共查询到20条相似文献,搜索用时 9 毫秒
1.
Water oxidation generating atmospheric oxygen occurs in photosystem II (PSII), a large protein-pigment complex located in the thylakoid membrane. The recent crystal structures at 3.2 and 3.5 A resolutions provide novel details on amino acid side chains, especially in the D1/D2 subunits. We calculated the redox potentials for one-electron oxidation of the chlorophyll a (Chla) molecules in PSII, considering the protein environment in atomic detail. The calculated redox potentials for the dimer Chla (P(D1/D2)) and accessory Chla (Chl(D1/D2)) were 1.11-1.30 V relative to the normal hydrogen electrode at pH 7, which is high enough for water oxidation. The D1/D2 proteins and their cofactors contribute approximately 390 mV to the enormous upshift of 470 mV compared to the redox potential of monomeric Chla in dimethylformamide. The other subunits are responsible for the remaining 80 mV. The high redox potentials of the two accessory Chla Chl(D1/D2) suggests that they also participate in the charge separation process. 相似文献
2.
Frese RN Palacios MA Azzizi A van Stokkum IH Kruip J Rögner M Karapetyan NV Schlodder E van Grondelle R Dekker JP 《Biochimica et biophysica acta》2002,1554(3):180-191
We have probed the absorption changes due to an externally applied electric field (Stark effect) of Photosystem I (PSI) core complexes from the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus and Spirulina platensis. The results reveal that the so-called C719 chlorophylls in S. elongatus and S. platensis are characterized by very large polarizability differences between the ground and electronically excited states (with Tr(Deltaalpha) values up to about 1000 A(3) f(-2)) and by moderately high change in permanent dipole moments (with average Deltamu values between 2 and 3 D f(-1)). The C740 chlorophylls in S. platensis and, in particular, the C708 chlorophylls in all three species give rise to smaller Stark shifts, which are, however, still significantly larger than those found before for monomeric chlorophyll. The results confirm the hypothesis that these states originate from strongly coupled chlorophyll a molecules. The absorption and Stark spectra of the beta-carotene molecules are almost identical in all complexes and suggest similar or slightly higher values for Tr(Deltaalpha) and Deltamu than for those of beta-carotene in solution. Oxidation of P700 did not significantly change the Stark response of the carotenes and the red antenna states C719 and C740, but revealed in all PSI complexes changes around 700-705 and 690-693 nm, which we attribute to the change in permanent dipole moments of reduced P700 and the chlorophylls responsible for the strong absorption band at 690 nm with oxidized P700, respectively. 相似文献
3.
By the ether treatment of lyophilized PSI pigment-protein complexes, all the carotenoids and the secondary acceptor phylloquinone (A1), and more than 90% of the Chl were removed to yield the PSI complex with 9-11 molecules of Chl per reaction-center unit. The complexes retained the primary electron donor and acceptor (P700 and A0), in addition to three FeS clusters (F(X), F(A) and F(B)), and showed an activity of highly efficient electron transfer when phylloquinone was reconstituted. The methods for the preparation and the characterization of the ether-extracted PSI complexes are reviewed in this article. We also review the studies done with this PSI preparation on (1) the identification of the absorption and fluorescence spectra of P700, (2) the nano- and picosecond reaction of A0 and A1, (3) the energy-gap dependency of the reaction rate between A0 and the artificial quinones reconstituted at the A1 site, (4) the direct excitation of P700 followed by the ultra-fast electron transfer from P700 to A0, and (5) the de- and re-stabilization of the PSI structure by the removal and reconstitution, respectively, of antenna Chl in the presence of certain lipids. 相似文献
4.
Dynamics of the photosystem II reaction center 总被引:22,自引:0,他引:22
5.
Peter Palencar Tatyana Prudnikova Frantisek Vacha Michal Kuty 《Journal of molecular modeling》2009,15(8):923-933
Accumulation of reduced pheophytin a (Pheo-D1) in photosystem II reaction center (PSII RC) under illumination at low redox potential is accompanied by changes
in absorbance and circular dichroism spectra. The temperature dependences of these spectral changes have the potential to
distinguish between changes caused by the excitonic interaction and temperature-dependent processes. We observed a conformational
change in the PSII RC protein part and changes in the spatial positions of the PSII RC pigments of the active D1 branch upon
reduction of Pheo-D1 only in the case of high temperature (298 K) dynamics. The resulting absorption difference spectra of
PSII RC models equilibrated at temperatures of 77 K and 298 K were highly consistent with our previous experiments in which
light-induced bleaching of the PSII RC absorbance spectrum was observable only at 298 K. These results support our previous
hypothesis that Pheo-D1 does not interact excitonically with the other chlorins of the PSII RC, since the reduced form of
Pheo-D1 causes absorption spectra bleaching only due to temperature-dependent processes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
相似文献
Michal KutyEmail: |
6.
The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed. 相似文献
7.
Shunsuke Ohashi Tatsuya Iemura Naoki Okada Shingo Itoh Hayato Furukawa Masaaki Okuda Mayumi Ohnishi-Kameyama Takuro Ogawa Hideaki Miyashita Tadashi Watanabe Shigeru Itoh Hirozo Oh-oka Kazuhito Inoue Masami Kobayashi 《Photosynthesis research》2010,104(2-3):305-319
Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a′ in green sulfur bacteria, BChl g′ in heliobacteria, Chl a′ in Chl a-type PS I, and Chl d′ in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a′)2 and (BChl g′)2 in anoxygenic organisms, or heterodimers, Chl a/a′ and Chl d/d′ in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A 0, are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I. 相似文献
8.
Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction. 相似文献
9.
Kropacheva TN Germano M Zucchelli G Jennings RC van Gorkom HJ 《Biochimica et biophysica acta》2005,1709(2):119-126
Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction. 相似文献
10.
Autar K. Mattoo Maria-Teresa Giardi Alexander Raskind Marvin Edelman 《Physiologia plantarum》1999,107(4):454-461
Photosystem II (PSII) reaction center is an intrinsic membrane-protein complex in the chloroplast that catalyzes primary charge separation between P680, a chlorophyll a dimer, and the primary quinone acceptor QA. This supramolecular protein complex consists of D1, D2, α and β subunits of cytochrome b559, the psbI gene product, and a few low molecular mass proteins. Ligated to this complex are pigments: chlorophyll a, pheophytin a, β-carotenes, and non-heme iron. One of the major outcomes of light-mediated photochemistry is the fact that in the light, D1 protein is rapidly turned over compared to the other proteins of the reaction center; the relative lability of proteins being: D1?D2>Cyt b559. D1 degradation in visible light exhibits complex, multiphasic kinetics. D1 degradation can be uncoupled from photosynthetic electron transport, which suggests that degradation may perform some separate function(s) beyond maintaining photosynthetic activity. The presence of a physiologically relevant level of ultraviolet-B (UV-B) radiation in a background of photosynthetically active radiation stimulates D1/D2 heterodimer degradation in a synergistic manner. D1 undergoes several post-translational modifications including N-acetylation, phosphorylation, and palmitoylation. Light-dependent phosphorylation of D1 occurs in all flowering plants but not in the green alga Chlamydomonas or in cyanobacteria, and the same may be true for D2. The roles of these modifications in D1/D2 assembly, turnover, or function are still a matter of conjecture. Nor do we yet know about the fate of the liganded pigments, such as the chlorophyll and carotenoids bound to the reaction center proteins. Environmental extremes that negatively impact photosynthesis seem to involve D1 metabolism. Thus, D1 protein is a major factor of PSII instability, and its replacement after its degradation is a primary component of the PSII repair cycle. 相似文献
11.
We present a spectroscopic characterization of the two nonequivalent beta-carotene molecules in the photosystem II reaction center. Their electronic and vibrational properties exhibit significant differences, reflecting a somewhat different configuration for these two cofactors. Both carotenoid molecules are redox-active and can be oxidized by illumination of the reaction centers in the presence of an electron acceptor. The radical cation species show similar differences in their spectroscopic properties. The results are discussed in terms of the structure and unusual function of these carotenoids. In addition, the attribution of resonance Raman spectra of photosystem II preparations excited in the range 800-900 nm is discussed. Although contributions of chlorophyll cations cannot be formally ruled out, our results demonstrate that these spectra mainly arise from the cation radical species of the two carotenoids present in photosystem II reaction centers. 相似文献
12.
A protein dynamics study of photosystem II: the effects of protein conformation on reaction center function 总被引:2,自引:0,他引:2 下载免费PDF全文
Molecular dynamics simulations have been performed to study photosystem II structure and function. Structural information obtained from simulations was combined with ab initio computations of chromophore excited states. In contrast to calculations based on the x-ray structure, the molecular-dynamics-based calculations accurately predicted the experimental absorbance spectrum. In addition, our calculations correctly assigned the energy levels of reaction-center (RC) chromophores, as well as the lowest-energy antenna chlorophyll. The primary and secondary quinone electron acceptors, QA and QB, exhibited independent changes in position over the duration of the simulation. QB fluctuated between two binding sites similar to the proximal and distal sites previously observed in light- and dark-adapted RC from purple bacteria. Kinetic models were used to characterize the relative influence of chromophore geometry, site energies, and electron transport rates on RC efficiency. The fluctuating energy levels of antenna chromophores had a larger impact on quantum yield than did their relative positions. Variations in electron transport rates had the most significant effect and were sufficient to explain the experimentally observed multi-component decay of excitation in photosystem II. The implications of our results are discussed in the context of competing evolutionary selection pressures for RC structure and function. 相似文献
13.
A study of the kinetics of the reaction of chlorophyll a with propylamine and isobutylamine indicates a low activation energy (~5 kcal) and high negative entropy (~60 eu). Propylamine and isobutylamine react with Ring V cleavage more readily with chlorophyll b and pheophytin b compounds than with the a compounds, and more readily with the pheophytins than with chlorophylls. 相似文献
14.
The fluorescence decay of chlorophyll in spinach thylakoids was measured as a function of the degree of closure of Photosystem II reaction centers, which was set for the flowed sample by varying either the preillumination by actinic light or the exposure of the sample to the exciting pulsed laser light. Three exponential kinetic components originating in Photosystem II were fitted to the decays; a fourth component arising from Photosystem I was determined to be negligible at the emission wavelength of 685 nm at which the fluorescence decays were measured. Both the lifetimes and the amplitudes of the components vary with reaction center closure. A fast (170–330 ps) component reflects the trapping kinetics of open Photosystem II reaction centers capable of reducing the plastoquinone pool; its amplitude decreases gradually with trap closure, which is incompatible with the concept of photosynthetic unit connectivity where excitation energy which encounters a closed trap can find a different, possibly open one. For a connected system, the amplitude of the fast fluorescence component is expected to remain constant. The slow component (1.7–3.0 ns) is virtually absent when the reaction centers are open, and its growth is attributable to the appearance of closed centers. The middle component (0.4–1.7 ns) with approximately constant amplitude may originate from centers that are not functionally linked to the plastoquinone pool. To explain the continuous increase in the lifetimes of all three components upon reaction center closure, we propose that the transmembrane electric field generated by photosynthetic turnover modulates the trapping kinetics in Photosystem II and thereby affects the excited state lifetime in the antenna in the trap-limited case.Abbreviations DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- HEPES
4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid
- PQ
plastoquinone
- PSI and PSII
Photosystem I and II
- QA and QB
primary and secondary quinone acceptor of PSII 相似文献
15.
Two-dimensional crystals of the photosystem II reaction center complex from higher plants 总被引:2,自引:0,他引:2
R Bassi A Ghiretti Magaldi G Tognon G M Giacometti K R Miller 《European journal of cell biology》1989,50(1):84-93
By detergent treatment of isolated photosynthetic membranes from maize chloroplasts, we have prepared two-dimensional crystals of the photosystem II complex. Two distinct crystal forms are produced by this treatment. Analysis of Fourier transforms of the crystals shows that each crystal type is formed from two inverted layers. Within the rectangular 17.8 x 26.7 nm unit cell of each layer is a tetrameric structure enclosing a two-fold symmetry axis, a result implying that the basic structural unit of photosystem II is dimeric. Tris-washing, which removes proteins associated with the oxygen-evolving apparatus from the inner surface of the photosynthetic membrane, causes a distinct change in the structure of these tetramers and reveals a dimeric core complex which may be directly associated with the photosystem II machinery. 相似文献
16.
Ishikita H Loll B Biesiadka J Kern J Irrgang KD Zouni A Saenger W Knapp EW 《Biochimica et biophysica acta》2007,1767(1):79-87
The antenna proteins in photosystem II (PSII) not only promote energy transfer to the photosynthetic reaction center (RC) but provide also an efficient cation sink to re-reduce chlorophyll a if the electron transfer (ET) from the Mn-cluster is inhibited. Using the newest PSII dimer crystal structure (3.0 A resolution), in which 11 beta-carotene molecules (Car) and 14 lipids are visible in the PSII monomer, we calculated the redox potentials (Em) of one-electron oxidation for all Car (Em(Car)) by solving the Poisson-Boltzmann equation. In each PSII monomer, the D1 protein harbors a previously unlocated Car (CarD1) in van der Waals contact with the chlorin ring of ChlZ(D1). Each CarD1 in the PSII dimer complex is located in the interface between the D1 and CP47 subunits, together with another four Car of the other PSII monomer and several lipid molecules. The proximity of Car bridging between CarD1 and plastoquinone/Q(A) may imply a direct charge recombination of Car+Q(A)-. The calculated Em(CarD1) and Em(ChlZ(D1)) are, respectively, 83 and 126 mV higher than Em(CarD2) and Em(ChlZ(D2)), which could explain why CarD2+ and ChlZ(D2)+ are observed rather than the corresponding CarD1+ and ChlZ(D1)+. 相似文献
17.
Achim Trebst Brigitte Depka Bernd Kraft Udo Johanningmeier 《Photosynthesis research》1988,18(1-2):163-177
The sensitivity of the D-1 and D-2 polypeptide subunits of photosystem II towards trypsin treatment of the thylakoid membrane has been probed with specific antibodies. As long known, electron flow from water to ferricyanide becomes inhibitor insensitive after this trypsin treatment. We show that under these conditions the D-2 polypeptide is cut by trypsin at arg 234. Also the D-1 polypeptide is cut, probably at arg 238. When short time trypsination of the membrane is done in the presence of inhibitors, electron flow also becomes inhibitor insensitive and the D-2 polypeptide is still cut, but the D-1 polypeptide is cut only under certain conditions. A protection of the D-1 polypeptide is possible with inhibitors of photosystem II of the DCMU/triazine-type and with an artificial acceptor quinone, but not with inhibitors of the phenol-type. In hexane extracted membranes plastoquinone has been removed from the QB site. Both the D-1 and D-2 polypeptides are more trypsin sensitive in such preparations. The D-1, but not the D-2 polypeptide is protected when plastoquinone has been readded to the membrane before the trypsin digestion.The results show that plastoquinone, artificial quinones and inhibitors of photosystem II at the QB site, but also carotene to a lesser extent, have an effect on the conformation of both the D-1 and D-2 polypeptide. it is postulated that the amino acid sequence around arginine 238 of the D-1 polypeptide is part of the QB binding niche. Furthermore this sequence is modified or its conformation is changed if the QB site is occupied by either plastoquinone or a DCMU-type inhibitor because under these conditions arginine 238 is less accessible to the trypsin. If the QB site, however, is empty, the amino acid sequence with arg 238 is very trypsin sensitive. This property of modulation or the conformation of the amino acid sequence of the D-1 polypeptide by the state of the QB site is likely to be relevant also for the events in the rapid turnover of the D-1 polypeptide.Abbreviations BNT
2-bromo-4-nitro-thymol
- DCMU
dichlorophenyldimethylurea
- PMSF
phenylmethylsulfonylfluoride
- SDS
sodium dodecylsulfate 相似文献
18.
Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts 下载免费PDF全文
Assembly of plastid-encoded chlorophyll binding proteins of photosystem II (PSII) was studied in etiolated barley seedlings and isolated etioplasts and either the absence or presence of de novo chlorophyll synthesis. De novo assembly of reaction center complexes in etioplasts was characterized by immunological analysis of protein complexes solubilized from inner etioplast membranes and separated in sucrose density gradients. Previously characterized membrane protein complexes from chloroplasts were utilized as molecular mass standards for sucrose density gradient separation analysis. In etiolated seedlings, induction of chlorophyll a synthesis resulted in the accumulation of D1 in a dimeric PSII reaction center (RCII) complex. In isolated etioplasts, de novo chlorophyll a synthesis directed accumulation of D1 precursor in a monomeric RCII precomplex that also included D2 and cytochrome b(559). Chlorophyll a synthesis that was chemically prolonged in darkness neither increased the yield of RCII monomers nor directed assembly of RCII dimers in etioplasts. We therefore conclude that in etioplasts, assembly of the D1 precursor in monomeric RCII precomplexes precedes chlorophyll a-triggered accumulation of reaction center monomers. 相似文献
19.
Inmaculada Yruela Francisca Miota Elena Torrado Michael Seibert Rafael Picorel 《European journal of biochemistry》2003,270(10):2268-2273
The cytochrome b559 content was examined in five types of isolated photosystem II D1-D2-cytochrome b559 reaction center preparations containing either five or six chlorophylls per reaction center. The reaction center complexes were obtained following isolation procedures that differed in chromatographic column material, washing buffer composition and detergent concentration. Two different types of cytochrome b559 assays were performed. The absolute heme content in each preparation was obtained using the oxidized-minus-reduced difference extinction coefficient of cytochrome b559 at 559 nm. The relative amount of D1 and cytochrome b559alpha-subunit polypeptide was also calculated for each preparation from immunoblots obtained using antibodies raised against the two polypeptides. The results indicate that the cytochrome b559 heme content in photosystem II reaction center complexes can vary with the isolation procedure, but the variation of the cytochrome b559alpha-subunit/D1 polypeptide ratio was even greater. This variation was not found in the PSII-enriched membrane fragments used as the RC-isolation starting material, as different batches of membranes obtained from spinach harvested at different seasons of the year or those from sugar beets grown in a chamber under controlled environmental conditions lack variation in their alpha-subunit/D1 polypeptide ratio. A precise determination of the ratio using an RC1-control sample calibration curve gave a ratio of 1.25 cytochrome b559alpha-subunit per 1.0 D1 polypeptide in photosystem II membranes. We conclude that the variations found in the reaction center preparations were due to the different procedures used to isolate and purify the different reaction center complexes. 相似文献
20.
A photosystem I (PS I) particle has been prepared by lithium dodecyl sulfate digestion which lacks the acceptor X, and iron-sulfur centers B and A. Illumination of these particles at liquid helium temperature results in the appearance of a light-induced spin-polarized triplet signal observed by EPR. This signal is attributed to the triplet state of P-700, the primary donor, formed by recombination of the light induced radical pair P-700+ A1- (where A1 is the intermediate acceptor). Formation of the triplet does not occur if P-700 is oxidized or if A1 is reduced, prior to the illumination. A comparison of the P-700 triplet with that of P-680, the primary donor of Photosystem II, shows several differences. (1) The P-680 triplet is 1.5 mT (15 G) wider than the P-700 triplet. This is reflected by the zero-field splitting parameters, which indicate that P-700 is a slightly larger species than P-680. The zero-field splitting parameters do not indicate that either P-700 or P-680 are dimeric. (2) The P-700 triplet is induced by red and far-red light, while the P-680 triplet is induced only by red light. (3) The temperature dependences of the P-700 triplet and the P-680 triplet are different. 相似文献