首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mantri N  Olarte A  Li CG  Xue C  Pang EC 《PloS one》2012,7(4):e34873

Background

Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade.

Methodology/Principal Findings

Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5%) subtraction efficiency. Twenty-five Asterid species (mostly medicinal) representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants.

Conclusions/Significance

Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting) plant species. In addition, this method allowed detection of several new loci that can be explored to solve existing discrepancies in phylogenetics and fingerprinting of plants.  相似文献   

2.
Single-nucleotide polymorphisms (SNPs) are considered useful polymorphic markers for genetic studies of polygenic traits. A new practical approach to high-throughput genotyping of SNPs in a large number of individuals is needed in association study and other studies on relationships between genes and diseases. We have developed an accurate and high-throughput method for determining the allele frequencies by pooling the DNA samples and applying a DNA microarray hybridization analysis. In this method, the combination of the microarray, DNA pooling, probe pair hybridization, and fluorescent ratio analysis solves the dual problems of parallel multiple sample analysis, and parallel multiplex SNP genotyping for association study. Multiple DNA samples are immobilized on a slide and a single hybridization is performed with a pool of allele-specific oligonucleotide probes. The results of this study show that hybridization of microarray from pooled DNA samples can accurately obtain estimates of absolute allele frequencies in a sample pool. This method can also be used to identify differences in allele frequencies in distinct populations. It is amenable to automation and is suitable for immediate utilization for high-throughput genotyping of SNP.  相似文献   

3.
A gDNA Microarray for Genotyping Salvia Species   总被引:1,自引:0,他引:1  
Salvia is an important genus from the Lamiaceae with approximately 1,000 species. This genus is distributed globally and cultivated for ornamental, culinary, and medicinal uses. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus. In order to generate the Salvia subtracted diversity array (SDA) a suppression subtractive hybridization (SSH) was performed between a pool of Salvia species and a pool of angiosperms and non-angiosperms to selectively isolate Salvia-specific sequences. A total of 285-subtracted genomic DNA (gDNA) fragments were amplified and arrayed. DNA fingerprints were obtained for fifteen Salvia genotypes including three that were not part of the original subtraction pool. Hierarchical cluster analysis indicated that the Salvia-specific SDA was capable of differentiating S. officinalis and S. miltiorrhiza from their closely related species and was also able to reveal genetic relationships consistent with geographical origins. In addition, this approach was capable of isolating highly polymorphic sequences from chloroplast and nuclear DNA without preliminary sequence information. Therefore, SDA is a powerful technique for fingerprinting non-model plants and for identifying new polymorphic loci that may be developed as potential molecular markers.  相似文献   

4.
Whole-genome resequencing (WGR) is a high-throughput way to determine genomic variations in breeding-related research. Accuracy and sensitivity are two of the most important issues in variation calling of WGR, especially for samples with low-depth resequencing data, which are used to reduce cost and save time in studies as survey of core germplasms from natural populations or genome-based breeding selection in segregation populations. An approach called pooled mapping was developed to call variations from low-depth resequencing data of natural or segregation populations. It is highly accurate and sensitive. First, pooled mapping creates a library of confident polymorphic loci in genomes of the population; then, the genotypes are called out at these confident loci for each sample in an efficient manner. The reliability of this pooled mapping method was confirmed using simulated datasets, real resequencing data and experimental genotyping. With onefold simulated resequencing data, results showed that pooled mapping identified SNPs in high accuracy (99.59 %) and sensitivity (93 %), compared to the commonly used method (accuracy: 29 %; sensitivity: 56 %). For the real low-depth resequencing data (≈0.8×) of 281 B. oleracea accessions, four loci corresponding to 1063 sites were selected for KASP genotyping to confirm the performance of pooled mapping. We found for all the 875 homozygous sites analyzed, pooled mapping achieved accuracy as 98.24 % and a sensitivity as 90.97 %. In conclusion, pooled mapping is an efficient means of determining reliable genomic variations with limited resequencing data for population samples. It will be a valuable tool in population genomic analysis and genome-based breeding research.  相似文献   

5.
SNP genotyping on a genome-wide amplified DOP-PCR template   总被引:4,自引:1,他引:3       下载免费PDF全文
With the increasing demand for higher throughput single nucleotide polymorphism (SNP) genotyping, the quantity of genomic DNA often falls short of the number of assays required. We investigated the use of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to generate a template for our SNP genotyping methodology of fluorescence polarization template-directed dye-terminator incorporation detection. DOP-PCR employs a degenerate primer (5′-CCGACTCGAGNNNNNNATGTGG-3′) to produce non-specific uniform amplification of DNA. This approach has been successfully applied to microsatellite genotyping. We compared genotyping of DOP-PCR-amplified genomic DNA to genomic DNA as a template. Results were analyzed with respect to feasibility, allele loss of alleles, genotyping accuracy and storage conditions in a high-throughput genotyping environment. DOP-PCR yielded overall satisfactory results, with a certain loss in accuracy and quality of the genotype assignments. Accuracy and quality of genotypes generated from the DOP-PCR template also depended on storage conditions. Adding carrier DNA to a final concentration of 10 ng/µl improved results. In conclusion, we have successfully used DOP-PCR to amplify our genomic DNA collection for subsequent SNP genotyping as a standard process.  相似文献   

6.
A highly reliable and efficient technology has been developed for high-throughput DNA polymorphism screening and large-scale genotyping. Photolithographic synthesis has been used to generate miniaturized, high-density oligonucleotide arrays. Dedicated instrumentation and software have been developed for array hybridization, fluorescent detection, and data acquisition and analysis. Specific oligonucleotide probe arrays have been designed to rapidly screen human STSs, known genes and full-length cDNAs. This has led to the identification of several thousand biallelic single-nucleotide polymorphisms (SNPs). Meanwhile, a rapid and robust method has been developed for genotyping these SNPs using oligonucleotide arrays. Each allele of an SNP marker is represented on the array by a set of perfect match and mismatch probes. Prototype genotyping chips have been produced to detect 400, 600 and 3000 of these SNPs. Based on the preliminary results, using oligonucleotide arrays to genotype several thousand polymorphic loci simultaneously appears feasible.  相似文献   

7.
High-throughput DNA extraction method suitable for PCR   总被引:22,自引:0,他引:22  
Xin Z  Velten JP  Oliver MJ  Burke JJ 《BioTechniques》2003,34(4):820-4, 826
PCR has become one of the most popular techniques in functional genomics. Projects in both forward and reverse genetics routinely require PCR amplification of thousands of samples. Processing samples to extract DNA of sufficient purity for PCR is often a limiting step. We have developed a simple 96-well plate-based high-throughput DNA extraction method that is applicable to many plant species. The method involves a simple incubation of plant tissue samples in a DNA extraction buffer followed by a neutralization step. With the addition of a modified PCR buffer, the extracted DNA enabled the robust amplification of genomic fragments from samples of Arabidopsis, tobacco, sorghum, cotton, moss, and even pine needles. Several thousand DNA samples can be economically processed in a single day by one person without the use of robotics. This procedure will facilitate many technologies including high-throughput genotyping, map-based cloning, and identification of T-DNA or transposon-tagged mutants for known gene sequences.  相似文献   

8.
The fossil record has played an important role in the history of evolutionary thought, has aided the determination of key relationships through mosaics, and has allowed an assessment of a number of ecological hypotheses. Nonetheless, expectations that it might accurately and precisely mirror the progression of taxa through time seem optimistic in light of the many factors potentially interfering with uniform preservation. In view of these limitations, attempts to use the fossil record to corroborate phylogenetic hypotheses based on extensive comparisons among extant taxa may be misplaced. Instead we suggest a method-minimum age node mapping-for combining reliable fossil evidence with hypotheses of phylogeny. We use this methodology in conjunction with a phylogeny for angiosperms to assess timing in the history of major angiosperm clades. This method places many clades both with and without fossil records in temporal perspective, reveals discrepancies among clades in propensities for preservation, and raises some interesting questions about angiosperm evolution. By providing a context for understanding the gaps in the angiosperm fossil record this technique lends credibility and support to the remainder of the angiosperm record and to its applications in understanding a variety of aspects of angiosperm history. In effect, this methodology empowers the fossil record.  相似文献   

9.
Wild barley-specific genomic libraries were developed for the purpose of creating a ‘comprehensive’ genomic representation of the primary Hordeum genepool capable of more robust genotyping of barley. In order to enrich for wild barley-specific sequences in the DArT libraries, suppression subtraction hybridization (SSH) was performed using cultivated barley as the subtraction driver and wild barley as the tester. Four doubled-haploid populations were genotyped with the comprehensive barley DArT array, including two from wild × cultivated crosses (Damon/Harrington and Shechem/Harrington) and two from cultivated × cultivated crosses (Albacete/Barbarrouse and TX9425/Naso Nijo). Analysis of genotyping data revealed that the SSH process was somewhat ineffective at enriching for unique sequences in this application of DArT marker development. However, the addition of markers derived from wild barley proved to be an effective means for increasing the number of polymorphic markers obtainable from a single DArT assay. Genetic maps of the four component populations were developed and 607 newly developed DArT markers were integrated with a barley consensus map to create a new synthetic map of the barley genome containing 3542 markers. This significantly increased the resolution of the consensus map and improved the power of the map to provide a reference for profiling genetic diversity within the primary Hordeum genepool. The improvement in the genotyping capability of the comprehensive DArT genomic representation and the higher resolution of the synthetic map facilitates an even greater flexibility of DArT markers to be utilized as a fast, high-throughput platform for molecular marker-based barley breeding.  相似文献   

10.
Abstract  Accurate estimates of DNA quantity are likely to become increasingly important for successful genomic screening of insect populations via recently developed, highly multiplexed genotyping assays and high-throughput sequencing methods. Here we show that genomic DNA extractions from single Anopheles gambiae Giles using a standard commercial kit-based methodology yield extracts with concentrations below the linear range of spectrophotometric absorbance at 260 nm. Concentrations determined by spectrophotometry were not reproducible, and are therefore neither accurate nor reliable. However, DNA quantification using a fluorescent nucleic acid stain (PicoGreen®) gave highly reproducible concentration estimates, and indicated that, on average, single mosquitoes yielded approximately 300 ng of DNA. Such a total yield is currently insufficient for many high-throughput genome screening applications, necessitating whole genome amplification of all or most individuals in a population prior to genotyping.  相似文献   

11.
We propose the use of single nucleotide polymorphisms (SNPs) instead of polymorphic microsatellite markers for individual identification and parentage control in cattle. To this end, we present an initial set of 37 SNP markers together with a gender-specific SNP for identity control and parentage testing in the Holstein, Fleckvieh and Braunvieh breeds. To obtain suitable SNPs, a total of 91.13 kb of random genomic DNA was screened yielding 531 SNPs. These, and 43 previously identified SNPs, were subjected to the following selection criteria: (1) the frequency of the minor allele must be larger than 0.1 in at least two of the three examined breeds, and (2) markers should not be linked closely. Allele frequencies were estimated by analysing sequencing traces of pooled DNA or by genotyping individual DNA samples. The selected SNP loci were physically mapped by radiation hybrid mapping or by fluorescence in situ hybridization, and tested against the neutral mutation hypothesis. The presented marker set theoretically allows probabilities of identity less than 10(-13) for individual verification and exclusion powers exceeding 99.99% for parentage testing.  相似文献   

12.
Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.  相似文献   

13.
R A Hegele 《CMAJ》1989,141(7):668-672
Genotyping with DNA probes can theoretically identify each person on earth. Naturally occurring variations in the nucleotide sequence of DNA (DNA sequence polymorphisms) result in genetic differences between people. The Southern blot technique can reveal characteristic DNA banding patterns at a specific genetic locus. The polymorphic DNA banding patterns at several genetic loci can be combined to help construct individual DNA "fingerprints". Such fingerprints can resolve identity in criminal and paternity cases. The appropriate technology is being used in North American law enforcement agency laboratories. Although some technical drawbacks still exist, DNA genotyping with the Southern blot technique and even newer methods will likely become the standard for individual identification. An understanding of the principles underlying DNA genotyping is required before informed decisions can be made regarding its potential widespread application.  相似文献   

14.
PCR primers with broad applicability are useful in many molecular-based studies; however, their universality can compromise results when DNA contaminants also are amplified. Eighty-one templates ofDahlia (Asteraceae), primarily extracted from native Mexican populations, were tested for the presence of fungal contaminants; out of these, almost 1 in 7 templates (13.6%) was contaminated. In a second survey across 12 angiosperm families using material collected in Illinois, fungal DNA contaminated over 60% of the templates analyzed. Endophytic fungi often are symptomless symbionts living within the above-ground tissues of their angiosperm hosts and are not affected by surface sterilization techniques. Recent studies have revealed their widespread occurrence and broad host range. We also present field strategies for obtaining plant material to reduce the possibility of collecting infected leaves and a simple screening test for detecting fungal DNA in angiosperm templates.  相似文献   

15.
High-throughput SNP genotyping   总被引:5,自引:0,他引:5  
Whole genome approaches using single nucleotide polymorphism (SNP) markers have the potential to transform complex disease genetics and expedite pharmacogenetics research. This has led to a requirement for high-throughput SNP genotyping platforms. Development of a successful high-throughput genotyping platform depends on coupling reliable assay chemistry with an appropriate detection system to maximise efficiency with respect to accuracy, speed and cost. Current technology platforms are able to deliver throughputs in excess of 100 000 genotypes per day, with an accuracy of >99%, at a cost of 20-30 cents per genotype. In order to meet the demands of the coming years, however, genotyping platforms need to deliver throughputs in the order of one million genotypes per day at a cost of only a few cents per genotype. In addition, DNA template requirements must be minimised such that hundreds of thousands of SNPs can be interrogated using a relatively small amount of genomic DNA. As such, it is predicted that the next generation of high-throughput genotyping platforms will exploit large-scale multiplex reactions and solid phase assay detection systems.  相似文献   

16.
We have developed a new method using the Qbead system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral 'barcodes' are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein-protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications.  相似文献   

17.
RAD-seq技术在基因组研究中的现状及展望   总被引:4,自引:0,他引:4  
王洋坤  胡艳  张天真 《遗传》2014,36(1):41-49
Restriction-site associated DNA sequencing(RAD-seq)技术是在二代测序基础上发展起来的一项基于全基因组酶切位点的简化基因组测序技术。该方法技术流程简单, 不受有无参考基因组的限制, 可大大简化基因组的复杂性, 减少实验费用, 通过一次测序就可以获得数以万计的多态性标记。目前, RAD-seq技术已成功应用于超高密度遗传图谱的构建、重要性状的精细定位、辅助基因组序列组装、群体基因组学以及系统发生学等基因组研究热点领域。文章主要介绍了RAD-seq的技术原理、技术发展及其在基因组研究中的广泛应用。鉴于RAD-seq方法的独特性, 该技术必将在复杂基因组研究领域具有广泛的应用前景。  相似文献   

18.
Cooper  J.E.  Bjourson  A.J.  Streit  W.  Werner  D. 《Plant and Soil》1998,204(1):47-55
A subtraction hybridization and PCR amplification procedure was used to isolate two Rhizobium DNA probes which exhibited high degrees of specificity at different levels of taxonomic organization and which could be used as tools for detection of rhizobia in ecological studies. First, a probe was isolated from Rhizobium leguminosarum bv. trifolii strain P3 by removing those Sau3A restriction fragments from a P3 DNA digest which cross hybridized with pooled DNA from seven other strains of the same biovar. The remaining restriction fragments hybridized to DNA from strain P3 but not to DNA from any of the seven other strains. In a similar experiment another DNA probe, specific for the Rhizobium leguminosarum bv. phaseoli and Rhizobium tropici group, was generated by removing sequences from R. leguminosarum bv phaseoli strain Kim 5s with pooled subtracter DNA from eight other Rhizobium, Bradyrhizobium and Agrobacterium species. The same subtraction hybridization technique was also used to isolate symbiotic genes from a Rhizobium species. Results from a 1:1 subtractive DNA hybridization of the broad host range Rhizobium sp NGR234 against highly homologous S. fredii USDA257, combined with those from competitive RNA hybridizations to cosmid digests of the NGR234 symbiotic plasmid, allowed the identification of several NGR234 loci which were flavonoid-inducible and not present in S. fredii USDA257. One of these, ORF-1, was highly homologous to the leucine responsive regulatory protein of E. coli.  相似文献   

19.
To develop a reliable tool for the identification and classification of the different Ensifer species, without the need for sequencing, a prototype DNA microarray that targets the rpsA housekeeping gene was designed and tested. Internal segments of the rpsA gene from 34 reference strains, representing the different Ensifer species, were sequenced and the sequences were used to select 44 diagnostic oligonucleotides that served as probes for the identification microarray. Both, genomic DNA and specific rpsA PCR-products were tested as a target in hybridisation experiments. Experimental conditions were optimised and the diagnostic oligonucleotides were validated. Hybridisation results with the rpsA PCR-products showed reliable identification of the reference strains to species and genomovar level. Our data indicate that a microarray targeting housekeeping genes is a promising, accurate and relatively simple genotyping technique that would also be applicable for the identification and characterization of other bacterial groups of interest.  相似文献   

20.
Single nucleotide polymorphism (SNP) is informative for human identification, and much shorter regions are targeted in analysis of biallelic SNP compared with highly polymorphic short tandem repeat (STR). Therefore, SNP genotyping is expected to be more sensitive than STR genotyping of degraded human DNA. To achieve simple, economical, and sensitive SNP genotyping for identification of degraded human DNA, we developed 18 loci for a SNP genotyping technique based on the mini-primer allele-specific amplification (ASA) combined with universal reporter primers (URP). The URP/ASA-based genotyping consisted of two amplifications followed by detection using capillary electrophoresis. The sizes of the target genome fragments ranged from 40 to 67 bp in length. In the Japanese population, the frequencies of minor alleles of 18 SNPs ranged from 0.36 to 0.50, and these SNPs are informative for identification. The success rate of SNP genotyping was much higher than that of STR genotyping of artificially degraded DNA. Moreover, we applied this genotyping method to case samples and showed successful SNP genotyping of severely degraded DNA from a 4-year buffered formalin-fixed tissue sample for human identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号