首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   

2.
A Sep-Pak C18 cartridge was used for purification of bile acids from serum. Three kinds of deuterium labeled internal standards were required for accurate measurement of individual sulfated and nonsulfated bile acids. These internal standards were added to the serum before its application to the cartridge. Separation of sulfated and nonsulfated bile acids was performed on piperidinohydroxypropyl Sephadex LH-20 column chromatography. The nonsulfate fraction was submitted to alkaline hydrolysis, and the sulfate fraction to solvolysis followed by alkaline hydrolysis. Each fraction was converted to the hexafluoroisopropyl-trifluoroacetyl derivatives and quantitated by mass fragmentography. The recovery of each bile acid sulfate was quite satisfactory. In fasting healthy subjects the mean of total nonsulfated bile acids in serum was 1.324 micrograms/ml, and that of total sulfated bile acids was 0.450 micrograms/ml. Sulfated lithocholic acid comprised a large part of sulfated bile acids in healthy subjects.  相似文献   

3.
1. A method is described for the quantitative isolation of bile acids from cellular material. Homogenates of rat liver are freeze-dried and extracted exhaustively with 95% (v/v) ethanol containing 0·1% (v/v) of aq. ammonia (sp.gr. 0·88) and purified by anion-exchange chromatography on Amberlyst A-26. 2. The extracted bile acid conjugates are subjected to either of two hydrolytic procedures, one involving chemical and the other enzymic agents. A unique feature in this study is the introduction of an enzyme, a clostridial peptide-bond hydrolase, for the rapid cleavage of bile acid conjugates, replacing the classical drastic chemical hydrolysis with strong alkali. 3. After hydrolysis, free bile acids are methylated and converted into their trifluoroacetates for final determination by gas–liquid chromatography on a triple component column, FS-1265–SE30–NGS. 4. For the purpose of identification of peaks, bile acid methyl esters are converted into their trimethylsilyl ethers by allowing the methyl esters to react with a new and potent silyl donor, bis(trimethylsilyl)acetamide. 5. The technique affords us a means of studying the metabolism of bile acids at the cellular and subcellular levels in tissues.  相似文献   

4.
Synthesis of 25R- and 25S-diastereoisomers of 3 alpha,7 alpha-dihydroxy-5 beta-cholestan-26-oic acid from 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid is described. The 25S-diastereoisomer of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan- 26-oic acid was obtained by vigorous hydrolysis of the bile of Alligator mississippiensis followed by repeated crystallization of the hydrolysate, and the 25R-diastereoisomer was isolated by hydrolysis of the bile salts in bile of A mississippiensis with rat feces. Acetylation of the 25R- or 25S-diastereoisomer of methyl 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid under controlled conditions yielded the corresponding 3 alpha,7 alpha-diacetate in approximately 70% yield. The diacetate was quantitatively oxidized to methyl 3 alpha,7 alpha-diacetoxy-12-oxo-5 beta-cholestan-26-oate, which was converted into the 12-tosylhydrazone in approximately 58% yield. Reduction of the tosylhydrazone with sodium borohydride in acetic acid yielded the 25R- or the 25S-diastereoisomer of 3 alpha,7 alpha-dihydroxy-5 beta-cholestan-26-oic acid as the major product. Purification via column chromatography yielded the pure diastereoisomers in approximately 25% overall yield. The two diastereoisomers were resolved on thin-layer chromatography and high-performance liquid chromatography. When the bile of A mississippiensis was hydrolyzed with rat fecal bacteria, the 3 alpha,7 alpha-dihydroxy-5 beta-cholestan-26-oic acid isolated via chromatographic purification was shown to be the 25R-diastereoisomer.  相似文献   

5.
The ability of rat liver microsomes to catalyze UDP-glucuronic acid-dependent glucuronidation of monohydroxy-bile acids was examined. The following bile acids were used as substrates, each as the 3 alpha and 3 beta epimer: 3-hydroxy-5 beta-cholanoic acid (C24), 3-hydroxy-5 beta-norcholanoic acid (C23), 3-hydroxy-5 beta-bisnorcholanoic acid (C22), 3-hydroxy-5 beta-pregnan-21-oic acid (C21), and 3-hydroxy-5 beta-androstane-17 beta-carboxylic acid (C20). The corresponding glucuronides were chemically synthesized to serve as standards and were characterized by thin-layer and gas-liquid chromatography as well as by nuclear magnetic resonance. Enzymatic glucuronidation reactions were optimized with respect to pH for each product formed and the kinetic parameters for each reaction were measured. Analytical techniques necessary to separate products from unreacted substrates and to identify them included thin-layer chromatography, gas-liquid chromatography, and nuclear magnetic resonance. It was found that the 3 alpha epimers of the five bile acids listed above enzymatically formed 3-O-glucuronides, C24 being the best substrate, followed by C21 and C20; C22 and C23 gave rise to only small amounts of this product. The 3 beta epimers of all bile acids tested were poorer substrates, although by a factor that varied widely. In addition to the expected hydroxyl-linked glucuronide, three of the 3 alpha-bile acids (C23, C22, and C20) and at least one 3 beta-bile acid (C20), gave rise to a novel metabolite in which the 1-OH of glucuronic acid was esterified with the steroidal carboxyl group (carboxyl-linked glucuronide).  相似文献   

6.
Gas-liquid chromatographic determination of human fecal bile acids   总被引:4,自引:0,他引:4  
A method for the determination of total bile acids in human feces that is suitable for routine application is described and discussed. Bile acids are extracted from freeze-dried feces with acetic acid and toluene, in the presence of the internal standard 23-nordeoxycholic acid. After saponification of the extract, bile acids and the internal standard are methylated and converted by mild chromic acid oxidation into their ketonic derivatives. The resultant mixture of a few stable compounds can be separated and measured quantitatively by gas-liquid chromatography on a methylsiloxane polymer. A reference bile acid mixture including the internal standard is also taken through the entire procedure with each series of samples. It has been demonstrated that, in spite of the omission of the usual purification steps, the method is specific for bile acids.  相似文献   

7.
Hybrids were created by fusion of primary rat hepatocytes with well-differentiated Reuber H35 rat hepatoma cells. Seventeen hybrids were screened for bile acid synthesis using [26-14C]cholesterol. As [26-14C]cholesterol was converted to bile acid, 14CO2 was released. Using this assay, four hybrids (8B, 12C, 13C, and 13D) were identified which synthesized bile acid. These four hybrids also incorporated [14C]taurine into bile acid. Bile acids were identified by capillary gas chromatography/mass spectrometry, and their rates of synthesis were quantitated by isotope dilution. Reuber H35 cells synthesized little or no bile acid. However, hybrids 8B, 12C, 13C, and 13D synthesized chenodeoxycholic acid, alpha-muricholic acid, and cholic acid and secreted them into the media. The rates of synthesis of individual bile acids varied among these hybrids. For example, the relative percentage of cholic acid ranged from 11.1% (hybrid 8B) to 50.4% (hybrid 13C). The bile acids synthesized and secreted by the most active hybrid, 12C, were greater than 93% conjugated. In summary, hybrids were created that retain the capacity to synthesize, conjugate, and secrete three major rat bile acid species. Such hybrids are unique model systems that will allow the study of the biochemical and genetic regulation of bile acid synthesis.  相似文献   

8.
Ursodeoxycholic acid was estimated in bile samples from humans and wild North American black bears using 7 beta-hydroxysteroid dehydrogenase purified from Clostridium absonum by Procion Red affinity chromatography. The percentage ursodeoxycholic acid was calculated by two methods: (a) 7 beta-hydroxyl groups were quantified using 7 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxyl groups (total bile acids) were quantified using 3 alpha-hydroxysteroid dehydrogenase. The percentage ursodeoxycholic acid was calculated on the basis of [7 beta-hydroxyl groups]/[3 alpha-hydroxyl groups] X 100. (b) Bile was hydrolyzed with sodium hydroxide and subjected to thin-layer chromatography. Bands corresponding to cholic acid, chenodeoxycholic acid plus deoxycholic acid, and ursodeoxycholic acid were identified by the use of standards and Komarowsky's spray reagent. Total bile acids and total ursodeoxycholic acid were measured by elution of silica gel in unsprayed areas corresponding to the bile acid standards and quantification of the total bile acid in each eluate. Direct comparison of these methods validated the use of 7 beta-hydroxysteroid dehydrogenase in the estimation of ursodeoxycholic acid in the biles of black bears and of patients fed ursodeoxycholic acid for cholesterol gallstone dissolution. Relative percentages of ursodeoxycholic acid were 8-24% in four bears and 22 and 27% in the patients ingesting 500 and 750 mg ursodeoxycholic acid per day for 3 months, respectively. Predictably lower values were obtained in two control subjects and one patient ingesting 750 mg chenodeoxycholic acid per day for 3 months.  相似文献   

9.
Biliary bile acids of Alligator mississippiensis were analyzed by gas-liquid chromatography-mass spectrometry after fractionation by silica gel column chromatography. It was shown that the alligator bile contained 12 C27 bile acids and 8 C24 bile acids. In addition to the C27 bile acids, such as 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholestanoic acid, 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoic acid, 3 alpha,12 alpha-dihydroxy-5 beta-cholestanoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholestanoic acid, and 3 alpha,12 alpha-dihydroxy-7-oxo-5 beta-cholestanoic acid, identified previously in the bile of A. mississippiensis, 3 alpha,7 beta-dihydroxy-5 beta-cholestanoic acid, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholestanoic acid, 7 beta,12 alpha-dihydroxy-3-oxo-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha,26-tetrahydroxy-5 beta-cholestanoic acid, and 1 beta,3 alpha,7 alpha,12 alpha-tetrahydroxy-5 beta-cholestanoic acid were newly identified. And in addition to the C24 bile acids, such as chenodeoxycholic acid, ursodeoxycholic acid, cholic acid, and allocholic acid, identified previously, deoxycholic acid, 3 alpha,7 alpha-dihydroxy-5 beta-chol-22-enoic acid, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-chol-22-enoic acid, and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-chol-22-enoic acid were newly identified.  相似文献   

10.
The availability of different sources of cholesterol for bile acid synthesis by cultured chick embryo hepatocytes was studied. Mevalonolactone was taken up by the cells and converted to cholesterol, cholesterol ester and tauroconjugates of bile acids. The addition of mevalonolactone had little effect on the conversion of endogenous cholesterol to taurocholic acid; however, taurochenodeoxycholic acid synthesis was stimulated. 25-30% of the cholesterol synthesized from mevalonolactone was converted to taurochenodeoxycholic, taurocholic and two so-far unidentified bile acids. All bile acids were secreted into the incubation medium. When cholesterol was added as mixed liposomes with phosphatidylcholine, it was taken up by the cells and converted to bile acids. At low concentrations of liposomes, the greater part of the cholesterol which was taken up by the cells was converted to bile acids. At higher concentrations, considerable amounts of cholesterol and cholesterol ester accumulated inside the cells. When mevalonolactone and cholesterol liposomes was added together, both substrates were used simultaneously for bile acids synthesis. HDL cholesterol was the best substrate tested, yielding large amounts of two, so-far, unidentified bile acids (possibly allo-bile acids) and smaller amounts of taurocholic and taurochenodeoxycholic acid. Addition of HDL suppressed the conversion of endogenous cholesterol to taurocholic acid; taurochenodeoxycholic acid synthesis, however, was stimulated.  相似文献   

11.
The nature of two novel C27 bile acids present as the taurine conjugates in urine from a patient with Zellweger's syndrome was studied. Bile acids conjugated with taurine were isolated from unconjugated and glycine-conjugated bile acids by means of ion-exchange chromatography. After alkaline hydrolysis of the taurine conjugates, the hydrolysate was acidified and extracted with ether; the extract was again subjected to ion-exchange chromatography to separate neutral from acidic compounds. The neutral fraction, which consisted mainly of two steroidal lactones, was treated with lithium aluminum hydride, and the reduction products were identified as (22R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,22,26-pentol and (23R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23,26-pentol by direct comparison of their gas-liquid chromatographic behaviors and mass spectral data with those of chemically synthesized authentic samples. Thus, the chemical structure of two native bile acids present in urine from a patient with Zellweger's syndrome should be formulated as (22R)-3 alpha,7 alpha,12 alpha,22-tetrahydroxy-5 beta-cholestanoic acid and (23R)-3 alpha,7 alpha,12 alpha,12 alpha,23-tetrahydroxy-5 beta-cholestanoic acid, respectively.  相似文献   

12.
Identification of unconjugated bile acids in human bile   总被引:1,自引:0,他引:1  
Unconjugated bile acids in the bile of healthy and diseased humans were determined qualitatively and quantitatively by means of gas-liquid chromatography and gas-liquid chromatography-mass spectrometry, after their isolation by ion-exchange chromatography. In a healthy person and three patients with cholelithiasis, unconjugated bile acids comprised 0.1-0.4% of total biliary bile acids. The bile acid composition of the unconjugated fraction was quite different from that of the glycine- or taurine-conjugate fraction, in that it contained a relatively large proportion of unusual bile acids including C23 and C27 bile acids. In two patients with cerebrotendinous xanthomatosis, C22 and C23 bile acids were the major constituents of the biliary unconjugated bile acids, and comprised about 0.8% of total bile acids; no detectable amounts of C27 bile acids were found in their bile. The analysis of biliary unconjugated bile acids may be useful for the diagnosis of metabolic diseases concerning bile acids, particularly the accumulation or disappearance of unusual bile acids.  相似文献   

13.
The urinary bile acid profile, obtained by capillary gas chromatography, of a patient suffering from cerebrotendinous xanthomatosis and treated with ursodeoxycholic acid demonstrated, besides the occurrence of 23-norcholic acid and (23R)-hydroxycholic acid (as a consequence of this disease), six additional unknown bile acids and three known bile acids, viz. ursodeoxycholic acid, hyocholic acid and omega-muricholic acid. The structure of two of the unknown bile acids were elucidated and proven by organic syntheses. These were 23-norursodeoxycholic acid and 3 beta-ursodeoxycholic acid. The structures of three bile acids were tentatively elucidated as being 1 beta-hydroxyursodeoxycholic acid, 21-hydroxyursodeoxycholic acid and 22-hydroxyursodeoxycholic acid, and the possibility that the structure of the remaining bile acid is that of 5-hydroxyursodeoxycholic acid is discussed. Two of these bile acids (1 beta-hydroxyursodeoxycholic acid and 5-hydroxyursodeoxycholic acid) also occurred in urine of a healthy individual during oral ursodeoxycholic acid treatment, whereas 23-norcholic acid, 23-norursodeoxycholic acid, (23R)-hydroxycholic acid, 21-hydroxyursodeoxycholic acid and 22-hydroxyursodeoxycholic acid were only present in urine of the patient suffering from cerebrotendinous xanthomatosis. The metabolism of ursodeoxycholic acid, both in the normal state and in the cerebrotendinous xanthomatosis, is discussed.  相似文献   

14.
The in vivo conversion of several 5 beta-cholestane intermediates to primary bile acids was investigated in three patients with total biliary diversion. The following compounds were administered intravenously: 5 beta-[G-3H]-cholestane-3 alpha, 7 alpha-diol, 5 beta-[G-3H]cholestane-3 alpha, 7alpha, 26-triol, and 5 beta-[24-14C]cholestane-3 alpha, 7 alpha-25-triol. Bile was then collected quantitatively at frequent intervals for the next 21 to 28 h. The administered 5 beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol was found to be efficiently converted to cholic and chenodeoxycholic acids in two patients; 61 and 75% of the administered label was found in primary bile acids. The proportion of labeled cholic to chenodeoxycholic acid was 1.20 and 1.02 in the bile of these patients, indicating that the C-26 triol was efficiently converted to cholic acid. The ratio of cholic to chenodeoxycholic acid (mass) in the bile of these patients was 1.23 and 2.32. The 5 beta-cholestane-3alpha, 7alpha-diol intermediate was also efficiently converted (71%) to both primary bile acids. The cholic to chenodeoxycholic acid ratios by mass and label were similar (2.97 versus 2.23). By contrast, the 5beta-cholestane-3alpha, 7alpha, 25-triol was poorly converted to bile acids in three patients. Following the administration of this compound almost all of the administered radioactivity found in the bile acid fraction was in cholic acid (5 to 19%) and very little (less than 5%) was found in chenodeoxycholic acid. These findings indicate that ring hydroxylation at position 12 is not materially hindered by the presence of a hydroxyl group on the side chain at C-26 in patients with biliary diversion. The labeled C-26-triol which was efficiently converted to both primary bile acids in a proportion similar to that which was observed for the bile acids synthesized by the liver suggests that this 5beta-cholestane derivative may be a major intermediate in the synthesis of both cholic and chenodeoxycholic acids.  相似文献   

15.
We previously reported that the 7 alpha-dehydroxylation of cholic acid appears to be carried out by a multi-step pathway in intestinal anaerobic bacteria both in vitro and in vivo. The pathway is hypothesized to involve an initial oxidation of the 3 alpha-hydroxy group and the introduction of a double bond at C4-C5 generating a 3-oxo-4-cholenoic bile acid intermediate. The loss of water generates a 3-oxo-4,6-choldienoic bile acid which is reduced (three steps) yielding deoxycholic acid. We synthesized, in radiolabel, the following putative bile acid intermediates of this pathway 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, 12 alpha-dihydroxy-3-oxo-4,6-choldienoic acid, and 12 alpha-hydroxy-3-oxo-4-cholenoic acid and showed that they could be converted to 3 alpha,12 alpha-dihydroxy-5 beta-cholanoic acid (deoxycholic acid) by whole cells or cell extracts of Eubacterium sp. VPI 12708. During studies of this pathway, we discovered the accumulation of two unidentified bile acid intermediates formed from cholic acid. These bile acids were purified by thin-layer chromatography and identified by gas-liquid chromatography-mass spectrometry as 12 alpha-hydroxy-3-oxo-5 alpha-cholanoic acid and 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic (allo-deoxycholic acid). Allo-deoxycholic acid was formed only in cell extracts prepared from bacteria induced by cholic acid, suggesting that their formation may be a branch of the cholic acid 7 alpha-dehydroxylation pathway in this bacterium.  相似文献   

16.
Isoursodeoxycholic acid (isoUDCA), the 3 beta-epimer of ursodeoxycholic acid (UDCA), may have pharmaceutical potential because of its similar hydrophilicity and in vitro cytoprotection as compared with UDCA. We compared metabolism and effects on cholestasis of UDCA and isoUDCA in experimental cholestasis in rats. Cholestasis was induced by bile duct ligation. For bile flow and biliary bile acid analysis, UDCA or isoUDCA were infused intraduodenally. For the study of chronic effects, chow was supplemented with 2.5 g/kg UDCA or isoUDCA for 3 weeks. Sham-operated animals served as controls. IsoUDCA became completely converted to UDCA in the liver. Choleresis and biliary bile acids were the same after the intraduodenal administration of either compound. Oral administration of UDCA or isoUDCA significantly improved liver biochemistry but not clinical and histological parameters in chronic cholestasis. The decrease of serum cholic acid in control animals was more pronounced after isoUDCA (-93%) than after UDCA (-76%). Only after UDCA, this decrease was compensated by increases of UDCA, beta-muricholic acid (MCA), and Delta(22)-beta-MCA. Our results show that isoUDCA has the same effect on choleresis and liver biochemistry as UDCA. IsoUDCA features pro-drug characteristics of UDCA and causes compared to the latter lower serum bile acid concentrations in non-cholestatic animals.  相似文献   

17.
We attempted to quantitate production of bile acid via the 27-hydroxylation pathway in six human subjects. After bolus intravenous injection of known amounts of [24-14C]cholic acid and [24-14C]chenodeoxycholic acid, each subject underwent a constant intravenous infusion of a mixture of [22, 23-3H]-27-hydroxycholesterol and [2H]-27-hydroxycholesterol for 6;-10 h. Production rate of 27-hydroxycholesterol was calculated from the infusion rate of [2H]-27-hydroxycholesterol and the serum ratio of deuterated/protium 27-hydroxycholesterol, which reached a plateau level by 4 h of infusion. Conversion of 27-hydroxycholesterol to cholic and chenodeoxycholic acids was determined from the 3H/14C ratio of these two bile acids in bile samples obtained the day after infusion. In five of the six subjects, independent measurement of bile acid synthesis by fecal acidic sterol output was available from previous studies. Endogenous production of 27-hydroxycholesterol averaged 17.6 mg/day and ranged from 5.0 to 28.2 mg/day, which amounted to 8.7% (range 3.0;-17.9%) of total bile acid synthesis. On average 66% of infused 27-hydroxycholesterol was converted to bile acid, of which 72.6% was chenodeoxycholic acid.These data suggest that relatively little bile acid synthesis takes place via the 27-hydroxylation pathway in healthy humans. Nevertheless, even this amount, occurring predominantly in vascular endothelium and macrophages, could represent an important means for removal of cholesterol deposited in endothelium.  相似文献   

18.
Two docosapolyenoic acids (22:5(n-3) and 22:5(n-6)) were isolated from the liver of normal and 18:3(n-3)-deficient trout, respectively. They were prepared by combined thin-layer chromatography (TLC) and reversed-phase high performance liquid chromatography (HPLC). Their purity, checked by capillary gas liquid chromatography, was greater than 95%. Each fatty acid was oxygenated into monohydroxy derivatives by human platelets. The hydroxy compounds were purified by TLC and HPLC and then derivatized for gas chromatography-mass spectrometry analysis. Whereas 22:5(n-6) was only converted into 14-OH-22:5, three hydroxy derivatives (11, 13 and 14) were obtained from 22:5(n-3). However, 13-hydroxy was not formed in the presence of aspirin, indicating that platelet lipoxygenase catalyses the formation of both 11- and 14-hydroxy derivatives from 22:5(n-3), as described previously, from 22:6(n-3). Further studies showed that 22:4(n-6) and 20:5(n-3) were only converted into 14- and 12-hydroxy derivatives. We conclude then that, besides the well-known n-9 oxygenation, lipoxygenase of human platelets is able to catalyse an n-12 oxygenation on docosapolyenoic acids of the n-3 family.  相似文献   

19.
We have studied the effect of ursodeoxycholic acid on the serum and urinary bile acids in seven patients with moderate to severe primary biliary cirrhosis. Bile acids were characterized by gas-liquid chromatography-mass spectrometry and quantified by capillary gas-liquid chromatography. Serum bile acids were elevated 26-fold over control values, with 2.2 times more cholic acid than chenodeoxycholic acid. Urinary bile acid output was elevated 22-fold over control values with a cholic acid:chenodeoxycholic acid ratio of 1.6. In addition, lithocholic acid, deoxycholic acid, ursodeoxycholic acid, 1 beta-hydroxycholic acid, 1 beta-hydroxydeoxycholic acid, and hyocholic acid were identified in both serum and urine; the proportions of the 1- and 6-hydroxylated bile acids were much higher in urine than in serum of the patients (32.1% versus 4.2%). Three months of placebo administration did not change the serum and urinary bile acid composition. In contrast, ursodeoxycholic acid feeding (12-15 mg/kg body weight per day) for 6 months resulted in a 25% decline in the total serum bile acid concentration from the pretreatment values. The proportion of ursodeoxycholic acid increased from 2.1 to 41.2% of total bile acids, so that total fasting serum endogenous bile acid levels decreased 62.4%. Ursodeoxycholic acid feeding substantially increased urinary bile acid output, with ursodeoxycholic acid comprising 58.1%. The proportion of 1- and 6- hydroxylated endogenous bile acids was reduced by 45.5% from pretreatment levels and approximately 4.5% of the urinary bile acids were omega-muricholic acid, 1 beta-hydroxyursodeoxycholic acid, and 21-hydroxyursodeoxycholic acid. These results demonstrate significant changes in the serum and urinary bile acid pattern in primary biliary cirrhosis during ursodeoxycholic acid treatment. The beneficial effect of ursodeoxycholic acid may be due to reduction of the hydroxylated derivatives of endogenous bile acids together with the appearance of hydroxylated derivatives of ursodeoxycholic acid or it may be due to displacement of the more hydrophobic endogenous bile acids by the hydrophilic ursodeoxycholic acid.  相似文献   

20.
To obtain information on the concentration and spectrum of bile acids in human cecal content, samples were obtained from 19 persons who had died an unnatural death from causes such as trauma, homicide, suicide, or drug overdose. Bile acid concentration was measured via an enzymatic assay for 3alpha-hydroxy bile acids; bile acid classes were determined by electrospray ionization mass spectrometry and individual bile acids by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. The 3alpha-hydroxy bile acid concentration (mumol bile acid/ml cecal content) was 0.4 +/- 0.2 mM (mean +/- SD); the total 3-hydroxy bile acid concentration was 0.6 +/- 0.3 mM. The aqueous concentration of bile acids (supernatant after centrifugation) was identical, indicating that most bile acids were in solution. By liquid chromatography mass spectrometry, bile acids were mostly in unconjugated form (90 +/- 9%, mean +/- SD); sulfated, nonamidated bile acids were 7 +/- 5%, and nonsulfated amidated bile acids (glycine or taurine conjugates) were 3 +/- 7%. By gas chromatography mass spectrometry, 10 bile acids were identified: deoxycholic (34 +/- 16%), lithocholic (26 +/- 10%), and ursodeoxycholic (6 +/- 9), as well as their primary bile acid precursors cholic (6 +/- 9%) and chenodeoxycholic acid (7 +/- 8%). In addition, 3beta-hydroxy derivatives of some or all of these bile acids were present and averaged 27 +/- 18% of total bile acids, indicating that 3beta-hydroxy bile acids are normal constituents of cecal content. In the human cecum, deconjugation and dehydroxylation of bile acids are nearly complete, resulting in most bile acids being in unconjugated form at submicellar and subsecretory concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号