首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombination in the proximal region of mouse chromosome 17 is greatly reduced in heterozygotes carrying the wild-type and thet complex-type chromosomes. The reason for this is the presence of two non-overlapping inversions in thet complex. Rare crossing-over does, however, occur within thet complex of thet/+ heterozygotes. Here we characterize four such exceptional intra-t recombinants,t Tu1 throught Tu4 . To map the positions of the genetic exchange in these four recombinants, we analyzed them with DNA probes specific for 16 loci distributed over thet complex. The analysis revealed that in three of the four recombinants, an equal crossing-over occurred in the short region between the two inversions, producing chromosomes carrying either the proximal inversion only (t Tu1 andt Tu4 ) or the distal inversion only (t Tu2 ). In the fourth recombinant (t Tu3 ), unequal crossing-over occurred within the proximal inversion between lociD17Leh119 andD17Leh66, producing a chromosome in which the region containing lociTcp-1, T, andD17Tu5 has been duplicated. The duplication of theBrachyury locus leads to the suppression of the tail-shortening effect normally produced by the interaction of the dominant (T) and recessive (tct) alleles at this locus so that theT/t Tu3 mice have normal tails.  相似文献   

2.
The mouse × Chinese hamster cell line R4 4-1 contains only one mouse chromosome, the bulk of which corresponds toMus musculus chromosomes 17 and 18 (MMU17 and MMU18, respectively). A genomic library was prepared from the R4 4-1 DNA, and a mouse clone was isolated from the library, which—with the help of somatic cell hybrids-could be mapped to the MMU17. A locus defined by a 2.7-kb longBam HI probe from this clone was designatedD17Tu5 (Tu for Tübingen). The locus proved to be polymorphic among inbred strains and wild mice. By testing of recombinant inbred strains and partialt haplotypes, theD17Tu5 locus could be mapped to a position between theD17Leh66E andD17Rp17 loci within thet complex. Two alleles were found at this locus,D17Tu5 a andD17Tu5 b , defined byTaq I restriction fragment length polymorphism. Both alleles are present among inbred strains and wild mice of the speciesM. domesticus. All completet haplotypes tested carry theD17Tu5 a allele and all tested wild mice of the speciesM. musculus, with the exception of those bearingt haplotypes, carry theD17Tu5 b allele. Additional alleles are found in some populations of wild mice and in other species of the genusMus. The distribution of the two alleles among the inbred strains correlates well with their known or postulated genealogy. Their distribution between the two species ofMus and among the mice withT haplotypes suggests a relatively recent origin of thet haplotypes.  相似文献   

3.
The H2-M region is the most distal part of the mouse major histocompatibility complex (Mhc) and is likely to include the distal breakpoint of the fourth t-inversion, In(17)4d. The conserved synteny breakpoint between mouse and human is located in the H2-M region between D17Leh89, a putative olfactory receptor gene, and Pgk2 (phosphoglycerate kinase 2). To analyze the H2-M region, we screened a mouse bacterial artificial chromosome (BAC) library, using the D17Mit64, D17Tu49, D17Leh89, D17Leh467, and Pgk2 markers. Thirty-eight BAC clones were obtained and mapped in five clusters, and 25 sequence-tagged site (STS) markers were newly developed. The regions surrounding D17Tu49 and D17Leh467 are abundant in L1 repeat sequences and may, therefore, be candidates for the breakpoints of conserved synteny and t-inversion. D17Leh89 was linked to D17Mit64 by two contiguous BAC clones. The Aeg1 (acidic epididymal glycoprotein 1) and Aeg2 genes were mapped close to Pgk2, on the same BAC clones. The genetic length between D17Leh89–D17Mit64 and Pgk2–Aeg can be estimated as 0.5–0.7 centiMorgan (cM), and the most distal class I gene, H2-M2, can be placed 0.3–1.0 cM proximal to the t-inversion breakpoint. A recombinational hotspot is suggested to be located between Aeg and Tpx1 in an interspecific cross of (C57BL/6J ×Mus spretus). Received: 23 July 1997 / Accepted: 13 November 1997  相似文献   

4.
M. F. Hammer  S. Bliss    L. M. Silver 《Genetics》1991,128(4):799-812
Mouse t haplotypes are distinguished from wild-type forms of chromosome 17 by four nonoverlapping paracentric inversions which span a genetic distance of 20 cM. These inversion polymorphisms are responsible for a 100-200-fold suppression of recombination which maintains the integrity of complete t haplotypes and has led to their divergence from the wild-type chromosomes of four species of house mice within which t haplotypes reside. As evidence for the long period of recombinational isolation, alleles that distinguish all t haplotypes from all wild-type chromosomes have been established at a number of loci spread across the 20-cM variant region. However, a more complex picture emerges upon analysis of other t-associated loci. In particular, "mosaic haplotypes" have been identified that carry a mixture of wild-type and t-specific alleles. To investigate the genetic basis for mosaic chromosomes, we conducted a comprehensive analysis of eight t complex loci within 76 animals representing 10 taxa in the genus Mus, and including 23 previously characterized t haplotypes. Higher resolution restriction mapping and sequence analysis was also performed for alleles at the Hba-ps4 locus. The results indicate that a short tract of DNA was transferred relatively recently across an inversion from a t haplotype allele of Hba-ps4 to the corresponding locus on a wild-type homolog leading to the creation of a new hybrid allele. Several classes of wild-type Hba-ps4 alleles, including the most common form in inbred strains, appear to be derived from this hybrid allele. The accumulated data suggest that a common form of genetic exchange across one of the four t-associated inversions is gene conversion at isolated loci that do not play a role in the transmission ratio distortion phenotype required for t haplotype propagation. The implications of the results pose questions concerning the evolutionary stability of gene complexes within large paracentric inversions and suggest that recombinational isolation may be best established for loci residing within a short distance from inversion breakpoints.  相似文献   

5.
Pim-1, a putative oncogene involved in T-cell lymphomagenesis, was mapped between the pseudo-alpha globin gene Hba-4ps and the alpha-crystallin gene Crya-1 on mouse chromosome 17 and therefore within the t complex. Pim-1 restriction fragment variants were identified among t haplotypes. Analysis of restriction fragment sizes obtained with 12 endonucleases demonstrated that the Pim-1 genes in some t haplotypes were indistinguishable from the sizes for the Pim-1b allele in BALB/c inbred mice. There are now three genes, Pim-1, Crya-1 and H-2 I-E, that vary among independently derived t haplotypes and that have indistinguishable alleles in t haplotypes and inbred strains. These genes are closely linked within the distal inversion of the t complex. Because it is unlikely that these variants arose independently in t haplotypes and their wild-type homologues, we propose that an exchange of chromosomal segments, probably through double crossingover, was responsible for indistinguishable Pim-1 genes shared by certain t haplotypes and their wild-type homologues. There was, however, no apparent association between variant alleles of these three genes among t haplotypes as would be expected if a single exchange introduced these alleles into t haplotypes. If these variant alleles can be shown to be identical to the wild-type allele, then lack of association suggests that multiple exchanges have occurred during the evolution of the t complex.  相似文献   

6.
We present here a detailed physical map encompassing over 600 kb of mouse Chromosome (Chr) 17 in the region of plasminogen, D17Rp17e, and quaking. This region is cloned in yeast artificial chromosomes (YACs). We have identified several CpG islands within this region from pulsed field gel mapping of mouse genomic DNA and YAC DNA. Five new DNA probes have been generated. One, D17Leh514, is a minimum of about 90 kb distal to plasminogen. Four, D17Leh513, D17Leh512, D17Leh511, and D17Leh510, are proximal to D17Rp17e, the closest previously described genetic marker to quakingviable and quakinglethal-1 mutations. We have genetically mapped D17Leh511 to within 0.15 cM of these mutations. The genetic distance to D17Rp17e from D17Leh511 is also 0.15 cM; the physical distance of less than 360 kb (minimum 200 kb) is consistent with an approximation of 2 Mbp per cM.  相似文献   

7.
A human DNA probe specific for the superoxide dismutase gene was used to identify the corresponding mouse gene. Under the chosen hybridizing conditions, the probe detected DNA fragments most likely carrying the mouse Sod-2 gene. Mapping studies revealed that the Sod-2 gene resides in the proximal inversion of the t complex on mouse chromosome 17. All complete t haplotypes tested showed restriction fragment length polymorphism which is distinct from that found in all wild-type chromosomes tested. The Sod-2 locus maps in the same region as some of the loci that influence segregation of t chromosomes in male gametes. The possibility that the Sod-2 locus is related to some of the t-complex distorter or responder loci is discussed. The data indicate that the human homolog of the mouse t complex has split into two regions, the distal region remaining on the p arm of human chromosome 6, while the proximal region has been transposed to the telomeric region of this chromosome's q arm.  相似文献   

8.
Probes for loci situated near one end of the proximal (Tcp-1) and distal (Qa-2, 3) inversions of the mouse t complex have been hybridized to chromosomes of mice with and without t complexes and with morphologically distinguishable chromosome 17s. Both the probe for Tcp-1 and that for Qa-2, 3 hybridized to clearly different positions on t and non-t chromosomes, thus making visible the extent of the two inversions. The proximal inversion extends from roughly the junction of bands A1 and A2 to band A3, and the distal inversion from band A3 to band C. Thus, the whole t complex extends from the band Al–A2 junction to band C, and is therefore somewhat larger than previously thought, and occupies about 1.2 % of the genome. A probe for complement component 3 (C3-1), genetically known to be several cM distal to the t complex, was found by in situ hybridization to lie in band E1. The proximal part of chromosome 17 is one of the best known parts of the mouse genome, at both the genetic and molecular levels. It may soon be possible to correlate the length of the t complex in terms of chromosomal distance with its physical length in megabases.  相似文献   

9.
Three anonymous chromosome 17 DNA markers, D17Tu36, D17Tu43, and D17Le66B, differentiate between house mouse species and/or between t chromosomes. The D17Tu36 probe, which maps near the Fu locus and to the In(17)4 on t chromosomes, identifies at least 15 haplotypes, each haplotype characterized by a particular combination of DNA fragments obtained after digestion with the Taq I restriction endonuclease. Ten of these haplotypes occur in Mus domesticus, while the remaining five occur in M. musculus. In each of these two species, one haplotype is borne by t chromosomes while the other haplotypes are present on non-t chromosomes. The D17Tu43 probe, which maps near the D17Leh122 locus and to the In(17)3 on t chromosomes, also identifies at least 15 haplotypes in Taq I DNA digests, of which nine occur in M. domesticus and six in M. musculus. One of the nine M. domesticus haplotypes is borne by t chromosomes, the other haplotypes are borne by non-t chromosomes; two of the six M. musculus haplotypes are borne by t chromosomes and the remaining four by non-t chromosomes. Some of the D17Tu43 haplotypes are widely distributed in a given species, while others appear to be population-specific. Exceptions to species-specificity are found only in a few mice captured near the M. domesticus-M. musculus hybrid zone or in t chromosomes that appear to be of hybrid origin. The D17Leh66B probe, which maps to the In(17)2, distinguishes three haplotypes of M. domesticus-derived t chromosomes and one haplotype of M. musculus-derived t chromosomes. Because of these characteristics, the three markers are well suited for the study of mouse population genetics in general and of t chromosome population genetics in particular. A preliminary survey of wild M. domesticus and M. musculus populations has not uncovered any evidence of widespread introgression of genes from one species to the other; possible minor introgressions were found only in the vicinity of the hybrid zone. Typing of inbred strains has revealed the contribution of only M. domesticus DNA to the chromosome 17 of the laboratory mouse.  相似文献   

10.
T. Ebersole  F. Lai    K. Artzt 《Genetics》1992,131(1):175-182
Many mutations affecting mouse development have been mapped to the t-complex of mouse chromosome 17. We have obtained 17 cosmid clones as molecular markers for this region by screening a hamster-mouse chromosome 17 and 18 cell hybrid cosmid library with mouse-specific repetitive elements and mapping positive clones via t-haplotype vs. C3H restriction fragment length polymorphism (RFLP) analysis. Twelve of the clones mapping distal to Leh66B in t-haplotypes are described here. Using standard RFLP analysis or simple sequence length polymorphism between t-haplotypes, exceptional partial t-haplotypes and nested sets of inter-t-haplotype recombinants, five cosmids have been mapped in or around In(17)3 and seven in the most distal inversion In17(4). More precise mapping of four of the cosmids from In(17)4 shows that they will be useful in the molecular identification of some of the recessive lethals mapped to the t-complex: two cosmids map between H-2K and Crya-1, setting a distal limit in t-haplotypes for the position of the tw5 lethal, one is inseparable from the tw12 lethal, and one maps distal to tf near the t0(t6) lethal and cld.  相似文献   

11.
B Ark  G Gummere  D Bennett  K Artzt 《Genomics》1991,10(2):385-389
Pim-1 is an oncogene activated in mouse T-cell lymphomas induced by Moloney and AKR mink cell focus (MCF) viruses. Pim-1 was previously mapped to chromosome 17 by somatic cell hybrids, and subsequently to the region between the hemoglobin alpha-chain pseudogene 4 (Hba-4ps) and the alpha-crystalline gene (Crya-1) by Southern blot analysis of DNA obtained from panels of recombinant inbred strains. We have now mapped Pim-1 more accurately in t-haplotypes by analysis of recombinant t-chromosomes. The recombinants were derived from Tts6tf/t12 parents backcrossed to + tf/ + tf, and scored for recombination between the loci of T and tf. For simplicity all t-complex lethal genes properly named tcl-tx are shortened to tx. The Pim-1 gene was localized 0.6 cM proximal to the tw12 lethal gene, thus placing the Pim-1 gene 5.2 cM distal to the H-2 region in t-haplotypes. Once mapped, the Pim-1 gene was used as a marker for further genetic analysis of t-haplotypes. tw12 is so close to tf that even with a large number of recombinants it was not possible to determine whether it is proximal or distal to tf. Southern blot analysis of DNA from T-tf recombinants with a separation of tw12 and tf indicated that tw12 is proximal to tf. The mapping of two allelic t-lethals, t0 and t6 with respect to tw12 and tf has also been a problem.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A variant form of mouse Chromosome (Chr) 17, the t-haplotype, contains several loci responsible for transmission ratio distortion in males. Sperm carrying the responder locus (Tcr) have a high probability of fertilizing eggs at the expense of wild-type sperm, provided that distorter loci (Tcd-1 to Tcd-5) are expressed during spermatogenesis. Tcr has been mapped to the Leh66b region within a maximum of 155 kb. In the search for genes in the genomic region Leh66EI, we have identified the mouse homolog of human ribosome S6 kinase 3 (RSK3) on cosmid DNA. The complete mouse Rsk3 gene is encoded in the region Leh66a of t-haplotypes and Leh66EI of the wild-type chromosome. It consists of at least 13 exons spanning over more than 120 kb. Rsk3 is expressed in embryos and in several adult organs including testis. Cosmids covering 100 kb of the Leh66b region or 120 kb of the Leh66a region were isolated. Rsk3 covers about 65 kb of the Leh66b region and appears to be incomplete at its 5′-end. A correlation of the physical map provided here with the genetic mapping of Tcr reported previously suggests that Tcr is most likely encoded within a fragment of 30 kb upstream or 20 kb downstream of Rsk3. These data will facilitate the isolation of Tcr, a prerequisite for understanding transmission ratio distortion in mouse. Received: 21 January 1999 / Accepted: 16 April 1999  相似文献   

13.
The epidemiology of malaria in Africa is complicated by the fact that its principal vector, the mosquito Anopheles gambiae, constitutes a complex of six sibling species. Each species is characterized by a unique array of paracentric inversions, as deduced by karyotypic analysis. In addition, most of the species carry a number of polymorphic inversions. In order to develop an understanding of the evolutionary histories of different parts of the genome, we compared the genetic variation of areas inside and outside inversions in two distinct inversion karyotypes of A. gambiae. Thirty-five cDNA clones were mapped on the five arms of the A. gambiae chromosomes with divisional probes. Sixteen of these clones, localized both inside and outside inversions of chromosome 2, were used as probes in order to determine the nucleotide diversity of different parts of the genome in the two inversion karyotypes. We observed that the sequence diversity inside the inversion is more than threefold lower than in areas outside the inversion and that the degree of divergence increases gradually at loci at increasing distance from the inversion. To interpret the data we present a selectionist and a stochastic model, both of which point to a relatively recent origin of the studied inversion and may suggest differences between the evolutionary history of inversions in Anopheles and Drosophila species.Correspondence to: K.D. Mathiopoulos  相似文献   

14.
15.
A parsimony analysis was performed on restriction sites at the Hba-ps4 pseudogene locus within one of four inversions associated with mouse t haplotypes. The results suggest that all t haplotypes form a monophyletic group and that the in (17)4 inversion originated before the radiation of the Mus musculus species complex but after the divergence of the lineages leading to M. spretus, M. abbotti, and M. hortulanus. A time frame based on the evolutionary rate of mouse pseudogenes places the origin of this t haplotype inversion at 1.5 Mya, or approximately 1.5 Myr after the origin of the more proximal t complex inversion, in (17)2. The accumulated evidence indicates that complete t haplotypes have been assembled in a stepwise manner, with each of these inversions occurring on separate chromosomal lineages and at different evolutionary times. In addition, the evolutionary relationships of pseudogene sequences resulting from genetic exchange between wild-type and t haplotype alleles were examined. Analysis of sequences from the 5' and 3' sides of a putative site of recombination resulted in cladograms with different topologies. The implications for hypotheses concerning the evolutionary forces acting on t haplotypes and their rapid propagation throughout worldwide populations of mice are discussed.   相似文献   

16.
Intra-H-2 recombinant congenic strains are widely used to localize traits to specific subregions of the major histocompatibility complex and have provided evidence for the existence of meiotic recombinational hotspots in mammals. Forty-seven intra-H-2 recombinant strains, including 12 not previously reported, have been identified by serological typing in our laboratory. We have extended the analysis of the cross-over sites in these mice using DNA markers for Ab, Aa, Eb, Ea, Cyp21-ps, D17Tu3, Bat7, and Bat5. The recombinant chromosomes of these congenic strains include loci derived from the a, b, f, k, p, q, r, s, u, and v haplotypes of H-2, providing a diverse panel of strains. Although some alleles of Bat7 could not be distinguished from one another, results from the majority of strains indicated a probable gene order of C4Slp/D17Tu3-Bat7-Bat5-H-2D. No recombinants between Cyp21-ps, C4Slp, and D17Tu3 were observed. The crossover sites in 31 of the 47 intra-H-2 recombinants were within the C4Slp/D17Tu3—H-2D interval; of these 31 crossovers, three were bracketed by D17Tu3 and Bat7, ten by Bat7 and Bat5, seven by Bat5 and H-2D, and 11 by D17Tu3 and Bat5. The results from all 47 strains suggest recombinational hotspots within the C4Slp/D17Tu3—H-2D interval and emphasize the influence that specific haplotypes can have on preferred crossover sites. Correspondence to: G. A. Carlson.  相似文献   

17.
Naturally occurring t haplotypes are chromosome 17 polymorphisms that suppress genetic recombination in t/+ heterozygotes over a long distance that includes the H-2 complex. There is strong linkage disequilibrium between t haplotypes and H-2 haplotypes; over 20 independently isolated t chromosomes representing eight different complementation groups share only four H-2 haplotypes. Thus t haplotypes and their associated H-2 loci are inherited en bloc as a “supergene” complex, whose frequency is driven in wild mouse populations by their high transmission from male t heterozygotes. This phenomenon must therefore serve as an important regulator of H-2 polymorphisms. Genes within the region of recombination suppression in t haplotypes have been mapped by crossing-over that occurs readily between two different t haplo-types situated in trans, and by this means we show here that the H-2 complex occupies an anomalous position in t haplotypes, mapping proximal to the locus of tf closely flanked by t-lethal mutations.  相似文献   

18.
Restriction fragment polymorphisms were used to order the alpha A-crystallin locus (Crya-1) relative to other genes in mouse t-chromatin and to investigate the relatedness of alpha-A-crystallin sequences among different t-haplotypes. Analysis of DNA from t-recombinant mice mapped Crya-1 to the K end of the H-2 complex and within the distal inverted region characteristic of t-haplotypes. Hybridization with Crya-1 cDNA revealed three distinct phenotypic groups among the 17 different t-haplotypes studied. A majority (9 of 17) of the t-haplotypes were classified into a novel group (Crya-1t) characterized by restriction fragments apparently unique to t-chromosomes and therefore thought to contain alpha A-crystallin sequences descended from the original t-chromosome. A second group of t-haplotypes had restriction fragment patterns indistinguishable from those observed among many common inbred strains of mice of the Crya-1a type, and a third restriction fragment pattern, observed only in the tw121 haplotype, was indistinguishable from the fragment pattern for C3H/DiSn (Crya-1b) and several other inbred strains of mice. Thus, with respect to sequences around the Crya-1 locus, different t-haplotypes show restriction fragment polymorphisms, some of which are comparable to those found in wild-type chromosomes and provide further evidence for genetic heterogeneity in DNA from the distal region of t-haplotypes.  相似文献   

19.
The rump-white (Rw) mutation in the mouse was previously mapped as part of a cluster of spotting genes on Chromosome (Chr) 5 that includes the dominant spotting (W) and patch (Ph) loci. Recent studies have shown that the W locus encodes the KIT tyrosine kinase cell surface receptor and that Ph is a deletional mutation encompassing the platelet-derived growth factor receptor alpha subunit (Pdgfra) gene. However, the molecular basis of the Rw mutation remains to be established. We have analyzed an interspecific Mus spretus backcross segregating Rw and several loci proximal and distal to the W/Ph/Rw region to study the basis of this mutation. These studies indicated that loci within the En2 to Kit region of the chromosome do not recombine with one another even though they have been separated in other mapping studies presented here and elsewhere. We conducted a series of fluorescent in situ hybridization (FISH) studies with genomic probes to En2, Msx1, D5Buc1, and Kit to compare the physical order of these loci on the Rw and wild-type chromosomes. The Kit locus mapped to approximately the same region on both chromosomes of the Rw heterozygotes, while the positions of En2, Msx1, and D5Buc1 were reversed on the two chromosomes. Taken together, both the genetic and physical mapping data establish that the Rw mutation is associated with an inversion involving loci in the proximal region of Chromosome 5.  相似文献   

20.
Previous studies on the fourth inversion of the t complex, In17(4), suggest that loci near the center of this inversion have been subjected to segmental recombination during the past 1–2 million years. We have used a combination of PCR-based restriction site (PBR) analysis and DNA sequencing to perform a high-resolution analysis of a 2-million base pair (Mbp) segment in the middle of In17(4). We examined 21 restriction sites that are polymorphic between t haplotypes and their wild-type homologs, over nine distinct loci. In addition, we examined several other polymorphic sites through DNA sequence analysis of two of these nine loci. We analyzed several haplotypes in this way, including the “complete” t haplotypes t w2 , t 0 , t w32 , t w71 , and t w75 . We show that only t w32 is a true “complete” t haplotype; the remaining four t haplotypes have segments of wild-type DNA ranging from less than 100 bp to 2 Mbp. The sizes of these wild-type DNA segments are consistent with their being generated by gene-conversion events. The 2-Mbp segment is located in a region that may contain the t-complex distorter gene Tcd2. One of the nine loci examined in this study is Fgd2, a gene that has been proposed to encode Tcd2. Sequencing and PBR data show that at least a portion of the Fgd2 gene has been converted to the wild-type within t w71 and t w75 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号