首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By analogy to processes in angiogenesis (blood vessel formation), the development of the stolonal network in colonial hydrozoa involves stimulation of branching and mutual chemotropic attraction of the growing branches by means of soluble morphogenetic factors. We have identified a glycoconjugate of about 20 kDa, termed SIF (Stolon-Inducing Factor), which induces the formation of stolon branches when applied locally. Micropipettes ejecting SIF mimic the inducing action of stolon tips, the putative sources of SIF. When whole animals are exposed to SIF, stolons sprout not only from the base of the polyps but also from abnormal sites along the entire body, even from the head. In addition, the polyp (hydranth) secretes a chitinous periderm which, in the species under investigation, normally envelops stolons but not hydranths. At high SIF doses the whole hydranth is transformed into stolon tissue. The factor has been isolated from conditioned medium and from butanol extracts of Hydractinia echinata and Podocoryne carnea.  相似文献   

2.
Summary Polyps of mature colonies of Hydractinia echinata obey the rule of distal transformation by regenerating heads but not stolons. However, this rule is not valid for young polyps as these regenerate stolons from proximal cut ends. Also, small cell aggregates and even small fragments excised from full-grown polyps are capable of stolon formation. Aggregates produced from dissociated cells undergo either distal or proximal transformation depending on their size, speed of head regeneration in the donor used for dissociation and the positional derivation of the cells. The latent capability of stolon formation is released under conditions that cause loss of morphogens and depletion of their sources. However, internal regulative processes can also lead to gradual proximal transformation: regenerating segments of polyps sometimes form heads at both ends and the distal pattern is duplicated. Subsequently, all sets of proximal structures, including stolons, are intercalated. In contrast to distal transformation, proximal transformation is a process the velocity of which declines with the age and size of the cell community.  相似文献   

3.
In a mutant strain of Hydractinia (Cnidaria: Hydrozoa), the polyps develop ectopic supernumerary tentacles and heads (hypostomes) after an initial phase of wild-type growth. In order to elucidate the molecular mechanisms implicated in the development of aberrant phenotypes, we tried to enhance or suppress the expressivity of this hypomorphic mutation by exposing subclones to factors supposedly influencing pattern formation. Upon iterated treatment with alsterpaullone, an inhibitor of GSK-3, the formation of additional, ectopic head structures and the budding of new polyps were dramatically accelerated and enhanced. The endogenous stolon-inducing factor (SIF) had opposite effects by reducing head forming potential while increasing stolon-forming potential. SIF could be used to rescue extremely aberrant phenotypes. In these mutant colonies, long polyps with multiple heads eventually detach from stolons and lose the ability to regenerate stolons. Upon exposure to SIF, such free-floating multi-headed polyps resumed production of stolons and acquired wild-type morphology. We conclude that a canonical WNT signaling cascade is involved in patterning the body axis of polyps and in the initiation of budding, and that SIF counteracts this signaling system.  相似文献   

4.
An encrusting colonial hydroid can be regarded as a network of polyps or ‘mouths’ connected by tube-like stolons. The success of the colony crucially depends on putting these mouths where the available food is. Feeding-related perturbations may provide important signals in this regard. After feeding, polyps contract regularly, dispersing food throughout the colony via the gastrovascular fluid. Mitochondrion-rich epitheliomuscular cells concentrated near polyp-stolon junctions likely drive these contractions. Putatively, the redox state of these cells may influence colony-level form. For instance, the metabolic demand associated with feeding-related contractions results in mitochondria that have relatively oxidized electron carriers and produce lesser amounts of reactive oxygen species (ROS). ROS or other redox-sensitive molecules emitted from polyp-stolon junctions into the gastrovascular fluid may provide stolons with signals influencing elongation, branching, and regression. Treatments of colonies with anti-oxidants cause peripheral stolon tips to rapidly regress. This regression appears to be an active process involving a flux of locally produced peroxides and cell and tissue death. At the same time, polyps and stolon tips in the center of treated colonies remain healthy. ‘Sheet-like’ growth of short, branched stolons ensues. Signals that inhibit the outward growth of stolons may lead by default to the concentrated growth of stolons and polyps in food-rich areas. ROS may mediate signaling mechanisms involving nitric oxide, programmed cell death, a variety of redox-regulated proteins, or all of these.  相似文献   

5.
A morphogenetically active compound has been isolated from tissue extract of Hydractinia echinata and identified to be N-methylpicolinic acid (homarine). When applied to whole animals, homarine prevents metamorphosis from larval to adult stage and alters the pattern of adult structures. The concentration of homarine in oocytes is about 25 mM. During embryogenesis, metamorphosis and early colony development the overall homarine content does not change. Adult colonies contain a fourfold lower homarine concentration than larvae. The polyp's head contains twofold more homarine than the gastric region and the stolons. A second, similarly active compound, N-methylnicotinic acid (trigonelline), has also been identified in Hydractinia tissue at concentrations about one-third that of homarine. Incubation of larvae in 10 to 20 microM-homarine or trigonelline prevents head as well as stolon formation. If the compounds are applied in a pulse during metamorphosis, a large part of the available tissue forms stolons. Since microM concentrations of homarine and trigonelline are morphogenetically active, whereas mM concentrations are present in the tissue it appears that both substances are stored within the tissue.  相似文献   

6.
Abstract. After feeding, polyps of colonial hydroids contract regularly, dispersing food throughout the colony via the gastrovascular fluid. Such contractions may trigger signaling pathways that allow colonies to grow in an adaptive manner, i.e., to initiate development of more polyps in food‐rich areas and to suppress polyp development in food‐poor areas. In this context, we investigated the structure and potential signaling of the junction between polyps and stolons in colonies of the hydroid Podocoryna carnea. Using transmission electron microscopy, we found that the density of mitochondrion‐rich epitheliomuscular cells was low in polyp and stolon tissues except at or near the polyp‐stolon junction, where many of these mitochondrion‐rich cells occur in ectodermal tissue. In vivo fluorescence microscopy suggests that these mitochondria are a principal source of the metabolic signals of the colony. Both native fluorescence of NAD(P)H and fluorescence from peroxides (visualized with H2DCFDA) co‐localize to this region of the polyp. Rhodamine 123 fluorescence suggests that both these metabolic signals emanate from mitochondria. To test whether such metabolic signals may be involved in colony pattern formation, inbred lines of P. carnea were used. Colonies of a runner‐like inbred line grow with widely spaced polyps and long stolonal connections, much like wild‐type colonies in a food‐poor environment. Colonies of a sheet‐like inbred line grow with closely spaced polyps and short stolonal connections, similar to wild‐type colonies in a food‐rich environment. Polyp‐stolon junctions in runner‐like and sheet‐like colonies were imaged for the fluorescence of H2DCFDA. Densitometric analysis of this signal indicates that the mitochondria in epitheliomuscular cells of runner‐like polyps emit greater amounts of peroxides. Because peroxides and other reactive oxygen species are frequently intermediaries in metabolic signaling pathways, we suspect that such signaling may indeed occur at polyp‐stolon junctions, affecting colony pattern formation in these inbred lines and possibly in hydroid colonies in general.  相似文献   

7.
The ontogeny of colonial animals is markedly distinct from that of solitary animals, yet no regulatory genes have thus far been implicated in colonial development. In cnidarians, colony ontogeny is characterized by the production of a nexus of vascular stolons, from which the feeding and reproductive structures, called polyps, are budded. Here we describe and characterize the Gsx parahox gene, Cnox-2, in the colonial cnidarian Hydractinia symbiolongicarpus of the class Hydrozoa. Cnox-2 is expressed in prominent components of the colony-wide patterning system; in the epithelia of distal stolon tips and polyp bud rudiments. Both are regions of active morphogenetic activity, characterized by cytologically and behaviorally distinct epithelia. Experimental induction and elimination of stolonal tips result in up- and down-regulation, respectively, of Cnox-2 expression. In the developing polyp, Cnox-2 expression remains uniformly high throughout the period of axial differentiation. The differential oral-aboral Cnox-2 expression in the epithelia of the mature polyp, previously described for this and another hydrozoan, arises after oral structures have completed development. Differential Cnox-2 expression is, thus, associated with key aspects of patterning of both the colony and the polyp, a finding that is particularly striking given that polyp and colony form are dissociable in the evolution of Hydrozoa.  相似文献   

8.
The early embryonic development of Hydractinia lasts about 2.5 days until the developing planula larva acquires competence for metamorphosis. Most embryonic cells stop cycling on reaching the larval stage. In older larvae of Hydractinia, cells that are still proliferating occur exclusively in the endoderm in a typical distribution along the longitudinal axis. During metamorphosis, proliferation activity begins again. The number of S-phase cells has increased by the 9th hour after induction of metamorphosis. Proliferative activity starts in the middle gastric region and in basal parts of primary polyps. Tentacles and stolon tips are always free of replicating cells.  相似文献   

9.
Abstract. Phenotypic plasticity is the ability of some organisms to exhibit different phenotypes in response to environmental conditions. Many sessile marine invertebrates are morphologically plastic. In colonial cnidarians, compact morphologies are often associated with high-velocity flow regimes, whereas elongated morphologies are associated with calmer water. This ability to alter morphology in response to flow regime likely represents an adaptive strategy: these morphologies may permit efficient suspension feeding and gas exchange while reducing the risk of dislodgment in a particular flow regime. Which flow-related factors (e.g., CO2 accumulation, drag forces, prey delivery) actually signal a colony to alter its morphology are unclear. In this study, we test the hypothesis that differences in flow regime or some correlate of flow regime (in the absence of differences in prey delivery) signal a colonial cnidarian to change its morphology. To separate prey delivery from water flow, hydroid ( Bougainvillia muscus ) colonies were fed equivalent amounts in still water, regardless of the flow regime treatment to which they were exposed the rest of the time. Our results show that, regardless of prey delivery, colonies grew in ways characteristic of calm water (with a higher percentage of tall pedicels and secondary hydranths, and fewer basal stolon branches) and of high flow (with more hydranths, free stolons, and a denser basal stolon network) environments. This work suggests that, for this hydroid, prey flux is not a proximate cue mediating morphological plasticity in response to flow regime.  相似文献   

10.
Blebbistatin reversibly disrupted both stolon tip pulsations and gastrovascular flow in the colonial hydroid Podocoryna carnea. Epithelial longitudinal muscles of polyps were unaffected by blebbistatin, as polyps contracted when challenged with a pulse of KCl. Latrunculin B, which sequesters G actin preventing F actin assembly, caused stolons to retract, exposing focal adhesions where the tip epithelial cells adhere to the substratum. These results are consistent with earlier suggestions that non-muscle myosin II provides the motive force for stolon tip pulsations and further suggest that tip oscillations are functionally coupled to hydrorhizal axial muscle contraction.  相似文献   

11.
In Hydractinia, a colonial marine hydroid representing the basal phylum Cnidaria, Wnt signaling plays a major role in the specification of the primary body axis in embryogenesis and in the establishment of the oral pole during metamorphosis. Here we report supplementing investigations on head regeneration and bud formation in post-metamorphic development. Head and bud formation were accompanied by the expression of Wnt, frizzled and Tcf. Activation of Wnt signaling by blocking GSK-3beta affected regeneration, the patterning of growing polyps and the asexual formation of new polyps in the colony. In the presence of lithium ions or paullones, gastric segments excised from adult polyps showed reversal of tissue polarity as they frequently regenerated heads at both ends. Phorbol myristate acetate, a known activator of protein kinase C increased this effect. Global activation of the Wnt pathway caused growing polyps to form ectopic tentacles and additional heads along their body column. Repeated treatment of colonies evoked the emergence of many and dramatically oversized bud fields along the circumference of the colony. These giant fields fell apart into smaller sub-fields, which gave rise to arrays of multi-headed polyps. We interpret the morphogenetic effects of blocking GSK-3beta as reflecting increase in positional value in terms of positional information and activation of Wnt target genes in molecular terms.  相似文献   

12.
Mitochondria have the capacity to integrate environmental signals and, in animals with active stem cell populations, trigger responses in terms of growth and growth form. Colonial hydroids, which consists of feeding polyps connected by tube-like stolons, were treated with avicis, triterpenoid electrophiles whose anti-cancer properties in human cells are mediated in part by mitochondria. In treated hydroids, both oxygen uptake and mitochondrial reactive oxygen species were diminished relative to controls, similar to that observed in human cells exposed to avicins. While untreated colonies exhibit more stolon branches and connections in the centre of the colony than at the periphery, treated colonies exhibit the opposite: fewer stolon branches in the centre of the colony than at the periphery. The resulting growth form suggest an inversion of the normal pattern of colony development mediated by mitochondrial and redox-related perturbations. An as-yet-uncharacterized gradient within the colony may determine the ultimate phenotypic effects of avicin perturbation.  相似文献   

13.
Colonies of hydroids exhibit periodic biological patterns. Polyps form on stolons at fixed distances, obeying distinct rules. The spacing mechanism is based on inhibition emanating from existing polyps, predominantly from the head of the polyp. Removal of polyps from young colonies reduces the distance between initiating polyps and newly formed polyps to 50% of the normal values. Head removal suffices to obtain an almost identical reduction. Polyp enlargement which increases the distance between the inhibition-emitting head and the stolon tissue reduces the intrastolonal range of inhibition. In the stolon tissue, decrease of inhibitory activity occurs. An increase in the stolon/polyp ratio of a colony reduces bud distances. The decay is, in part, due to loss of inhibitory activity into the external medium: if colonies are incubated in conditioned culture medium derived from crowded colonies having normally large interpolyp distances, bud distances increase in test colonies. The effectiveness of transfer of inhibitory activity from tissue into the medium depends on culture conditions. If convection is increased by agitation of the culture medium, the distances between polyp and bud decreases; viscosity enhancement of the culture medium reduces convection and bud distances become larger. This effect is compensated for by additional agitation of the viscosity enhanced culture medium. Our results support the idea that a lateral inhibition mechanism controls polyp spacing in the stolon and that inhibition is based on diffusible inhibitory compounds.  相似文献   

14.
Eggs of medusae develop into lecithotrophic planulae that undergo metamorphosis at different ages to form polyps. As planulae age they decrease in size as their yolk stores are utilized. The planulae of most Phialidium medusae develop into polyps where there is a decrease in the size of the holdfast region and a relative increase in the size of the hydranth region as they age. These changes occur independently of the decrease in planula size. In planulae with a decrease in the size of the holdfast region and an increase in the size of the hydranth-forming region there was a 50% decline in polyps that successfully stayed attached to the substrate after metamorphosis. These aged planulae produced an initial hydranth with the same number of tentacles as polyps from full-sized young planulae while young half-sized planulae produced hydranths where the tentacle number was smaller. The first phase of polyp colony growth with a small initial hydranth was slower than growth of a colony with a larger initial hydranth. Predation during this period led to more death in colonies with a small initial hydranth. The decline in successful attachment in aged planulae was not offset by the higher rate of growth and a smaller window of time where predation leads to death, suggesting that this age-related developmental change in planulae was not adaptive.  相似文献   

15.
Using microscopy, the gastrovascular systems of four hydroids (Eirene viridula, Cordylophora lacustris, Hydractinia symbiolongicarpus, and Podocoryna carnea) and two distantly related alcyonacean octocorals (Acrossota amboinensis and Sarcothelia sp.) were examined and compared within a phylogenetic framework. Despite a range of stolon widths (means 53–160 μm), the hydroid species exhibited similar patterns of gastrovascular flow: sequentially bidirectional flow in the stolons, driven by myoepithelial contractions emanating from the center of the colony. Unlike the hydroids, the gastrovascular system of A. amboinensis (mean stolon widths for 5 colonies, 0.57–1.21 mm) exhibited simultaneously bidirectional flow with incomplete, medial baffles (width 4–20 μm) separating the flow. Baffles visualized with transmission electron microscopy consisted of endoderm, mesoglea, and occasionally another layer of tissue. Mean flow rates of the gastrovascular fluid for seven stolons ranged from 125 to 275 μm s?1, with maximum rates of 225–700 μm s?1. In Sarcothelia sp., stolons were of comparable width (means for 13 colonies 0.55–1.4 mm) to those of A. amboinensis. These stolons, however, were divided by several partitions (width 8–25 μm), both complete and incomplete, which were spaced every 100.5±5.1 μm (mean±SE; range 27.1–283.7 μm) and appeared structurally similar to baffles. In lanes defined by these partitions, ciliary motion was visible in image sequences, and flow was unidirectional. Within a single stolon, flow moved in different directions in different lanes and changed direction by moving from lane to lane via occasional spaces between the partitions. Mean flow rates for 30 stolons ranged from 75 to 475 μm s?1, with maximum rates of 85–775 μm s?1. For both octocorals, flow rates of the gastrovascular fluid were not correlated with the width of the stolon lumen. While octocoral gastrovascular systems probably exhibit differences based on phylogenetic affinities, in all species studied thus far, gastrovascular flow is entirely driven by cilia, in contrast to the hydroid taxa.  相似文献   

16.
The stolonal mat is an anatomical feature correlated with increased colonial integration in several lineages of the cnidarian class Hydrozoa. Cnox-2 is a Hox gene known to be expressed in the body column of the cnidarian polyp. We report the pattern of Cnox-2 expression in both the stolonal mat and free stolons of the hydroid Hydractinia symbiolongicarpus. The gene is found to have high levels of expression in the mat similar to that found in the basal portion of the polyp, but it is not detectably expressed in those regions of free stolons where polyps are budded. These findings suggest that the stolonal mat arose via an expansion of the basal ectoderm of the polyp.  相似文献   

17.
Artificially maintained colonies of the colonial marine hydroid Hydractinia echinata are endogenously limited in lateral growth and usually develop in a circular pattern with a closed periderm. Further lateral growth consists of free stolons. Preliminary studies of tissue compatibility in regenerating explants indicate that fusion generally fails to occur if the opposing explants are of differing sex, from different individuals of the same sex, or if peripheral explant contact occurs after free stolons have begun to form. Of the three aforementioned causes of fusion failure, the most important factor appears to be the timing of peripheral explant contact. If regenerating explants contact each other before the endogenous circular growth pattern is achieved, fusion will occur regardless of sex and/or individuality. Incompatibility between explants from the same individual may be because of periderm development inhibition in some instances. However, the failure of free stolon fusion between explants from the same individual suggests the development of “temporal specificity” once the endogenous limit of lateral growth is achieved.  相似文献   

18.
The growth of stolons anil the development of hydranths in thecatehydroids (Cnidaria, Hydrozoa) have several common features.In both the terminal zone shows rhythmic pulsations which accompanyperiodic advances and withdrawals of the tip. Behind the terminalzone is a longer region of coenosarc which shows vigorous contractions,and these produce flow of the contents of the gastrovascularcavity. These contractions are not directly related to the movementof the tips of pedicels and stolons, nor are they related tocontractions within a developing hydranth. The growing regionsare not pushed out from behind, but figuratively pull more proximaltissue along. The changes in shape must involve active changeswithin the cells. The terminal cells are not "typical" myoepithelialcells (with "muscle tails"). How they alter their shape is notyet known. Evidence from dissociation studies and from treatmentwith drugs indicates a critical stage in hydranth developmentbefore which tissues are indeterminate, after which a mosaicof the hydranth is established.  相似文献   

19.
Redox signaling has emerged as a unifying theme in many seemingly disparate disciplines. Such signaling has been widely studied in bacteria and eukaryotic organelles and is often mediated by reactive oxygen species (ROS). In this context, reduced glutathione (GSH) acts as an important intracellular antioxidant, diminishing ROS and potentially affecting redox signaling. Complementing this cell-level perspective, colonial hydroids can be a useful model for understanding organism-level redox signaling. These simple, early-evolving animals consist of feeding polyps connected by tubelike stolons. Colonies treated exogenously with GSH or reduced glutathione ethyl ester (GEE) were expected to show a morphological change to sheetlike growth typical of low levels of ROS. Contrary to expectations, diminished stolon branching and polyp initiation was observed. Such runnerlike growth is associated with higher levels of ROS, and surprisingly, such higher levels were found in GSH- and GEE-treated colonies. Further investigations show that GSH triggered a feeding response in hydroid polyps, increasing oxygen uptake but at the same time relaxing mitochondrion-rich contractile regions at the base of polyps. Diminished gastrovascular flow and increased emissions of mitochondrial ROS also correlated with the observed runnerlike growth. In contrast to cell-level, "bottom-up" views of redox signaling, here the phenotype may arise from a "top-down" interaction of mitochondrion-rich regions and organism-level physiology. Such multicellular redox regulation may commonly occur in other animals as well.  相似文献   

20.
Cell Movements Associated with Terminal Growth in Colonial Hydroids   总被引:1,自引:1,他引:0  
A series of studies into the nature or leimiual growth movementsin hydroids (chiefly the thecate Campanularia) is reviewed.Both stolon and pedicel tips of all hydroids observed grow byan endless repetition of "growth cycles." In thecate stolons,the geometry of the tip's excursions is relatively simple andsuccessive cycles are predictable in their duration and percycle growth. Conversely, athecate stolons are much more complexor variable in each of these respects. In Campanularia bothcycle time and per cycle growth differ among genetic stocks. Such environmental or environment-related factors as temperature,organic contaminants in the sea water, and the nutritive conditionof the colony each affect cycle time and/or per cycle growth.Also, ingestion of a large meal temporarily inhibits the retractionsthat characterize most growth cycles. Growth movements are a property of the stolon tip, since isolatedtips less than 0.5 mm long move in basically normal fashion.However, two aspects of the cycle are, modified by more distantregions: the cycle is accelerated by a pacemaker lying 0.5 to2.0 mm from the tip, and the extent of each cycle's retractionphase is determined by intrastolonic pressure generated by hydroplasmicflow. Certain neuroinhibitor drugs duplicate in intact stolonsthe cycle changes seen in surgical isolates. Synchronized with each growth cycle is a pattern of epidermalthickening and thinning at the stolon tip, this layer beingthinnest just after the crest and thickest about two-thirdsof the way through the cycle. Cells behind the tip also movein relation to the growth cycle, generally approaching the tipduring epidermal thickening and retreating during epidermalthinning. Several types of metabolic inhibitors markedly affect the stolonicgrowth movements, indicating the need of oxidative metabolismand of protein synthesis using a short-lived mRNA for the tip'sactivities. Campanularia pedicel growth cycles differ from stolon growthcycles in having a shorter and more variable duration, a lesserper cycle growth, and a shallower retraction phase, with changesin these features along the length of the pedicel correlatedwith changes in the type of growth occurring. These studies and those of other investigators are related,their contributions to our understanding of elongation are discussed,and persisting problems are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号