首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the hemolytic activity of extracts from Entamoeba histolytica trophozoites previously described by us might determine at least partially the necrotic lesions of amebiasis, we have continued its characterization in vitro. Using rat erythrocytes as target cells, we have found that cytolysis by E. histolytica trophozoite extracts was (1) dose dependent, (2) localized mainly in a vesicular fraction whose absolute and specific activities were respectively 1.9 and 4.0 times higher than those of total extracts, (3) maximal at pH 8 in the presence of 1 mM Ca++, and (4) progressively lost by heating at 90 degrees C or repeated freezing and thawing. From these results we infer that the major hemolytic factor of E. histolytica may be a protein normally neutralized by an intracellular inhibitor or activated during fractionation.  相似文献   

2.
Picrophilus oshimae is an extremely acidophilic, thermophilic archaeon that grows optimally at 60°C and at pH 0.7. It is an obligatory acidophile that does not grow at pH values above 4.0. The proton motive force in respiring cells is composed of a large transmembrane pH gradient, inside less acid, and a reversed transmembrane electrical potential, inside positive. Cells maintain an intracellular pH at around 4.6 at extracellular pH values ranging from 0.8 to 4.0. Above pH 4.0 cells lyse rapidly and lose their viability. Liposomes prepared from lipids derived from P. oshimae have an extremely low proton permeability at acidic pH. However, at neutral pH, the lipids are unable to assemble into regular liposomal structures. These observations suggest that the loss of viability and cell integrity above pH 4.0 is due to an impairment of the barrier function of the cytoplasmic membrane. Received: July 18, 1997 / Accepted: November 25, 1997  相似文献   

3.
Sehorn MG  Slepenkov SV  Witt SN 《Biochemistry》2002,41(26):8499-8507
In this study, the effect of pH on the conformation and the reactivity of the Escherichia coli Hsp70 molecular chaperone DnaK was investigated using spectroscopic and chemical assays. DnaK exhibits negligible binding of the hydrophobic dye 1-anilino-naphthalene-8-sulfonate (ANS) between pH 7 to 5.0, whereas appreciable binding occurs between pH 4.5 to 4.0. The binding of ANS to a protein is diagnostic of the presence of accessible ordered hydrophobic surfaces. Such hydrophobic surfaces are often displayed by partially folded protein intermediates such as molten globules. Nucleotide inhibits 70% of the ANS binding at pH 4.5 but none of the ANS binding at pH 4.0. Proteolysis of nucleotide-free DnaK at pH 4.5 with cathepsin D yields detectable fragments (masses > 20 kDa) of the C-terminal peptide-binding domain but none of the N-terminal ATPase domain, thus the ATPase domain is preferentially targeted for proteolysis. In contrast, proteolysis of nucleotide-free DnaK at pH 4.0 with cathepsin D cuts near the linker region, yielding both functional domains. Our interpretation of these data is that incubation of DnaK at pH 4.5 produces a partially unfolded form of the ATPase domain, in which secondary structure is mainly intact, but tertiary structure is reduced. Incubation of the protein at pH 4.0 produces an intermediate in which both functional domains have collapsed and possibly separated. Nucleotide inhibits the conformational change that occurs at pH 4.5 but not at 4.0.  相似文献   

4.
The effects of a range of biocides on trophozoite and encysted forms of Acanthamoeba castellanii were investigated. Viable acanthamoebae were enumerated by a plaque assay technique. The cyst form of Acanthamoeba castellanii was more resistant to all biocides tested than the trophozoite form. Of the biocides tested, chlorhexidine diacetate (CHA) and polyhexamethylene biguanide (PHMB) were the most effective. Their lethal effects were time- and concentration-dependent. CHA was very effective when formulated in 0.1% EDTA combined with Tris buffer pH 7.8 whereas PHMB activity was reduced by 0.1% EDTA. Three per cent dimethylsulphoxide (DMSO) enhanced the activity of CHA but not of PHMB.  相似文献   

5.
The effects of low pH and oleic acid on conformation and association state of Ca2+-depleted bovine alpha-lactalbumin (apo-BLA) have been studied by electrospray ionization mass spectrometry, fluorescence spectroscopy, and circular dichroism. The experimental results demonstrate that two structurally distinct species exist in the conformational transition of apo-BLA induced by low pH. One species populates at pH 3.0 characterized as a monomeric molten globule state and the other accumulates at pH 4.0-4.5 which is a partially folded dimer. Oleic acid promotes the formation of the dimeric intermediate at pH 4.0 and 7.0, but increases the content of molten globule state remarkably at pH 3.0 compared with that in the absence of oleic acid, indicating that oleic acid at pH 3.0 plays a different role from those at pH 4.0 and 7.0. Our data provide insight into the mechanism of pH-dependent and oleic acid-dependent structural changes and oligomerization of alpha-lactalbumin, and will be helpful to the understanding of the apoptosis-inducing function of multimeric alpha-lactalbumin in which oleic acid is a necessary cofactor.  相似文献   

6.
We have observed by atomic force microscopy (AFM) the amoeba surface and probed the interaction force between Entamoeba histolytica and chondroitin-6-sulphate (C6S). We have used several substrates to adhere trophozoites. The best reproducibility in sample preparation was obtained with fibronectin-coated coverslips and when the cells were fixed with paraformaldehyde. The images obtained with the AFM showed that the trophozoite exhibits an irregular surface. Pseudopods and waving adhesion plaques could be observed. Force spectroscopy analysis showed that the trophozoite surface strongly interacts with C6S-functionalized tips. During cantilever retraction, attractive force peaks were observed at distances up to 1.3 microm above the trophozoite surface. Statistical analysis of the force distributions collected for five samples shown a reproducible 2.2 nN mean adhesion force. We observed a reduction of the adhesion force and of the interaction distance after addition of galactose to the buffer solution suggesting that the observed interaction is also Gal/GalNAc-lectin-mediated.  相似文献   

7.
Trophozoites of the malaria parasite Plasmodium falciparum hydrolyze erythrocyte hemoglobin in an acidic food vacuole to provide amino acids for parasite protein synthesis. Cysteine protease inhibitors block hemoglobin degradation, indicating that a cysteine protease plays a key role in this process. A principal trophozoite cysteine protease was purified by affinity chromatography. Sequence analysis indicated that the protease is encoded by a previously unidentified gene, falcipain-2. Falcipain-2 was predominantly expressed in trophozoites, was concentrated in food vacuoles, and was responsible for at least 93% of trophozoite soluble cysteine protease activity. A construct encoding mature falcipain-2 and a small portion of the prodomain was expressed in Escherichia coli and refolded to active enzyme. Specificity for the hydrolysis of peptide substrates by native and recombinant falcipain-2 was very similar, and optimal at acid pH in a reducing environment. Under physiological conditions (pH 5.5, 1 mm glutathione), falcipain-2 hydrolyzed both native hemoglobin and denatured globin. Our results suggest that falcipain-2 can initiate cleavage of native hemoglobin in the P. falciparum food vacuole, that, following initial cleavages, the protease plays a key role in rapidly hydrolyzing globin fragments, and that a drug discovery effort targeted at this protease is appropriate.  相似文献   

8.
In the previous paper [Gligorijevic, B., et al. (2006) Biochemistry 45, pp 12400-12410], we reported on a customized Nipkow spinning disk confocal microscopy (SDCM) system and its initial application to DIC imaging of hemozoin within live, synchronized, intraerythrocytic Plasmodium falciparum malarial parasites. In this paper, we probe the biogenesis as well as the volume and pH regulation of the parasite digestive vacuole (DV), using the fluorescence imaging capabilities of the system. Several previous reports have suggested that mutant PfCRT protein, which causes chloroquine resistance (CQR) in P. falciparum, also causes increased acidification of the DV. Since pH and volume regulation are often linked, we wondered whether DV volume differences might be associated with CQR. Using fast acquisition of SDCM z stacks for synchronized parasites with OGd internalized into the DV, followed by iterative deconvolution using experimental point spread functions, we quantify the volume of the DV for live, intraerythrocytic HB3 (CQS), Dd2 (CQR via drug selection), GCO3 (CQS), and GCO3/C3(Dd2) (CQR via transfection with mutant pfcrt) malarial parasites as they develop within the human red blood cell. We find that relative to both CQS strains, both CQR strains show significantly increased DV volume as the organelle forms upon entry into the trophozoite stage of development and that this persists until the trophozoite-schizont boundary. A more acidic DV pH is found for CQR parasites as soon as the organelle forms and persists throughout the trophozoite stage. We probe DV volume and pH changes upon ATP depletion, hypo- and hypertonic shock, and rapid withdrawal of perfusate chloride. Taken together, these data suggest that the PfCRT mutations that cause CQR also lead to altered DV volume regulation.  相似文献   

9.
ABSTRACT. In vitro excystation of Spironucleus muris cysts, purified by sequential sucrose and Percoll gradients from mouse feces, was studied. Three in vitro excystation procedures, used for Giardia , were assessed to determine the most useful method. Excystation was monitored by light microscopy and subsequently characterized by transmission and scanning electron microscopy. Spironucleus muris excysted routinely at a level greater than 90% when induced in Hanks' balanced salt solution containing sodium bicarbonate at pH 2.0 and transferred to Tyrodes' salt solution as an excystation medium. Similarly, high rates of excystation were recorded after induction of S. muris cysts in 0.1 M potassium phosphate buffer (pH 7.0) with sodium bicarbonate and excystation in trypticase-yeast extract-iron medium (TYI medium) or phosphate-buffered saline. A lower rate and percentage of excystation were observed after induction of S. muris cysts in an aqueous hydrochloric acid solution (pH 2.0) followed by excystation in TYI medium. All excystation methods produced extremely active S. muris trophozoites with normal morphology. Nonexcysting S. muris cysts have a wall composed of an outer fibrous and an inner membranous portion. Following induction, numerous vesicles appeared in the peritrophic space. Excystation began by the cyst wall opening at one pole, and the anterior part of the trophozoite protruding from the cyst wall. The trophozoite emerged progressively from the cyst wall and the empty cyst wall appeared to collapse. Excysted trophozoites exhibited normal morphological features of S. muris trophozoites isolated from the mouse intestine.  相似文献   

10.
We used the combination of an atomic force microscope and a light microscope equipped with epifluorescence to serially image Plasmodium falciparum-infected erythrocytes. This procedure allowed us to determine unambiguously the presence and developmental stage of the malaria parasite as well as the number and size of knobs in singly, doubly, and triply infected erythrocytes. Knobs are not present during the ring stage of a malaria infection but a lesion resulting from invasion by a merozoite is clearly visible on the erythrocyte surface. This lesion is visible into the late trophozoite stage of infection. Knobs begin to form during the early trophozoite stage of infection and have a single-unit structure. Our data suggest the possibility that a two-unit structure of knobs, which was reported by Aikawa et al. (1996, Exp. Parasitol. 84, 339-343) using atomic force microscopy, appears to be a double-tipped image. The number of knobs per unit of host cell surface area is directly proportional to parasite number in both early and late trophozoite stages. These results indicate that knob formation by one parasite does not influence knob formation by other parasites in a multiply infected erythrocyte. In addition, knob volume is not influenced by either parasite stage or number at the late trophozoite stage, indicating that the number of component molecules per knob is constant throughout the parasite maturation process.  相似文献   

11.
P M Weers  C M Kay  R O Ryan 《Biochemistry》2001,40(25):7754-7760
Locusta migratoria apolipophorin III (apoLp-III) is a helix bundle exchangeable apolipoprotein that reversibly binds to lipoprotein surfaces. Structural reorganization of its five amphipathic alpha-helices enables the transition from the lipid-free to lipid-bound state. ApoLp-III-induced transformation of dimyristoylphosphatidylcholine (DMPC) bilayer vesicles into smaller discoidal complexes is enhanced as a function of decreasing pH, with maximal transformation occurring at pH 3.5. Over the entire pH range studied, apoLp-III retains nearly all of its secondary structure content. Whereas no changes in fluorescence emission maximum of the two Trp residues in apoLp-III were observed in the pH range from 7.0 to 4.0, a further decrease in pH resulted in a strong red shift. Near-UV circular dichroism spectra of apoLp-III showed well-defined extrema (at 286 and 292 nm) between pH 7.0 and pH 4.0, which were attributed to Trp115. Below pH 4.0, these extrema collapsed, indicating a less rigid environment for Trp115. Similarly, the fluorescence intensity of 8-anilinonaphthalene-1-sulfonate in the presence of apoLp-III increased 4-fold below pH 4.0, indicating exposure of hydrophobic sites in the protein in this pH range. Taken together, the data suggest two conformational states of the protein. In the first state between pH 7.0 and pH 4.0, apoLp-III retains a nativelike helix bundle structure. The second state, found between pH 3.0 and pH 4.0, is reminiscent of a molten globule, wherein tertiary structure contacts are disrupted without a significant loss of secondary structure content. In both states DMPC vesicle transformation is enhanced by lowering the solution pH, reaching an optimum in the second state. The correlation between tertiary structure and lipid binding activity suggests that helix bundle organization is a determinant of apoLp-III lipid binding activity.  相似文献   

12.
Acidic industrial process and wastewaters often contain high sulfate and metal concentrations and their direct biological treatment is thus far not possible as biological processes at pH < 5 have been neglected. Sulfate‐reducing bacteria convert sulfate to sulfide that can subsequently be used to recover metals as metal‐sulfides precipitate. This study reports on high‐rate sulfate reduction with a mixed microbial community at pH 4.0 and 4.5 with hydrogen and/or formate as electron donors. The maximum sulfate reducing activity at pH 4.0 was sustained for over 40 days with a specific activity 500‐fold greater than previously reported values: 151 mmol sulfate reduced/L reactor liquid per day with a maximum specific activity of 84 mmol sulfate per gram of volatile suspended solids per day. The biomass yield gradually decreased from 38 to 0.4 g volatile suspended solids per kilogram of sulfate when decreasing the reactor pH from pH 6 to 4. The microorganisms had a high maintenance requirement probably due maintaining pH homeostasis and the toxicity of sulfide at low pH. The microbial community diversity in the pH 4.0 membrane bioreactor decreased over time, while the diversity of the sulfate reducing community increased. Thus, a specialized microbial community containing a lower proportion of microorganisms capable of activity at pH 4 developed in the reactor compared with those present at the start of the experiment. The 16S rRNA genes identified from the pH 4.0 grown mixed culture were most similar to those of Desulfovibrio species and Desulfosporosinus sp. M1. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

13.
Acanthamoeba species can cause granulomatous encephalitis and keratitis in man. The mechanisms that underlie tissue damage and invasion by the amoebae are poorly understood, but involvement of as yet uncharacterized proteinases has been suggested. Here, we employed gelatin-containing gels and azocasein assays to examine proteinase activities in cell lysates and in medium conditioned by Acanthamoeba polyphaga trophozoites. Azocasein hydrolysis by cell lysates was optimally detected at pH 4.0-5.0 and was predominantly associated with the activity of cysteine proteinases. Compatible with enzyme activation during secretion, culture supernatants additionally contained a prominent azocasein hydrolyzing activity attributable to serine proteinases; these enzymes were better detected at pH 6.0 and above, and resolved at 47, 60, 75, 100, and >110 kDa in overlay gelatin gels. Although a similar banding profile was observed in gels of trophozoite lysates, intracellular serine proteinases were shown to be activated during electrophoresis and to split the substrate during migration in sodium dodecyl sulfate gels. Blockage of serine proteinases with phenylmethylsulfonylfluoride prior to electrophoresis permitted the detection of 43-, 59-, 70-, and 100-130-kDa acidic cysteine proteinases in cell lysates, and of 3 (43, 70, and 130 kDa) apparently equivalent enzymes in culture supernatants. Under the conditions employed, no band associated with a metalloproteinase activity could be depicted in substrate gels, although the discrete inhibition of supernatants' azocaseinolytic activity by 1,10-phenanthroline suggested secretion of some metalloproteinase.  相似文献   

14.
为了验证起源时间较长的植物具有较强适应性的假设, 人工模拟酸雨胁迫, 研究了在不同酸雨处理下不同起源时期的3种被子植物乐东拟单性木兰(Parakmeria lotungensi)、石栎(Lithocarpus glaber)和山核桃(Carya cathayensis)的光合生理适应特性。实验设置了酸雨对照处理(pH 5.6)、中度酸雨胁迫处理(pH 4.0)和重度酸雨胁迫处理(pH 2.5), 并测定了这3种植物的光合特性。研究结果显示: 1)在不同强度的酸雨处理下, 乐东拟单性木兰的光合能力大小趋势为pH 2.5 > pH 4.0 > pH 5.6, 石栎则为pH 5.6 > pH 4.0 > pH 2.5, 但山核桃在酸雨处理之间差异不显著; 2)在酸雨对照处理(pH 5.6)中, 石栎的光合能力相对较高, 其次是乐东拟单性木兰, 山核桃最小。但在重度和中度酸雨胁迫下(pH ≤ 4.0), 3种植物光合能力的大小趋势为乐东拟单性木兰 > 石栎 > 山核桃, 且酸雨胁迫越严重, 上述趋势越明显。研究结果表明: 在重度酸雨胁迫下, 起源时间较早的乐东拟单性木兰表现出较高的光合与适应能力。从应用的角度出发, 建议考虑将乐东拟单性木兰作为酸雨灾害严重地区植被构建的物种之一。  相似文献   

15.
3,4-dihydroxy 2-butanone 4-phosphate synthase (DHBPS) and GTP cyclohydrolase-II (GTPCH-II) are the two initial enzymes involved in riboflavin biosynthesis pathway, which has been shown to be essential for the pathogens. In Mycobacterium tuberculosis (Mtb), the ribA2 gene (Rv1415) encodes for the bi-functional enzyme with DHBPS and GTPCH-II domains at N- and C-termini, respectively. We have determined three crystal structures of Mtb-DHBPS domain in complex with phosphate and glycerol at pH 6.0, with sulphate at pH 4.0 and with zinc and sulphate at pH 4.0 at 1.8, 2.06 and 2.06 ? resolution, respectively. The hydrodynamic volume and enzyme activity studies revealed that the Mtb-DHBPS domain forms a functional homo-dimer between the pH 6.0 and 9.0, however, at pH 5.0 and below, it forms a stable inactive monomer in solution. Furthermore, the functional activity of Mtb-DHBPS and its dimeric state could be restored by increasing the pH between 6.0 and 9.0. The comparison of crystal structures determined at different pH revealed that the overall three-dimensional structure of Mtb-DHBPS monomer remains the same. However, the length of the α6-helix at pH 6.0 has increased from 15 to 22 ? in pH 4.0 by increasing the number of amino acids contributing to the α6-helix from 11 to 15, achieving a higher structural stability at pH 4.0. Taken together our experiments strongly suggest that the Mtb-DHBPS domain can transit between inactive monomer to active dimer depending upon its pH values, both in solution as well in crystal structure.  相似文献   

16.
The effects of pH and Ca2+ on the intrinsic fluorescence of bovine prothrombin fragment 1 were investigated to deduce the nature of protein functional groups involved in Ca2+ binding to fragment 1. From pH values of 9 to 3, increasing the H3O+ concentration results in quenching of the fluorescence of fragment 1. Reversible pH-titration curves are obtained which appear to consist of two regions. From pH 4 to pH6.5 a broad titration curve is obtained, whereas from pH6.5 to 9 a more pronounced titration behaviour is evidenced by a group or groups on fragment 1 with an apparent pKa of approx. 7.5. In contrast, the apparent association constant for Ca2+ and fragment 1 shows a sharp pH-dependence in the region between pH7 and 8 with tighter Ca2+ binding at higher pH values. A PKa of approx. 7.5 can be estimated for the group or groups on fragment 1 linked to the tight binding of Ca2+. Both H3O+ and Ca2+ result in blue-shifts in the wave-lengths of fragment-1 emission. These results are interpreted in terms of H+ - and Ca2+ - induced changes in the conformation of fragment 1 as a result of surface-charge neutralization.  相似文献   

17.
选择亚热带常绿阔叶林优势树种青冈幼苗为研究对象,设置3个酸雨处理:pH 2.5、pH 4.0、pH 5.6(CK),研究不同强度的模拟酸雨对青冈幼苗光合特性、叶绿素荧光参数和叶绿素含量的影响.结果表明:经过2年酸雨处理,青冈的净光合速率随着酸雨强度的增加而显著上升.pH 2.5、pH 4.0处理的酸雨增大了青冈的气孔导度和蒸腾速率,且对pH 2.5处理的影响更为显著.胞间CO2浓度的大小顺序是pH 2.5>pH 5.6>pH 4.0.pH 2.5、pH 4.0处理青冈的最大净光合速率、光补偿点、光饱和点、暗呼吸速率显著高于对照,表观量子效率对酸雨胁迫不敏感.pH 2.5、pH 4.0处理青冈的PSⅡ原初光能转化效率和PSⅡ的潜在活性显著高于对照.青冈的叶绿素相对含量大小顺序是pH 2.5>pH 5.6>pH 4.0,且pH 2.5与pH 4.0之间有显著差异.说明青冈幼苗的光合参数、叶绿素荧光参数指标在pH 2.5和pH 4.0的酸雨处理下有所增加,且在pH 2.5强度下增加更为明显.  相似文献   

18.
Directed migration of trophozoites from the midgut toward the Malpighian tubules is essential for Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) to complete its developmental cycle within the natural host Aedes albopictus. We have obtained a 275-bp actin cDNA fragment amplified from extracted mRNAs of migrating trophozoites, suggesting the involvement of actin in trophozoite motility. Down-regulation on the migration of the trophozoite was seen in mosquito larvae fed with cytochalasin D, ML-7, and BDM, indicating that myosin, in the form of an actomyosin system, may also be involved in driving motility of the trophozoite. The "protruding apparatus" (PA) formed at the anterior end of trophozoites during the migrating stage had significant deposits of actin by immunofluorescent microscopy. Moreover, PA formation was enhanced in response to elevated levels of 20-hydroxyecdysone (20-HE) in cultures of alimentary canals in which the trophozite was contained. Thus, 20-HE may also promote expression of actin and perhaps myosin simultaneously.  相似文献   

19.
It has been shown that tissues of patients with Farber's disease characteristically lack acid (pH 4.0) ceramidase. In normal cerebellum, however, ceramide cleavage and the reverse reaction, free fatty acid-dependent ceramide synthesis, both occur not only at pH 4.0 but also at pH 9.0, although normal kidney exhibits these activities only at pH 4.0. Both tissues are capable of snythesizing ceramide via an acyl-COA-dependent pathway at neutral pH. The synthetic analog of ceramide, N-oleoyl-ethanolamine, is a potent inhibitor of ceramidase.  相似文献   

20.
The survival of Salmonella typhimurium was investigated in acidogenic, anaerobically fermented pig wastes and in synthetic media, each containing volatile fatty acids (VFA). Salm. typhimurium survived at pH 6.8, but not at pH 4.0, when incubated at 37 degrees C for 24 h in either fermented or synthetic medium containing VFA. The minimum inhibiting concentration of VFA for Salm. typhimurium after 48 h incubation at 30 degrees C at pH 4.0 was 0.03 mol/l and for Escherichia coli it was 0.09 mol/l. Fermented pig wastes in a digester, maintained at pH 5.9, were inoculated with Salm. typhimurium and then incubated at 37 degrees C for 24 h. The pH was adjusted to either 4.0 or 5.0 and after a further 48 h at 30 degrees C, Salm. typhimurium survived at pH 5.0 but not at pH 4.0. It was concluded that pH is critical in determining the survival of this organism in acidogenic anaerobically fermented pig waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号