inhibitors (PDE5) significantly reduced CEC counts in children. In 10 children with refractory PAH despite oral combination therapy, subcutaneous (SC) treprostinil was added and we observed a significant decrease in CEC counts during the first month of such treatment. CECs were quantified during a 6 to 36 month-follow-up after initiation of SC treprostinil and we found that CEC counts changed over time, with rising counts always preceding clinical deterioration.

Conclusion

CECs might be useful as a biomarker during follow-up of pediatric iPAH and PAH-CHD to assess response to treatment and to anticipate clinical worsening.  相似文献   

2.

Background

Circulating endothelial cells (CECs) are markers of vascular damage that have clinical relevance in many diseases, including acute myocardial infarction (AMI), and may be predictors of treatment responses. Herein, we investigated the diagnostic and prognostic value of CEC monitoring in AMI patients and a murine model.

Methodology/Principal Findings

CECs were defined as Hoechst 33342+/CD45−/CD31+/CD146+/CD133 in human blood samples and Hoechst 33342+/CD45−/CD31+/KDR+/CD117 in murine samples. To evaluate the validity and variability of our CEC detection system, peripheral blood samples of vascular endothelial growth factor-treated athymic nude mice and AMI patients were collected and subjected to intra-assay analysis. CEC detection by flow cytometry and real-time PCR were compared. Blood samples were obtained from 61 AMI patients, 45 healthy volunteers and 19 samples of the original AMI patients accepted one month treatment, via flow cytometry and expressed as a percentage of peripheral blood mononuclear cells.

Results

Our CEC detection method was validated and had limited variability. CEC concentrations were higher in AMI patients compared to healthy controls. One month post-treatment, CECs levels decreased significantly.

Conclusions/Significance

CEC levels may be useful as a diagnostic and prognostic biomarker in AMI patients.  相似文献   

3.
Considerable interest has been generated for the development of suitable corneal endothelial graft alternatives through cell-tissue engineering, which can potentially alleviate the shortage of corneal transplant material. The advent of less invasive suture-less key-hole surgery options such as Descemet’s Stripping Endothelial Keratoplasty (DSEK) and Descemet’s Membrane Endothelial Keratoplasty (DMEK), which involve transplantation of solely the endothelial layer instead of full thickness cornea, provide further impetus for the development of alternative endothelial grafts for clinical applications. A major challenge for this endeavor is the lack of specific markers for this cell type. To identify genes that reliably mark corneal endothelial cells (CECs) in vivo and in vitro, we performed RNA-sequencing on freshly isolated human CECs (from both young and old donors), CEC cultures, and corneal stroma. Gene expression of these corneal cell types was also compared to that of other human tissue types. Based on high throughput comparative gene expression analysis, we identified a panel of markers that are: i) highly expressed in CECs from both young donors and old donors; ii) expressed in CECs in vivo and in vitro; and iii) not expressed in corneal stroma keratocytes and the activated corneal stroma fibroblasts. These were SLC4A11, COL8A2 and CYYR1. The use of this panel of genes in combination reliably ascertains the identity of the CEC cell type.  相似文献   

4.

Background

Circulating endothelial cells (CEC) may be a biomarker of vascular injury and pro-thrombotic tendency, while circulating endothelial progenitor cells (CEP) may be an indicator for angiogenesis and vascular remodelling. However, there is not a universally accepted standardized protocol to identify and quantify these cells and its clinical relevancy remains to be established.

Objectives

To quantify CEC and CEP in patients with venous thromboembolism (VTE) and with myeloproliferative neoplasms (MPN), to characterize the CEC for the expression of activation (CD54, CD62E) and procoagulant (CD142) markers and to investigate whether they correlate with other clinical and laboratory data.

Patients and Methods

Sixteen patients with VTE, 17 patients with MPN and 20 healthy individuals were studied. The CEC and CEP were quantified and characterized in the blood using flow cytometry, and the demographic, clinical and laboratory data were obtained from hospital records.

Results

We found the CEC counts were higher in both patient groups as compared to controls, whereas increased numbers of CEP were found only in patients with MPN. In addition, all disease groups had higher numbers of CD62E+ CEC as compared to controls, whereas only patients with VTE had increased numbers of CD142+ and CD54+ CEC. Moreover, the numbers of total and CD62+ CEC correlated positively with the white blood cells (WBC) counts in both groups of patients, while the numbers of CEP correlated positively with the WBC counts only in patients with MPN. In addition, in patients with VTE a positive correlation was found between the numbers of CD54+ CEC and the antithrombin levels, as well as between the CD142+ CEC counts and the number of thrombotic events.

Conclusions

Our study suggests that CEC counts may reveal endothelial injury in patients with VTE and MPN and that CEC may express different activation-related phenotypes depending on the disease status.  相似文献   

5.
Blood circulating endothelial cells (CECs) and circulating hematopoietic progenitor cells (CPCs) represent two cell populations that are thought to play important roles in tissue vascularization. CECs and CPCs are currently studied as surrogate markers in patients for more than a dozen pathologies, including heart disease and cancer. However, data interpretation has often been difficult because of multiple definitions, methods and protocols used to evaluate and count these cells by different laboratories. Here, we propose a cytometry protocol for phenotypic identification and enumeration of CECs and CPCs in human blood using four surface markers: CD31, CD34, CD133 and CD45. This method allows further phenotypic analyses to explore the biology of these cells. In addition, it offers a platform for longitudinal studies of these cells in patients with different pathologies. The protocol is relatively simple, inexpensive and can be adapted for multiple flow cytometer types or software. The procedure should take 2-2.5 h, and is expected to detect 0.1-6.0% viable CECs and 0.01-0.20% CPCs within blood mononuclear cell population.  相似文献   

6.
7.
K Han  Y Kim  J Lee  J Lim  K Y Lee  C S Kang  W I Kim  B K Kim  S I Shim  S M Kim 《Cytometry》1999,37(3):178-183
BACKGROUND:Even modern automatic cell counters cannot count basophils precisely. Therefore, we need a rapid, accurate, precise, and easy method for counting basophils. METHODS:Using flow cytometry, basophils (CD22+/CD19-) and B cells (CD22+/CD19+) were counted. Within a large lymphocyte light scatter gate, % basophils (G%baso) and % B cells (G%B) were determined from the total count. Another method of analysis was to make two regions (R1 for basophils and R2 for B cells) and to determine in those the % basophils (R1%baso) and % B cells (R2%B) without gating. The flow cytometric basophil counts of the blood of 21 normal controls and 43 chronic myelogenous leukemia (CML) patients were compared with manual basophil count (Ma%baso) and basophil count by Coulter electronic cell counter (Hialeah, FL) (Auto%baso). CD22+/CD19- cells were sorted by a FACSCalibur (Becton Dickinson, San Jose, CA). RESULTS:The G%baso of all samples was 4.66 +/- 5.35%, and R1%baso was 4.23 +/- 4.88%, and they were well-correlated (r = 0.996, P < 0.001). The G%B of all samples was 1.55 +/- 1.68%, and R2%B was 1.59 +/- 1.67%, and they were also well-correlated (r = 0.993, P < 0.001). Their correlation was better in normal controls than in CML. G%baso was well-correlated to Ma%baso (r = 0.827) and Auto%baso (r = 0.806), and R1%baso was well-correlated to Ma%baso (r = 0.831) but showed poor correlation to Auto%baso (r = 0.734). Auto%baso revealed the poorest correlation to Ma%baso (r = 0.692). The sorted CD22+/CD19- cells were all basophils (99.48 +/- 0.30%), and they revealed CD13, CD33, and dim CD45 expression, whereas CD3, CD14, CD16, and HLA-DR were not detected on them. CONCLUSIONS: We discovered a specific marker combination to identify basophils (CD22+/CD19-), and we suggest that flow cytometric analysis using these markers is an easy, reliable, and accurate method of basophil counting.  相似文献   

8.
BACKGROUND: North American and European guidelines for dual-platform (DP) flow cytometry recommend absolute CD4 T-cell counts to be calculated from two parameters: the absolute lymphocyte counts obtained on a hematology analyzer and the percentages of CD4+ cells among lymphocytes (CD4%/lympho) obtained by flow cytometry. Nevertheless, the identification of lymphocytes is error-prone: a poor match between these common denominators in the two systems is the main source of inaccuracy. In contrast, total leucocyte counts (white cell counts [WCC]) and CD4% among the gated CD45+ leucocytes (CD4%/leuco) can be determined with greater accuracy. METHODS: We introduced "PanLeucogating," i.e., we used total leucocytes as the common denominator for improving the precision of DP absolute CD4 counting. Correlations and Bland-Altman tests were used for statistical analysis. RESULTS: First, 22 stabilized blood product samples were provided by U.K. National External Quality Assessment Scheme (NEQAS) and a higher accuracy and precision of CD4 counts were documented using PanLeucogating compared with lymphocyte gating. Next, 183 fresh and 112 fixed (TransFix) whole blood samples were used to compare DP methods and single-platform (SP) methodology, including both volumetric and bead-based techniques. A particularly high correlation and comparable precision of absolute CD4 counts were observed between the SP volumetric method and DP PanLeucogating (R(2) = 0.990; bias 6 +/- SD 17%). The SP volumetric method showed lower levels of agreement with the DP lymphocyte gating (R(2) = 0.758; bias 14 +/- SD 51%) and with the SP bead-based method (R(2) = 0.923; bias 4 +/-SD 31%). CONCLUSIONS: These observations show that DP leucocyte counts (WCC) should replace lymphocyte counts as the "common denominator" although CD4%/lympho values can, as an extra step, be also provided readily if requested. When coupled with quality control for WCC on hematology analyzers, the DP method with CD45 PanLeucogating represents a robust CD4 T-cell assay that is as accurate as the SP volumetric technique. This DP method uses only two, CD45 and CD4, antibody reagents and can be run on any pair of hematological analyzer plus flow cytometer.  相似文献   

9.
Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.  相似文献   

10.
A growing number of studies are being performed on the role of dendritic cells (DCs) in the etiopathogenesis of various conditions. Therefore, it is extremely important to establish the best comparable methods for the determination of the absolute count of blood dendritic cells (BDCs) or their subsets, and the reference normal values for comparisons. The aim of our study was to assess a normal profile of BDCs in the non-cultured human blood of healthy Polish volunteers. BDCs were detected among peripheral blood mononuclear cells (PBMC) from 99 healthy people, aged 18-56. Based on the panel of novel anti-BDCA1, BDCA2 and BDCA3 monoclonal antibodies (MoAbs), three main subpopulations of BDCs were distinguished: two myeloid types of BDCs, MDC1(BDCA-1+/ CD11c+ /HLA-DR+) or MDC2 (BDCA-3+/CD32-/CD64-/HLA-DR+), and a plasmacytoid subtype, PDC (BDCA-2+/CD123+/HLA-DR+). The number and percentage of BDCs were correlated with the age, gender, photosensitivity (phototype, minimal erythemal dose -- MED) and morphological parameters of the healthy volunteers. BDCs represented 0.83% of the PBMC and the median total BDC number was 44.0 cell/microl. The total BDC number correlated with the WBC count (rho=0.40, p=0.001) as well as with the lymphocyte and monocyte counts (rho=0.20, p=0.045 and rho=0.26, p=0.009, respectively). The median percentage of the MDC1 count (0.20%) was twice as high as the MDC2 count (0.10%). The median PDC count was 28.2 cell/microl, and these cells represented 0.50% of the PBMC. There was a positive correlation between PDC and skin photosensitivity (rho=0.28, p=0.005). An inverse correlation between the PDC count and the age of the examined volunteers was also found (rho=-0.22, p=0.029). Our study provides the first referential data on normal rates and counts of BDCs and their subpopulations, assessed by the new panel of anti-BDCA MoAbs, in healthy Polish subjects. The method used in the study allowed the determination of BDCs and their subset numbers in a relatively small blood volume.  相似文献   

11.
Increased permeability and reduced cerebral endothelial cell (CEC) viability induced by oxidative stress are the hallmarks of the blood-brain barrier disruption. In our experiments hydrogen peroxide (H2O2, 0.5 mM) induced a continuous decrease of the transendothelial electrical resistance (TEER) and resulted in intercellular gap formations in cultured rat CECs. Adrenomedullin (AM) increased TEER, enhanced peripheral localization of F-actin bands and attenuated the increased permeability induced by H2O2. Furthermore, AM treatment preserved mitochondrial membrane potential, attenuated cytochrome c release, and consequently improved CEC viability in H2O2 treated cultures. These results suggest that AM treatment protects CECs against oxidative injury.  相似文献   

12.
Tumor metastasis is a highly inefficient biological process as millions of tumor cells are released in circulation each day and only a few of them are able to successfully form distal metastatic nodules. This could be due to the fact that most of the epithelial origin cancer cells are anchorage-dependent and undergo rapid anoikis in harsh circulating conditions. A number of studies have shown that in addition to tumor cells, activated endothelial cells are also released into the blood circulation from the primary tumors. However, the precise role of these activated circulating endothelial cells (CECs) in tumor metastasis process is not known. Therefore, we performed a series of experiments to examine if CECs promoted tumor metastasis by chaperoning the tumor cells to distal sites. Our results demonstrate that blood samples from head and neck cancer patients contain significantly higher Bcl-2-positive CECs as compared to healthy volunteers. Technically, it is challenging to know the origin of CECs in patient blood samples, therefore we used an orthotopic SCID mouse model and co-implanted GFP-labeled endothelial cells along with tumor cells. Our results suggest that activated CECs (Bcl-2-positive) were released from primary tumors and they co-migrated with tumor cells to distal sites. Bcl-2 overexpression in endothelial cells (EC-Bcl-2) significantly enhanced adhesion molecule expression and tumor cell binding that was predominantly mediated by E-selectin. In addition, tumor cells bound to EC-Bcl-2 showed a significantly higher anoikis resistance via the activation of Src-FAK pathway. In our in vivo experiments, we observed significantly higher lung metastasis when tumor cells were co-injected with EC-Bcl-2 as compared to EC-VC. E-selectin knockdown in EC-Bcl-2 cells or FAK/FUT3 knockdown in tumor cells significantly reversed EC-Bcl-2-mediated tumor metastasis. Taken together, our results suggest a novel role for CECs in protecting the tumor cells in circulation and chaperoning them to distal sites.  相似文献   

13.
Sedentary behavior has deleterious effects on the cardiovascular system, including reduced endothelial functions. A 2-mo bed rest study in healthy women [women international space simulation for exploration (WISE) 2005 program] presented a unique opportunity to analyze the specific effects of prolonged inactivity without other vascular risk factors on the endothelium. We investigated endothelial properties before and after 56 days of bed rest in 8 subjects who performed no exercise (control group: No-EX) and in 8 subjects who regularly performed treadmill exercise in a lower body negative pressure chamber as well as resistance exercise (countermeasure group, EX). A functional evaluation of the microcirculation in the skin was assessed with laser Doppler. We studied endothelium-dependent and -independent vasodilation using iontophoresis of acetylcholine and sodium nitroprusside, respectively. We also measured circulating endothelial cells (CECs), an index of endothelial damage. In the No-EX group, endothelium-dependent vasodilation was significantly reduced (35.4 +/- 4.8% vs. 24.1 +/- 3.8%, P < 0.05) by bed rest with a significant increase in the number of CECs (3.6 +/- 1.4 vs. 10.6 +/- 2.7 ml(-1), P < 0.05). In the EX group, endothelium-dependent vasodilation and number of CECs were preserved. Our study shows that in humans prolonged bed rest causes impairment of endothelium-dependent function at the microcirculatory level, along with an increase in circulating endothelial cells. Microcirculatory endothelial dysfunction might participate in cardiovascular deconditioning, as well as in several bed rest-induced pathologies. We therefore conclude that the endothelium should be a target for countermeasures during periods of prolonged deconditioning.  相似文献   

14.
Adhesion molecules, such as CD49d, CD50 and CD62L, have important roles in many adhesive interactions involving cells of the immune system. Since it has been shown that many immunological alterations are present in aged subjects, we studied, by means of triple colour whole blood immunostaining and multiparametric flow cytometry, the expression and intensity level (MFI) of these molecules on peripheral blood lymphocyte subpopulations from 23 healthy elderly subjects and 13 young controls. In the elderly a decrease in total peripheral blood lymphocytes bearing CD62L antigen was observed (39 +/- 13% vs 63 +/- 6% and 745 +/- 312/mm3 vs 1,393 +/- 407/mm3; p<0.001), whereas the numbers of lymphocytes expressing CD49d and CD50 antigens were comparable in aged and young subjects. In addition, CD50 and CD62L MFI values on total peripheral blood lymphocytes were higher in elderly than in young subjects (5.23 +/- 1.03 vs 4.18 +/- 0.44, p = 0.001 and 2.60 +/- 0.35 vs 2.21 +/- 0.40, p = 0.005 respectively) while the intensity expression of CD49d was unchanged. The percentages and absolute numbers of T and B lymphocytes expressing CD62L were decreased in elderly compared to young subjects (CD62L+CD3+: 43 +/- 15% vs 66 +/- 9% and 581 +/- 257/mm3 vs 1,028 +/- 418/mm3, p<0.001; CD62L+CD19+: 78 +/- 12% vs 90 +/- 4%, p < 0.005 and 103 +/- 64/mm3 vs 207 +/- 98, p < 0.001). A decrease in the proportion of CD62L bearing NK cells was also observed in the elderly (25 +/- 14% vs 46 +/- 24%, p<0.005), although their absolute number was unchanged. No significant differences were detected in the proportion of T, B and NK lymphocytes expressing CD49d and CD50 antigens and only the absolute numbers of B cells expressing these adhesion molecules were lower in elderly (CD49d+CD19+: 121 +/- 71/mm3 and CD50+CD19+: 107 +/- 73/mm3) compared to young donors (CD49d+CD19+: 248 +/- 112/mm3 and CD50+CD19+: 235 +/- 120/mm3, p < 0.001). Moreover, the intensity of adhesion molecule expression was differentially modulated in the elderly depending on the specific lymphocyte cell population considered. The densities of CD49d, CD50 and CD62L antigens on B and NK lymphocytes from the two age groups were not different; on the contrary, T lymphocytes from elderly donors exhibited increased CD49d (1.69 +/- 0.09 vs 1.62 +/- 0.07, p < 0.05), CD50 (4.98 +/- 1.16 vs 3.77 +/- 0.46, p < 0.001) and CD62L (2.26 +/- 0.38 vs 1.99 +/- 0.37, p < 0.05) MFI values compared to young donors.  相似文献   

15.
Background With the development of cord blood banking, solutions have to be found to solve the storage space problem, by reducing the volume of cord blood units (CBU). Methods We compared total nucleated cell (TNC) and CD34(+) cell counts before and after processing with three different CBU volume reduction methods used consecutively in our bank: a manual method based on hydroxyethyl starch sedimentation (HES) (n=447), a top-and-bottom (TB) semi-automated method (n=181) using Optipress II, and the Sepax automated method (n=213). Statistical analysis was done using t-tests, linear regression and Spearman correlation coefficients. Adjusted variables included TNC, CD34(+) cell counts, CD34(+) cell percentage and CB volume before processing. Results TNC recovery was higher with Sepax (80.3+/-7.7%) than with HES (76.8+/-9.1%) and TB (60.7+/-13.5%) (P<0.0001, both). It was higher with HES than with TB (P<0.0001). CD34(+) cell recovery was higher with Sepax (86+/-11.6%) than with HES (81.5+/-12.5%) and TB (82.0+/-17.7%) (P<0.008 and <0.0001, respectively) and results with HES and TB were not significantly different (P=0.7). Interestingly, with Sepax, TNC and CD34(+) cell recoveries were not correlated with pre-processing values (P=0.8 and 0.4, respectively). Discussion In conclusion, the Sepax volume reduction method allows higher TNC and CD34(+) cell recoveries.  相似文献   

16.
Diffuse large B-cell lymphoma is the commonest histological type of malignant lymphoma, and remains incurable in many cases. Developing more efficient immunotherapy strategies will require better understanding of the disorders of immune responses in cancer patients. NKT (natural killer-like T) cells were originally described as a unique population of T cells with the co-expression of NK cell markers. Apart from their role in protecting against microbial pathogens and controlling autoimmune diseases, NKT cells have been recently revealed as one of the key players in the immune responses against tumors. The objective of this study was to evaluate the frequency of CD3(+)/CD16(+)CD56(+) cells in the peripheral blood of 28 diffuse large B-cell lymphoma (DLBCL) patients in correlation with clinical and laboratory parameters. Median percentages of CD3(+)/CD16(+)CD56(+) were significantly lower in patients with DLBCL compared to healthy donors (7.37% vs. 9.01%, p = 0.01; 4.60% vs. 5.81%, p = 0.03), although there were no differences in absolute counts. The frequency and the absolute numbers of CD3(+)/CD16(+)CD56(+) cells were lower in advanced clinical stages than in earlier ones. The median percentage of CD3(+)/CD16(+)CD56(+) cells in patients in Ann Arbor stages 1-2 was 5.55% vs. 3.15% in stages 3-4 (p = 0.02), with median absolute counts respectively 0.26 G/L vs. 0.41 G/L (p = = 0.02). The percentage and absolute numbers of CD3(+)/CD16(+)CD56(+) cells were significantly higher in DL -BCL patients without B-symptoms compared to the patients with B-symptoms, (5.51% vs. 2.46%, p = 0.04; 0.21 G/L vs. 0.44 G/L, p = 0.04). The percentage of CD3(+)/CD16(+)CD56(+) cells correlated adversely with serum lactate dehydrogenase (R= -445; p 〈 0.05) which might influence NKT count. These figures suggest a relationship between higher tumor burden and more aggressive disease and decreased NKT numbers. But it remains to be explained whether low NKT cell counts in the peripheral blood of patients with DLBCL are the result of their suppression by the tumor cells, or their migration to affected lymph nodes or organs.  相似文献   

17.
目的:建立山西省健康成人外周血淋巴细胞亚群的正常参考值范围,为机体免疫状态的分析和肿瘤患者的免疫评估提供理论依据。方法:选取山西省1 238例健康成人体检人群,采用流式细胞术测定外周血淋巴细胞亚群的绝对计数和相对计数。结果:确定了健康成人外周血淋巴细胞表达水平,并发现CD3~+T细胞相对计数和绝对计数、CD4~+T细胞相对计数、CD8~+T细胞相对计数和绝对计数、NK细胞相对计数和绝对计数、CD19细胞相对计数和绝对计数、CD4/CD8比值在不同年龄组间存在显著差异性(P0.05);不同性别之间CD8~+T细胞相对计数、CD4~+T细胞绝对计数和CD19细胞绝对计数无统计学意义,CD3~+T细胞、CD8~+T细胞、NK细胞相对计数和绝对计数、CD4~+T细胞、CD19细胞相对计数均存在显著差异(P0.05)。结论:初步建立了山西省健康成年人外周血淋巴细胞亚群参考值范围,为机体免疫功能的评价和肿瘤免疫治疗、诊断提供了参考依据。  相似文献   

18.
C Andreoni  D Rigal  M Bonnard  J Bernaud 《Blut》1990,61(5):271-277
Bone marrow aspirates from 48 healthy donors (34 adults, 14 children) were analyzed by flow cytometry (FACS Analyzer) after purification of low-density bone marrow cells (Ld BMC) on a density gradient (d = 1,077) and labelling with 23 anti-hematopoietic cell monoclonal antibodies. Based on physical properties, these Ld BMC could be divided into four different populations called E, My, Mo and L, which comprised 14% +/- 9%, 31% +/- 16%, 10% +/- 5% and 45% +/- 14% of these cells, respectively. The phenotypic analysis of these different populations enabled the identification in E, of erythrocytes (Glycophorin A+, Rhesus D+, but negative for early erythroid differentiation markers such as the transferrin receptor (Tf. R) and the FA6-152 antigen); in My of cells of the myeloid lineage (VIM2+, HLA DR-); in Mo of cells of the monocytic lineage (VIM2+, CD14+) plus some myeloblasts (VIM2+, CD14-, HLADR+) and finally in L of a heterogeneous population including: 1. T lymphocytes labelled to the same extent by CD2, CD3, CD5 and CD6 (28% +/- 10%), B lymphocytes assessed by CD19 and CD20 (12% +/- 8%), Pre-B cells (CD10+ = 8% +/- 7%), less than 5% of "natural killer" cells (CD16+ or Leu7+) and finally, less than 6% of myelomonocytes (CD14+ and/or VIM2+). 2. The erythroid lineage (rhesus D+ = 42% +/- 20%, Tf.R+ and FA6-152+ = 32% +/- 12%). 3. Undifferentiated cells or progenitor cells (CD34+ = 7% +/- 5%). 4. Cells unlabelled by any antibodies (approximately 6%). We observed no difference between bone marrow samples from adults or children, with respect to physical properties, and with all but four immunological markers. A significantly higher proportion of B cells (CD19+ and CD10+) (P less than 0.001) and undifferentiated cells (CD34+ and HLADR+) (P less than 0.02) was observed in children. These data, obtained from a large number of bone marrow samples, could be used to quantify the imbalance of some bone marrow disorders.  相似文献   

19.
PURPOSE: To analyze the corneal endothelial cell density in healthy adult emmetropic subjects. METHODS: We analyzed the corneal endothelial cell density of a group made up of 225 emmetropic subjects (n=225). As age-matched control groups we analyzed two other groups, one made up of myopic subjects (n=209) and the other made up of hyperopic subjects (n=203). We recorded the mean of three consecutive measurements of the corneal endothelial cell density using the Topcon SP-2000P non-contact specular microscope (Topcon Corp., Tokyo, Japan). RESULTS: The mean age was 38.6+/-11.8 years, 40.7+/-12.2 years, and 39.2+/-10.5 years for emmetropic, myopic and hyperopic subjects respectively (p=0.994). No significant differences (p=0.920) in endothelial cell density values were found between emmetropic (2985+/-245 cells/mm2), myopic (2936+/-258 cells/mm2) and hyperopic eyes (2946+/-253 cells/mm2). Lower corneal endothelial cell density values were found in older emmetropic (p<0.001), myopic (p<0.001), and hyperopic subjects (p<0.001). A significant correlation between endothelial cell density and age was found in emmetropic (r=-0.958; p<0.001), myopic (r= -0.954; p<0.001) and hyperopic subjects (r= -0.948; p<0.001). CONCLUSIONS: In healthy emmetropic subjects there is a reduction in corneal endothelial cell density with age although there are no differences in corneal endothelial cell density values between emmetropic, myopic and hyperopic subjects.  相似文献   

20.
目的:探讨人类免疫缺陷病毒(HIV)感染患者血清白细胞介素-2(IL-2)、白细胞介素-16(IL-16)水平和CD4细胞计数的相关性。方法:选择2017年3月至2018年3月我院接诊的50例HIV感染患者作为观察组及同期于我院进行体检的健康人群40例作为对照组。检测和比较两组血清IL-2、IL-16与CD4细胞计数,并分析观察组血清IL-2、IL-16与CD4细胞计数的相关性。结果:观察组患者血清IL-2、IL-16水平及CD4细胞计数显著低于对照组,差异具有统计学意义(P0.05);Pearson相关分析结果显示观察组患者血清IL-2、IL-16水平与CD4细胞计数呈显著正相关(r=0.514,r=0.499,P0.05)。结论:HIV感染患者血清IL-2、IL-16水平显著下调,并与CD4细胞计数呈显著正相关,可在一定程度上反映HIV感染的严重度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号