首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morii H  Koga Y 《Journal of bacteriology》2003,185(4):1181-1189
CDP-2,3-di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) activity in cell extracts of Methanothermobacter thermautotrophicus cells was characterized. The enzyme catalyzed the formation of unsaturated archaetidylserine from CDP-unsaturated archaeol and L-serine. The identity of the reaction products was confirmed by thin-layer chromatography, fast atom bombardment-mass spectrum analysis, and chemical degradation. The enzyme showed maximal activity in the presence of 10 mM Mn2+ and 1% Triton X-100. Among various synthetic substrate analogs, both enantiomers of CDP-unsaturated archaeols with ether-linked geranylgeranyl chains and CDP-saturated archaeol with ether-linked phytanyl chains were similarly active toward the archaetidylserine synthase. The activity on the ester analog of the substrate was two to three times higher than that on the corresponding ether-type substrate. The activity of D-serine with the enzyme was 30% of that observed for L-serine. A trace amount of an acid-labile, unsaturated archaetidylserine intermediate was detected in the cells by a pulse-labeling experiment. A gene (MT1027) in M. thermautotrophicus genome annotated as the gene encoding phosphatidylserine synthase was found to be homologous to Bacillus subtilis pssA but not to Escherichia coli pssA. The substrate specificity of phosphatidylserine synthase from B. subtilis was quite similar to that observed for the M. thermautotrophicus archaetidylserine synthase, while the E. coli enzyme had a strong preference for CDP-1,2-diacyl-sn-glycerol. It was concluded that M. thermautotrophicus archaetidylserine synthase belongs to subclass II phosphatidylserine synthase (B. subtilis type) on the basis of not only homology but also substrate specificity and some enzymatic properties. The possibility that a gene encoding the subclass II phosphatidylserine synthase might be transferred from a bacterium to an ancestor of methanogens is discussed.  相似文献   

2.
Complete saturation of the geranylgeranyl groups of biosynthetic intermediates of archaeal membrane lipids is an important reaction that confers chemical stability on the lipids of archaea, which generally inhabit extreme conditions. An enzyme encoded by the AF0464 gene of a hyperthermophilic archaeon, Archaeoglobus fulgidus, which is a distant homologue of plant geranylgeranyl reductases and an A. fulgidus menaquinone-specific prenyl reductase [Hemmi H, Yoshihiro T, Shibuya K, Nakayama T, & Nishino T (2005) J Bacteriol187, 1937-1944], was recombinantly expressed and purified, and its geranylgeranyl reductase activity was examined. The radio HPLC analysis indicated that the flavoenzyme, which binds FAD noncovalently, showed activity towards lipid-biosynthetic intermediates containing one or two geranylgeranyl groups under anaerobic conditions. It showed a preference for 2,3-di-O-geranylgeranylglyceryl phosphate over 3-O-geranylgeranylglyceryl phosphate and geranylgeranyl diphosphate in vitro, and did not reduce the prenyl group of respiratory quinones in Escherichia coli cells. The substrate specificity strongly suggests that the enzyme is involved in the biosynthesis of archaeal membrane lipids. GC-MS analysis of the reaction product from 2,3-di-O-geranylgeranylglyceryl phosphate proved that the substrate was converted to archaetidic acid (2,3-di-O-phytanylglyceryl phosphate). The archaeal enzyme required sodium dithionite as the electron donor for activity in vitro, similarly to the menaquinone-specific prenyl reductase from the same anaerobic archaeon. On the other hand, in the presence of NADPH (the preferred electron donor for plant homologues), the enzyme reaction did not proceed.  相似文献   

3.
The biosynthesis of archaeal ether-type glycolipids was investigated in vitro using Methanothermobacter thermautotrophicus cell-free homogenates. The sole sugar moiety of glycolipids and phosphoglycolipids of the organism is the beta-D-glucosyl-(1-->6)-D-glucosyl (gentiobiosyl) unit. The enzyme activities of archaeol:UDP-glucose beta-glucosyltransferase (monoglucosylarchaeol [MGA] synthase) and MGA:UDP-glucose beta-1,6-glucosyltransferase (diglucosylarchaeol [DGA] synthase) were found in the methanoarchaeon. The synthesis of DGA is probably a two-step glucosylation: (i) archaeol + UDP-glucose --> MGA + UDP, and (ii) MGA + UDP-glucose --> DGA + UDP. Both enzymes required the addition of K(+) ions and archaetidylinositol for their activities. DGA synthase was stimulated by 10 mM MgCl(2), in contrast to MGA synthase, which did not require Mg(2+). It was likely that the activities of MGA synthesis and DGA synthesis were carried out by different proteins because of the Mg(2+) requirement and their cellular localization. MGA synthase and DGA synthase can be distinguished in cell extracts greatly enriched for each activity by demonstrating the differing Mg(2+) requirements of each enzyme. MGA synthase preferred a lipid substrate with the sn-2,3 stereostructure of the glycerol backbone on which two saturated isoprenoid chains are bound at the sn-2 and sn-3 positions. A lipid substrate with unsaturated isoprenoid chains or sn-1,2-dialkylglycerol configuration exhibited low activity. Tetraether-type caldarchaetidylinositol was also actively glucosylated by the homogenates to form monoglucosyl caldarchaetidylinositol and a small amount of diglucosyl caldarchaetidylinositol. The addition of Mg(2+) increased the formation of diglucosyl caldarchaetidylinositol. This suggested that the same enzyme set synthesized the sole sugar moiety of diether-type glycolipids and tetraether-type phosphoglycolipids.  相似文献   

4.
The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure–function relationship which is dependent on the nature of the alkyl group at the α-carbon.  相似文献   

5.
The basic core structure of archaeal membrane lipids is 2,3-di-O-phytanyl-sn-glyceryl phosphate (archaetidic acid), which is formed by the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate. The reductase activity for the key enzyme in membrane lipid biosynthesis, 2,3-digeranylgeranylglycerophospholipid reductase, was detected in a cell free extract of the thermoacidophilic archaeon Thermoplasma acidophilum. The reduction activity was found in the membrane fraction, and FAD and NADH were required for the activity. The reductase was purified from a cell free extract by ultracentrifugation and four chromatographic steps. The purified enzyme showed a single band at ca. 45 kDa on SDS-PAGE, and catalyzed the formation of archaetidic acid from 2,3-di-O-geranylgeranylglyceryl phosphate. Furthermore, the enzyme also catalyzed the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate analogues such as 2,3-di-O-phytyl-sn-glyceryl phosphate, 3-O-(2,3-di-O-phytyl-sn-glycero-phospho)-sn-glycerol and 2,3-di-O-phytyl-sn-glycero-phosphoethanolamine. The N-terminal 20 amino acid sequence of the purified enzyme was determined and was found to be identical to the sequence encoded by the Ta0516m gene of the T. acidophilum genome. The present study clearly demonstrates that 2,3-digeranylgeranylglycerophospholipid reductase is a membrane associated protein and that the hydrogenation of each double bond of 2,3-digeranylgeranylglycerophospholipids is catalyzed by a single enzyme.  相似文献   

6.
Squalene analogs such as lycopersene, geranylfarnesyl, digeranyl, and 2-hydroxy-2,3-dihydrosqualene and terpene alcohol derivatives such as farnesyl benzyl ether, farnesyl pivalate, geranylgeranyl pivalate, geranyl pivalate, and geranyl benzyl ether were oxidized by Corynebacterium sp. strain SY-79, which was isolated from soil by using squalene as a carbon source. Lycopersene and geranylfarnesyl gave no major product. Digeranyl, geranyl benzyl ether, and geranyl pivalate gave terminal oxidation products, and 2-hydroxy-2,3-dihydrosqualene, farnesyl benzyl ether, farnesyl pivalate, and geranylgeranyl pivalate were degraded to give lower molecular carboxylic acids. Strain SY-79 showed promising oxidative activities toward acyclic terpenes, although the metabolites obtained were variable, depending upon the structure of the substrate.  相似文献   

7.
Oxidation of acyclic terpenoids by Corynebacterium sp.   总被引:2,自引:2,他引:0       下载免费PDF全文
Y Yamada  C W Seo    H Okada 《Applied microbiology》1985,49(4):960-963
Squalene analogs such as lycopersene, geranylfarnesyl, digeranyl, and 2-hydroxy-2,3-dihydrosqualene and terpene alcohol derivatives such as farnesyl benzyl ether, farnesyl pivalate, geranylgeranyl pivalate, geranyl pivalate, and geranyl benzyl ether were oxidized by Corynebacterium sp. strain SY-79, which was isolated from soil by using squalene as a carbon source. Lycopersene and geranylfarnesyl gave no major product. Digeranyl, geranyl benzyl ether, and geranyl pivalate gave terminal oxidation products, and 2-hydroxy-2,3-dihydrosqualene, farnesyl benzyl ether, farnesyl pivalate, and geranylgeranyl pivalate were degraded to give lower molecular carboxylic acids. Strain SY-79 showed promising oxidative activities toward acyclic terpenes, although the metabolites obtained were variable, depending upon the structure of the substrate.  相似文献   

8.
Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.  相似文献   

9.
Crude particulate preparations obtained from anaerobic, light-grown cells of Rhodopseudomonas spheroides have been shown to possess a significant level of sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity. In contrast to the enzyme from Escherichia coli, the R. spheroides glycerophosphate acyltransferase has a high specificity for acyl thiolester derivatives of acyl carrier protein (ACP) as acyl donors for the reaction. Only limited , nonlinear glycerophosphate incorporation into lipid occurs when acyl coenzyme A (CoA) derivatives are employed as acyl substrate. With oleyl-ACP as substrate, maximal enzyme activity was observed at 40 degrees, over a broad pH range (6.0 to 8.5) and did not require a divalent metal cation. The presence of dithiothreitol stimulated enzyme-activity 15 to 20%. When oleyl-ACP or palmityl-ACP was employed as sole acyl group donor, the major products recoverable from the reaction mixtures were lysophosphatidic acid, phosphatidic acid, and monoglyceride. Althouh oleyl-ACP and palmityl-ACP gave comparable maximal velocities in the initial acylation of glycerophosphate, the formation of phosphatidic acid occurred preferentially with the unsaturated acyl-ACP derivative.  相似文献   

10.
The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase from the bacterium, Pantoea ananatis, was studied. In most types of short-chain (all-E) prenyl diphosphate synthases, bulky amino acids at the fourth and/or fifth positions upstream from the first aspartate-rich motif play a primary role in the product determination mechanism. However, type II geranylgeranyl diphosphate synthase lacks such bulky amino acids at these positions. The second position upstream from the G(Q/E) motif has recently been shown to participate in the mechanism of chain length determination in type III geranylgeranyl diphosphate synthase. Amino acid substitutions adjacent to the residues upstream from the first aspartate-rich motif and from the G(Q/E) motif did not affect the chain length of the final product. Two amino acid insertion in the first aspartate-rich motif, which is typically found in bacterial enzymes, is thought to be involved in the product determination mechanism. However, deletion mutation of the insertion had no effect on product chain length. Thus, based on the structures of homologous enzymes, a new line of mutants was constructed in which bulky amino acids in the alpha-helix located at the expected subunit interface were replaced with alanine. Two mutants gave products with longer chain lengths, suggesting that type II geranylgeranyl diphosphate synthase utilizes an unexpected mechanism of chain length determination, which requires subunit interaction in the homooligomeric enzyme. This possibility is strongly supported by the recently determined crystal structure of plant type II geranylgeranyl diphosphate synthase.  相似文献   

11.
Two open reading frames which encode the homologues of (all-E) prenyl diphosphate synthase are found in the whole-genome sequence of Sulfolobus solfataricus, a thermoacidophilic archaeon. It has been suggested that one is a geranylgeranyl diphosphate synthase gene, but the specificity and biological significance of the enzyme encoded by the other have remained unclear. Thus, we isolated the latter by the PCR method, expressed the enzyme in Escherichia coli cells, purified it, and characterized it. The archaeal enzyme, 281 amino acids long, is highly thermostable and requires Mg(2+) and Triton X-100 for full activity. It catalyzes consecutive E-type condensations of isopentenyl diphosphate with an allylic substrate such as geranylgeranyl diphosphate and yields the medium-chain product hexaprenyl diphosphate. Despite such product specificity, phylogenetic analysis revealed that the archaeal medium-chain prenyl diphosphate synthase is distantly related to the other medium- and long-chain enzymes but is closely related to eucaryal short-chain enzymes.  相似文献   

12.
The intracellular level of beta-hydroxydecanoyl thio ester dehydrase, the product of the fabA gene of Escherichia coli, was increased by isolation of a putative promotor mutant (termed fabAup) or by molecular cloning of the wild-type fabA gene into plasmid pBR322. The fabAup and plasmid-carrying strains overproduced dehydrase by about 15- and 10-fold, respectively. The phospholipids of all strains that overproduced the dehydrase contained significantly higher levels of saturated fatty acids than isogenic strains producing a normal level of dehydrase. No increased levels of unsaturated fatty acids were observed. This result indicates that, although the dehydrase is required for unsaturated fatty acid synthesis, the level of dehydrase activity in wild-type cells does not limit the rate of unsaturated fatty acid synthesis. The introduction of a plasmid carrying the structural gene for beta-ketoacyl acyl carrier protein synthase I into a fabAup strain overcame the effect of dehydrase overproduction on fatty acid composition.  相似文献   

13.
Human myocardial fatty acid ethyl ester synthase-III is a newly described acidic glutathione S-transferase that metabolizes both ethanol and carcinogens. Structure-function studies have not been performed relating these two distinct enzymatic activities. Since there are only two histidine residues in fatty acid ethyl ester synthase-III (His 72 and His 163), the role of each was examined by site-specific mutagenesis. Fatty acid ethyl ester synthase-III mutagenized at position 72 to contain either Gln, Pro or Ala had less than 5% of control glutathione S-transferase activity but retained fatty acid ethyl ester synthase activity under standard assay conditions. In contrast, substitution of histidine 163 with proline had no effect on glutathione S-transferase activity, but it slightly increased synthase activity. Thus, this study indicates that histidine plays a differential role in fatty acid ethyl ester synthase III depending on the nucleophilic substrate.  相似文献   

14.
The Bahamian octocoral Pseudopterogorgia elisabethae is the source of pseudopterosins, diterpene glycosides with potent anti-inflammatory activity. The first committed step in pseudopterosin biosynthesis comprises the cyclisation of the universal diterpene precursor geranylgeranyl diphosphate to elisabethatriene. This reaction is catalysed by elisabethatriene synthase, which was purified to homogeneity from a crude coral extract. This represents the first purification to apparent homogeneity of a terpene cyclase from any marine source. The reaction kinetics of elisabethatriene synthase was examined using a steady state approach with (3)H-labelled isoprenyldiphosphates varying in carbon chain length (C(10), C(15), C(20)). For the reaction of elisabethatriene synthase with its natural substrate geranylgeranyl diphosphate, values of K(m) (2.3 x 10(-6) M), V(max) (3.4 x 10(4) nM elisabethatriene x s(-1)) and the specificity constant (k(cat)/K(m)= 1.8 x 10(-10) M(-1) x s(-1)) were comparable with diterpene cyclases from terrestrial plants. Elisabethatriene synthase also catalysed the conversion of C(15) and C(10) isoprenyldiphosphate analogues to monoterpene and sesquiterpene olefins, respectively. Kinetic parameters indicated that substrate specificity and K(m) of elisabethatriene synthase decreased with decreasing isoprenoid carbon chain length. Furthermore, GC-MS analysis showed increased product diversity with decreasing isoprenoid carbon chain length.  相似文献   

15.
(All-E) prenyl diphosphate synthases catalyze the consecutive condensation of isopentenyl diphosphates with allylic prenyl diphosphates, producing products with various chain-lengths that are unique for each enzyme. Some short-chain (all-E) prenyl diphosphate synthases, i.e. farnesyl diphosphate synthases and geranylgeranyl diphosphate synthases contain characteristic amino acid sequences around the allylic substrate binding sites, which have been shown to play a role in determining the chain-length of the product. However, among these enzymes, which are classified into several types based on the possessive patterns of such characteristics, type III geranylgeranyl diphosphate synthases, which consist of enzymes from eukaryotes (excepting plants), lack these features. In this study, we report that mutagenesis at the second position before the conserved G(Q/E) motif, which is distant from the well-studied region, affects the chain-length of the product for a type III geranylgeranyl diphosphate synthase from Saccharomyces cerevisiae. This clearly suggests that a novel mechanism is operative in the product determination for this type of enzyme. We also show herein that mutagenesis at the corresponding position of an archaeal medium-chain enzyme also alters its product specificity. These results provide valuable information on the molecular evolution of (all-E) prenyl diphosphate synthases.  相似文献   

16.
Human pancreatic fatty acid ethyl ester synthase has been isolated and purified 1200-fold to homogeneity, and its activities, binding properties, and N-terminal amino acid sequence indicate that it is a member of the lipase family. This 52-kDa monomeric protein is present at 0.6-1.2 mg/g of pancreas, and it catalyzes the synthesis and hydrolysis of ethyl oleate at rates of 2400 nmol mg-1 h-1 and 30 nmol mg-1 h-1, respectively. Kinetic analyses reveal a pronounced substrate specificity for unsaturated octadecanoic fatty acids, with ethyl ester synthetic rates of 2400 nmol mg-1 h-1 (linoleic), 2400 nmol mg-1 h-1 (oleic), 400 nmol mg-1 h-1 (arachidonic), 300 nmol mg-1 h-1 (palmitic), and 100 nmol mg-1 h-1 (stearic). Like cholesterol esterase, the enzyme binds to immobilized heparin, and this property was critical for its purification to homogeneity. Its N-terminal amino acid sequence is virtually identical with that reported for human triglyceride lipase, NH2-X-Glu-Val-Cys-5Tyr-Glu-Arg-Leu-Gly-10Cys-Phe-Ser-Asp- Asp-15Ser-Pro-Trp-Ser-Gly-20Ile, and it differs by only four residues from that reported for porcine pancreatic lipase. The synthase purified here also cleaves triglycerides, hydrolyzing triolein at a rate of 30 nmol mg-1 h-1, and this activity is stimulated by colipase and inhibited by sodium chloride. Conversely, commercially available porcine triglyceride lipase exhibits fatty acid ethyl ester synthase activity (1530 nmol mg-1 h-1) and hydrolyzes triolein at a rate of 23 nmol mg-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The inhibition of partially purified phytoene synthetase activity from Capsicum annuum chromoplasts was investigated using aminophenethyl pyrophosphate and azidophenethyl pyrophosphate. These compounds were effective inhibitors of phytoene synthesis and kinetic analysis showed that they were competitive with respect to the substrate isopentenyl pyrophosphate. These data were strengthened by the ability of azidophenethyl pyrophosphate to photoinactivate irreversibly the activity of the enzyme complex. These results suggest that the primary targets of these analogs are at the level of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthetase.  相似文献   

18.
This study shows for the first time microheterogeneity of 1,3-linked poly(glycerophosphate) lipoteichoic acids. The lipoteichoic acids investigated were those of Enterococcus faecalis Kiel 27738 (I), Enterococcus hirae (Streptococcus faecium) ATCC 9790 (II), and Leuconostoc mesenteroides DMS 20343 (III). Lipoteichoic acids II and III are partially substituted by mono-, di-, tri-, and tetra-alpha-D-glucopyranosyl residues with (1----2) interglycosidic linkages. Lipoteichoic acid I is substituted with alpha-kojibiosyl residues only. Lipoteichoic acids I and III additionally carry D-alanine ester. Lipoteichoic acids were separated on columns of concanavalin-A-Sepharose according to their increasing number of glycosyl substituents per chain. It was evident that all molecular species are usually glycosylated and that alanine ester and glycosyl residues occur on the same chains. The chain lengths of lipoteichoic acid I and II vary between 9-40 glycerophosphate residues, whereas those of lipoteichoic acid III appear to be uniform (33 +/- 2 residues). Molecular species differ in the extent of glycosylation but their content of alanyl residues is fairly constant. All lipoteichoic acids contain a small fraction (5-15%) different in composition from the bulk and most likely reflecting an early stage of biosynthesis. Two procedures for chain length determination of poly(glycerophosphate) lipoteichoic acids are described.  相似文献   

19.
The activity of phosphatidylserine (PS) synthase (CDP-1, 2-diacyl-sn-glycerol: l-serine O-phosphatidyltransferase, EC 2.7.8. 8) from Escherichia coli was studied after reconstitution with lipid vesicles of various compositions. PS synthase exhibited practically no activity in the absence of a detergent and with the substrate CDP-diacylglycerol (CDP-DAG) present only in the lipid vesicles. Inclusion of octylglucoside (OG) in the assay mixture increased the activity 20- to 1000-fold, the degree of activation depending on the lipid composition of the vesicles. Inclusion of additional CDP-DAG in the assay mixture increased the activity 5- to 25-fold. When the fraction of phosphatidylglycerol (PG) was increased from 15 to 100 mol% in the vesicles the activity increased 10-fold using the assay mixture containing OG. The highest activities were exhibited with the anionic lipids synthesized by E. coli, namely PG, diphosphatidylglycerol (DPG), and phosphatidic acid, while phosphatidylinositol gave a lower activity. Cryotransmission electron microscopy showed that transformation of the vesicles to micelles brings about an activation of the enzyme that is proportional to the degree of micellization. Thus, the activity of PS synthase is modulated by the lipid aggregate structure and by the fraction and type of anionic phospholipid in the aggregates. The increase in the activity caused by PG and DPG is physiologically relevant; it may be part of a regulatory mechanism that keeps the balance between phosphatidylethanolamine, and the sum of PG and DPG, nearly constant in wild-type E. coli cells.  相似文献   

20.
Several amide and ester derivatives of a glutamine analogue, N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid (FMDP) (1-8), were synthesized and evaluated for the inhibitory activity in regard to glucosamine-6-phosphate synthase from Candida albicans. The syntheses were accomplished by the reaction of N2-tert-butoxycarbonyl-N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid (BocFMDP) with the corresponding amines to give the FMDP amides (1-4) or with alkyl halides to give corresponding esters of FMDP (5-8). Among the synthesized compounds, the acetoxymethyl ester of FMDP was the most active inhibitor of the enzyme. Its IC50 value compared to that of FMDP (4 microM) was equal to 11.5 microM. The methyl and allyl esters and the N-hexyl-N-methyl-amide of FMDP exhibited a moderate enzyme inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号