首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
Acorn production varies considerably among oak (Quercus) species, individual trees, years, and locations, which directly affects oak regeneration and populations of wildlife species that depend on acorns for food. Hard mast indices provide a relative ranking and basis for comparison of within- and between-year acorn crop size at a broad scale, but do not provide an estimate of actual acorn yield—the number of acorns that can potentially be produced on a given land area unit based on the species, number, and diameter at breast height (dbh) of oak trees present. We used 10 years of acorn production data from 475 oak trees to develop predictive models of potential average annual hard mast production by five common eastern oak species, based on tree diameter and estimated crown area. We found a weak (R2 = 0.08–0.28) relationship between tree dbh and acorn production per unit crown area for most species. The relationship between tree dbh and acorn production per tree was stronger (R2 = 0.33–0.57). However, this is because larger-dbh trees generally have larger crowns, not because they have a greater capacity to produce more acorns per unit crown area. Acorn production is highly variable among individual trees. We estimated that dbh of at least 60 dominant or codominant oak trees per species should be randomly sampled to obtain an adequate representation of the range of dbhs (≥12.7 cm dbh) in a given forest area, and achieve precise estimates when using these equations to predict potential acorn production. Our predictive models provide a tool for estimating potential acorn production that land managers and forest planners can apply to oak inventory data to tailor estimates of potential average annual acorn production to different forest management scenarios and multiple spatial scales. © 2011 The Wildlife Society.  相似文献   

2.
Pons J  Pausas JG 《Oecologia》2012,169(3):723-731
In dry areas such as Mediterranean ecosystems, fluctuations in seed production are typically explained by resource (water) availability. However, acorn production in cork oak (Quercus suber) populations shows a very low relationship to weather. Because cork oak trees produce acorns with different maturation patterns (annual and biennial), we hypothesized that acorn production in coexisting individuals with a different dominant acorn maturation type should respond differently to climatic factors and that disaggregating the trees according to their acorn-maturation pattern should provide a more proximal relation to weather factors. We assessed acorn production variability in fragmented cork oak populations of the eastern Iberian Peninsula by counting the total number of acorns in 155 trees during an 8-year period. An initial assessment of acorn production variability in relation to weather parameters yielded very low explained variance (7%). However, after the trees were grouped according to their dominant acorn maturation pattern, weather parameters were found to account for 44% of the variability in acorn crops, with trees with annual acorns exhibiting mast fruiting in years with reduced spring frost and shorter summer droughts and trees with biennial acorns showing the opposite pattern. Thus, conditions that negatively affect annual production could be beneficial for biennial production (and vice versa). The results highlight the importance of the resource-matching hypothesis for explaining acorn production in Quercus suber and suggest that different seed maturation types within a population may allow the species to deal with highly variable weather conditions. They also emphasize the importance of understanding acorn maturation patterns for interpreting masting cycles.  相似文献   

3.
This study examined variation in two components of acorn production. Percentage of bearing ramets (stems) and number of acorns per bearing ramet were examined in five clonal oaks in three xeric habitats of south-central peninsular Florida in relation to ramet size within and between species and vegetative associations. Counts of acorns on two white oaks (Quercus chapmanii and Q. geminata) and three red oaks (Q. inopina, Q. laevis, and Q. myrtifolia) were conducted annually from 1969 to 1996 (except in 1991) on permanent grids in southern ridge sandhill, sand pine scrub, and scrubby flatwoods associations at the Archbold Biological Station, Florida, USA. Percentage of bearing individuals and mean number of acorns per bearing individual increased with increasing ramet size for all species across all vegetation associations. However, in Q. geminata and Q. myrtifolia, acorn production declined in the largest size class (>3.2 m), implying that larger individuals of these clonal species may become senescent. All oak species in sand pine scrub, which had a nearly closed overstory, had lower frequencies of bearing oaks and mean numbers of acorns compared with similar-sized individuals of the same species in the more open-canopied southern ridge sandhill and scrubby flatwoods associations, suggesting light limitation. The annual production of acorns by a given oak species was correlated across vegetative associations and annual acorn production of oak species was correlated for species within the same section. Intermediate-size class oaks contributed the most acorns per unit area, suggesting that stands managed with short fire-return times will provide fewer acorns to wildlife than stands managed to produce more variable distributions of oak size classes. However, our study suggests that long-unburned stands, such as those studied here, will maintain relatively constant levels of acorn production as a consequence of ramet replacement within the clones of these shrubby oaks to create a variable distribution of size classes. Of the oak species studied, Q. myrtifolia had the highest acorn production and the smallest acorns, while Q. laevis had the lowest acorn production and the largest acorns, suggesting an allocation trade-off between acorn numbers and size.  相似文献   

4.
Grivet D  Smouse PE  Sork VL 《Molecular ecology》2005,14(11):3585-3595
Animals are the principal vectors of dispersal for a large number of plant species. Unfortunately it is not easy to discern their movement patterns or the fate of their dispersed seeds. Many animals transport seeds by consuming them and then, some time later, defecating them. Others gather seeds and then store them for later consumption. Both circumstances lead to a set of seeds that have been dispersed in a clumped pattern, which offers a unique opportunity to assess seed movements. We introduce a novel approach that uses maternally inherited seed tissue to quantify the genetic structure of dispersed seed pools. This direct approach measures the genetic variability within and among seed pools, and estimates the scale of seed movement, without requiring a highly polymorphic battery of markers or the location and genotypes of all possible seed parents. We demonstrate this approach with the specific case of seed transport of valley oak (Quercus lobata) acorns by acorn woodpeckers (Melanerpes formicivorus). These territorial birds store acorns in drilled holes in the bark of trees, called granaries. We sampled stored acorns from different granaries, extracted DNA from the maternally inherited pericarp, and then assessed individuals for three microsatellite markers. We found extremely high genetic structure among granaries, a low number of effective seed donors per granary, and restricted seed movement. A maternity analysis performed on the same sample with seven microsatellites confirms acorn transport is limited to approximately 100-m radius. Our findings provide insight into the foraging and seed-dispersal behaviour of acorn woodpeckers, with an approach that can be widely extended to other systems.  相似文献   

5.
The mature oak (Quercus liaotungensis Koidz) forests in the Dongling mountains of northern China have become degraded in recent years because regeneration has been limited. To determine whether or not seedling establishment of the oak is seed limited, microsite limited, or predator limited and to determine whether seedling establishment is affected by ground cover, we conducted field experiments during a mast year and investigated the fate of seeds and the soil seed bank dynamics of the oak. A large acorn crop (128.8 acorns/m2) was observed in the study period, and the peak density of acorns on the forest floor reached 46.5 acorns/m2, suggesting that tree recruitment was not seed limited. Acorns in the soil seed bank were mainly lost through decay (principally after fungal attack), consumption in situ, and removal by animals. Predation (including consumption in situ and removal) accounted for 86.4% of acorn loss and was therefore likely to have been the most important factor influencing seed dynamics. More than 70% of acorns were found to have germinated, but no established seedling was observed on the forest floor. Using cages to exclude predators, it was estimated that 87% of acorns germinated and 49% became established as seedlings, indicating that the acorns on the forest floor could emerge and grow in the absence of predators. We conclude that the regeneration of the tree population is limited by predators rather than by the availability of microsites. The presence of ground cover increased the germination rate and increased the chance of seed survival in the early stage of the experiment, but at the end of the investigation, no established seedling was found in the quadrats both with and without ground cover, possibly because of high density of animal predators. On the basis of these results, we suggest that selective tree felling will increase the coverage of the herbaceous layer, which can further decrease the population density of the rodents, and thereby improve the regeneration of oak trees.  相似文献   

6.
Many researchers have studied the relationship between masting by trees and seed predation by insects. Most of these studies have been plant centered, with little focus on the insect perspective. To estimate the effect of mast seeding on insect seed predators, the life‐history traits of these insects must also be considered because some seed insects can survive lean years by prolonged diapause. In this study, I examined larval infestation of acorns and life‐history traits of the acorn weevil, Curculio robustus (Roelofs) (Coleoptera: Curculionidae), in relation to acorn production of the deciduous oak Quercus acutissima Carruthers (Fagaceae) in a coppice stand in central Japan in 2004–2009. Curculio robustus females oviposit into Q. acutissima acorns, inside which the larvae develop. Mature larvae leave acorns and burrow into the soil, where they overwinter. Although germination did occur in acorns infested by weevil larvae, the percentage of germination was lower in acorns damaged by many larvae. Acorn production in Q. acutissima varied considerably among years. Both the number of C. robustus larvae infesting acorns and the percentage of acorns infested were affected by the amount of acorns produced by Q. acutissima, and two successive lean years appeared to have a considerable impact on C. robustus population size. Consequently, only a small fraction of the acorns produced were lost to predation in a mast year after two successive lean years. However, C. robustus could survive the two successive lean years because of prolonged larval diapause, probably leading to a marked decrease in population size. These findings suggest that masting in Q. acutissima succeeds as a predator satiation strategy in response to acorn damage by C. robustus, and that C. robustus has developed prolonged diapause as a counter‐adaptation.  相似文献   

7.
A strong selection for acorn characteristics is expected to have evolved in the mutualistic relationship between the European jay (Garrulus glandarius) and the oak (Quercus spp.). Bossema's pioneer work suggested that jays do not select acorns randomly, but rather they preferentially select some size and species. Preference for some seeds over others may have implications on plant community dynamics by conferring advantages (or disadvantages) on the selected (avoided) seed characteristics. In this paper we test to what extent jays select acorns by species and/or by size and the relation between these two traits in Mediterranean oak species. The experiments consist of a set of field tests in which acorns from four different coexisting Mediterranean oak species (Quercus ilex, Quercus faginea, Quercus suber, and Quercus coccifera) were placed in artificial feeders accessible to wild jays. The acorns were previously measured to control individual acorn characteristics. Using video-recording techniques, we followed jay activity and the fate of each acorn (sequence of acorn selection and method of transport). Q. ilex acorns were preferred over other acorns, and Q. coccifera acorns were avoided when other acorns were available. Preference for Q. faginea and Q. suber acorns was intermediate, that is, they were preferred over Q. coccifera acorns but not over Q. ilex acorns. Large acorns were also preferred although acorn species selection was stronger than size selection. Jays selected species and size both by visual means and by using acorn area as an indicator of size. Acorns wider than 17–19 mm were carried in the bill because of throat limitation. Our results confirm Bossema's study on temperate oaks and extend it to Mediterranean oak species, revealing implications on mixed oak forest dynamics.  相似文献   

8.
北京东灵山落叶阔叶林中辽东栎种子雨   总被引:13,自引:0,他引:13  
在北京东灵山地区的一个落叶阔叶林中调查了辽东栎(Quercus liaotungensis Koidz.)的种子雨。对于选定的4棵辽东栎中的3棵,树冠下的种子雨分布格局符合二次分布,具有很高的决定系数。由设置在树冠下的种子捕捉器收集的坚果数量来估计整棵树的种子雨。4棵树的种子雨中有活力的种子很少,变化范围从26到259个。每棵树的树冠下的种子雨密度变化范围从0.76到7.26个/m^2。林中平均种  相似文献   

9.
By caching acorns, jays serve as important dispersal agents for oak (Quercus) species. Yet little is known about which acorn characteristics affect selection by jays. In the traditional model of jay/oak symbiosis, large, brown, ripe acorns free of invertebrate parasites (e.g., Curculio acorn weevils) are selected by jays. Recently, it has been suggested that a tri-trophic relationship between oaks, jays, and weevils may have evolved to counter the negative dietary effects of acorn tannins. Under the tri-trophic model, jays would preferentially select acorns containing weevil larvae. We tested the assumptions that (1) acorns containing curculionid larvae exist in sufficient quantities to support jay populations and (2) jays can detect, and preferentially select, acorns containing weevil larvae, and investigated the cues by which jays select acorns. Captive Mexican jays (Aphelocomaultramarina) were presented Emory oak (Quercusemoryi) acorns in aviary feeding trials. Large, dense, viable acorns free of curculionid larvae were preferentially selected. Contrary to results of previous research, color did not affect selection. Acorn viability increased and curculionid larval occupancy decreased in adjacent savannas and isolated stands relative to existing oak woodland, perhaps favoring oak recruitment into adjacent lower-elevation grasslands. Our results compel us to reject the tri-trophic model for this system, and are consistent with the traditional jay/oak symbiosis model. Relatively long-distance dispersal of viable acorns favors Emory oak replacement, and spatial patterns of acorn viability and curculionid parasitism suggest expansion of Emory oak into adjacent low-elevation semi-arid grasslands. Received: 29 February 1996 / Accepted: 26 September 1996  相似文献   

10.
ABSTRACT We are unaware of any previous studies to evaluate using a sweep net to estimate abundance of red oak acorns (Quercus spp.) after they fall from tree crowns, sink to the ground in flooded bottomlands (i.e., sound acorns), and become potential food for animals or propagules for seedlings. We placed known numbers of white-painted red oak acorns of 3 size classes and used a sweep net to recover them in a flooded hardwood bottomland in Noxubee National Wildlife Refuge, Mississippi, USA. We recovered large acorns 1.96 and 1.32 times more often than small and medium acorns, respectively. Mean recovery rate of all marked acorns across size and density classes was 34.0 ± 7.0% (SE, n = 9). Thus, sweep-net sampling for sound acorns in flooded oak bottomlands may yield negatively biased estimates of acorn abundance, and investigators should consider using correction factors.  相似文献   

11.
We examined post-fire recovery of two components of acorn production (percentage of bearing ramets [stems] and number of acorns per bearing ramet) for four species of oaks in southern ridge sandhill vegetation in south-central peninsular Florida. Annual counts of acorns on two white oaks (Quercus chapmanii and Q. geminata) and two red oaks (Q. laevis and Q. myrtifolia) were conducted annually (except in 1991) on two 2.7-ha grids from 1969 to 1998. A prescribed burn was conducted on one of the grids in May 1993. Newly sprouted ramets of both white oaks produced acorns during the first year following the fire, whereas red oaks required 3 yr (Q. myrtifolia) or 4 yr (Q. laevis) to produce acorns. The difference in the timing of post-fire acorn production between the white and red oak species reflected the difference in the number of years from flower bud initiation to mature acorns in the two groups, with the additional year-long lag in Q. laevis probably attributable to the fact that it is typically a tree rather than a shrub species. The data suggested that percentage of bearing ramets in the smallest size class of the two white oak species was markedly lower in the burned than unburned grid in the first year of post-fire acorn production and higher in the fifth year, but these trends were not evident for the red oaks. Among all four species, differences between mean number of acorns in burned and unburned grids were significant in only two cases (the largest size class of both white oak species in the fifth year). There was no evidence of recruitment from acorns on the burned grid, possibly due to the rapid redevelopment of the shrub layer because of low mortality of the extensive clonal root systems. Rapid post-fire recovery of acorn production in xeric fire-prone habitats is presumably the result of selection to increase the probability of recovery and persistence following sufficiently intense fires that result in high oak mortality. The timing and magnitude of post-fire acorn production in sandhill and other xeric Florida associations has a potential impact on a wide variety of insects, birds, and mammals that feed on acorns, as well as on the species with which they interact.  相似文献   

12.
In trees, reproduction constitutes an important resource investment which may compete with growth for resources. However, detailed analyses on how growth and fruit production interact at the shoot level are scarce. Primary canopy growth depends on the development of current-year shoots and their secondary growth might also influence the number and size of fruits supported by them. We hypothesise that an enhanced thickening of current-year shoots is linked positively to acorn production in oaks. We analysed the effect of acorn production on shoot growth of two co-occurring Mediterranean oak species with contrasting leaf habit (Quercus ilex, Quercus faginea). Length and cross-sectional area of current-year shoots, apical bud mass, number of leaves and acorns, xylem and conductive area, number of vessels of acorn-bearing and non-bearing shoots were measured in summer and autumn. Nitrogen and carbohydrates analyses were also performed in stems and leaves of both shoot types. Stem cross-sectional area increased in acorn-bearing shoots when compared with non-bearing shoots for both species and such surplus secondary growth was observed since summer. In bearing shoots, the total transversal area occupied by vessels decreased significantly from basal to apical positions along the stem as did the xylem area and the number of vessels. Leaves of bearing shoots showed lower nitrogen concentration than those of non-bearing shoots. Carbohydrate concentrations did not differ in stems and leaves as a function of the presence of acorns. Such results suggest that carbohydrates may preferentially be allocated towards reproductive shoots, possibly through enhanced secondary growth, satisfying all their carbon demands for growth and reproduction. Our findings indicate that acorn production in the two studied oaks depends on shoot secondary growth.  相似文献   

13.
From a total sample of 1,350 bear oak (Quercus iliclfolia) trees on which all acorns had been counted, the 10 highest, 10 lowest and 10 intermediate acorn producers were selected. No significant differences in site quality were found to exist beneath these trees. Fifty-four additional trees were transplanted onto a common site. One-third of these were high acorn producers, one-third were medium and one-third were poor acorn producers. These trees failed to converge in productivity. indicating that genetics plays a major role in determining acorn yields in bear oak.  相似文献   

14.
Partial consumption of acorns by rodents, birds, and insects has been widely reported in various oak species. However, to what extent these partially eaten acorns contribute to the regeneration of oak trees is poorly understood. To date, there is limited knowledge of the effects of seed availability on partial consumption of acorns. Herein, we released tagged Quercus mongolica acorns in two consecutive years with different seed crops, to explore the probability of partial acorn consumption. We also placed simulated partially consumed acorns in the field to investigate their contribution to regeneration of white oak. Our results showed that more acorns were partially eaten in a good crop year than in poor crop year, reflecting an effect of predator satiation on acorn partial consumption by rodents at the population level. Partially eaten acorns were more likely to be damaged at the basal end, suggesting consistent consumption preferences of small rodents. Although, partially consumed acorns were less likely to be scatter-hoarded by small rodents, they germinated more rapidly than the intact acorns in the field, offsetting the negative effects of the non-buried deposition. Despite lower germination rates, lightly damaged acorns exhibited greater growth of roots and shoots, suggesting a compensatory response to partial acorn consumption. Partial consumption may spread predation pressure on acorns and thus appears to be much better for the plant than total consumption by seed-eating animals. Therefore, partially consumed acorns as dispersal leftovers may play a potential role in natural regeneration of Quercus mongolica, especially in mast years. However, this role and the underlying mechanisms of partial acorn consumption by rodents, birds, and herbivore insects need further investigation.  相似文献   

15.
Summary Quercus oleoides Cham. and Schlecht is an unusual tree in several respects: it is an oak found in neotropical lowland forests, its distribution is not continuous but ratherdivided into many patches of various sizes, and it is a dominant in all the forests in which it occurs, attaining densities far higher than most species of tropical trees. This density pattern is related to the vulnerability of Q. oleoides acorns to predation by mammals. Observations of agoutis, deer, peccaries, squirrels, pocket mice and other seed consumers in Santa Rosa National Park, Costa Rica, showed that these mammals act only as predators, not dispersers, of Q. oleoides acorns. Experiments which involved placing acorns in deciduous forest where Q. oleoides does not occur, demonstrated that, due to high predation rates, the number of acorns produced by an isolated tree is far too low for adults to replace themselves.In oak forest, on the other hand, where the combined acorn crops of many oaks satiate the seed predators, acorn survivorship until germination is high enough to maintain the population. Furthermore, acorn survivorship in oak forest areas is inversely proportional to the apparent mammal density in those areas. Thus the pattern of forest dominance and patchy distribution is related to positively density-dependent acorn survivorship: where Q. oleoides is the forest dominant, it will survive, but if its density falls to the level typical of tropical trees, it will go locally extinct.  相似文献   

16.
The Mississippi Alluvial Valley (MAV) is an internationally important migration and wintering region for Nearctic waterfowl. Most of the MAV is a lowland forested floodplain that contains vast stands of red oaks (Quercus spp.). These trees produce acorns and, when forests flood, diverse communities of aquatic invertebrates emerge, providing diverse nutritious foods for wintering ducks. The MAV is within the Lower Mississippi Valley Joint Venture (LMV JV) region of the North American Waterfowl Management Plan, but no combined MAV-wide estimates of acorn and invertebrate biomass exist to determine foraging carrying capacity for conservation planning or actions by the LMV JV or other partners in regions containing southern red oaks. We sampled acorns that fell to the ground or were submersed under shallow water deemed accessible to foraging ducks and aquatic invertebrates in the MAV of Louisiana, Mississippi, Missouri, and Tennessee, USA, during fall-winter 2009–2011. In good and poor masting years, acorn abundance was non-linearly related to the percentage of the forest canopy made up of red oaks and peaked in late autumn or winter when most other waterfowl resources are depleted or decomposed. This finding is novel and represents a deviation from how the LMV JV has traditionally assumed food resources exist for waterfowl in hardwood bottomlands. We used a daily ration model to estimate energy use days (EUDs) from combined acorn and invertebrate biomasses relative to red oak canopy coverage. For good and poor acorn masting years at the mean MAV-wide red oak canopy coverage of 45%, EUD = 2,273.1 days/ha and 161.2 days/ha, respectively. The LMV JV currently uses EUD = 385–502 days/ha for forests with 40–50% red oak canopy coverage. Because acorns and aquatic macro-invertebrates are a food resource that persists through winter and reaches peak abundance later in winter, we contend conservation planners have undervalued the potential of bottomland hardwoods to provide energy for wintering ducks.  相似文献   

17.
王巍  马克平 《生态学报》2001,21(2):204-210
动物对辽东栎(Quercus liaotungensis Koidz.)坚果的捕食被认为是影响辽东栎坚果命运的主要因素,因此直接影响幼苗的建立和自然更新。在东灵山一个落叶阔叶林中调查了辽东栎坚果被脊椎动物转运和就地消耗状况。在排除部分小型啮齿目动物前后,辽东栎坚果的丢失动态曲线不同。到实验结束时,基本上所有放置的辽东栎坚果都消失了。排除动物前的曲线上有一个拐点,而排除动物后的丢失曲线上有多个拐点。两曲线相似的地方是:最初一两天辽东栎坚果的丢失非常迅速。排除小型啮齿目动物对辽东栎坚果的丢失有影响,然而坚果尺寸和微生境条件对坚果的丢失没有影响。任意2个因子的交互作用以及3个因子的交互作用对辽东栎坚果的丢失也都没有影响。排除啮齿目动物和坚果尺寸对辽东栎坚果的就地消耗有影响,微生境以及其它因子的交互作用对坚果的就地消耗没有影响。在9月份3d捕鼠的时间里,共捕到啮齿目动物3种:大林姬鼠(Apodemus speciosus)、社鼠(Niviveniter confucianus )和花鼠(Tantias sibiricus)。研究结果表明,尽管啮齿目动物的排除能够降低辽东栎坚果的丢失速度,但它们(或者和其它的脊椎动物一起)有足够的能力将辽东栎坚果捕食或搬运到其它地方分散埋藏或将它们搬运到它们的洞穴中用作漫长冬季的主要食物来源。  相似文献   

18.
1. Recently, a mutualistic relationship has been described between some dung beetles (Thorectes lusitanicus and Mycotrupes lethroides) and oak species (Quercus suber, Q. canariensis, and Q. rubra), which could be crucial for ensuring seedling recruitment and sustaining the equilibrium of oak populations. For T. lusitanicus, a diet based on acorns during the reproductive period improved resistance to low‐temperature conditions and improved ovarian development. 2. In this paper, we conducted field and laboratory experiments to investigate the interaction between two potential acorn‐eating beetles, Thorectes baraudi and Jekelius nitidus, with Quercus suber. We determined the feeding preferences of both beetle species and estimated the rates of acorn manipulation by beetles according to habitat structure and several characteristics of the acorn, such as seed size and acorn infestation by weevils. 3. Results demonstrated the positive interaction between the dung beetle Thorectes baraudi and Quercus trees. Thorectes baraudi was clearly more attracted to volatiles of acorns than to dung. Jekelius nitidus, on the contrary, was either not or anecdotally attracted to acorns. On the contrary, in the case of Jekelius nitidus, the acorn attraction could be considered anecdotal or even accidental. Our field results demonstrated the acorn burying behaviour of T. baraudi in the oak forests of the Cabañeros National Park (Spain), suggesting a potential role of this beetle species as an active secondary acorn disperser. 4. This unexpected behaviour could be particularly important in Mediterranean oak forests and savannahs, where most Quercus species are strongly recruitment limited because of serious overgrazing problems.  相似文献   

19.
Rodent acorn selection in a Mediterranean oak landscape   总被引:5,自引:0,他引:5  
Quercus suber, Quercus ilex and Quercus coccifera (Cork, Holm and Kermes oaks, respectively) are common evergreen oak species that coexist in the landscapes of the western part of the Mediterranean basin. Rodents are the main acorn predators and thus one of the main factors for understanding recruitment patterns in oaks. In this paper we analyse to what extent mice prefer acorns from one oak species over another in three oak species studied using acorn removal experiments and video tape recordings. Twenty labelled acorns from each of the three Quercus species (60 acorns) were placed in 40 cm×40 cm quadrats on each plot. Because selection might vary as a result of the vegetation context, we performed the trials in the five main vegetation types within the study area (four replicates in each vegetation type) in order to control for habitat influences on rodent acorn preferences (a total of 20 plots). The removal of 1,200 acorns occurred within 68 days. Mice removed 98.7% of the acorns. Q. ilex acorns were preferred over Q. suber and Q. coccifera in all vegetation types except in pine forest, where no acorn preferences were detected. Acorn removal rates differed with vegetation type, correlating positively with shrub cover. The distance at which acorns were displaced by rodents (mean =4.6 m±5.1 SD) did not differ between acorn species, but varied among vegetation types. Bigger acorns of Q. coccifera were selected only after Q. ilex and Q. suber acorns were depleted, while no size selection was detected for the latter two species. Thus, we conclude that rodents show preference for some oak acorns and that landscape context contributes significantly to rodent activities and decisions.  相似文献   

20.
Blue jays consume large quantities of acorns to fuel energy-demanding caching flights in the fall. Yet blue jays possess no known physiological adaptation to counter the negative effects of a high tannin diet on protein digestion. Dietary experiments were conducted to determine if blue jays could subsist on an acorn-only diet, and if they could not, to determine whether supplements of acorn weevil larvae (Curculio), present inside acorns, enabled them to maintain their mass. Comparative tannin assays also were conducted on Lepidobalanus (low tannin; white oak) and Erythrobalanus (high tannin; pin oak) acorns using radial diffusion assay. Captive jays consumed considerable acorn material, yet were unable to maintain mass on ad lib. acorn-only diets or on an acorn +1.5 g larvae/day supplement. There were no significant differences in mass loss between high and low tannin diets. In contrast, blue jays were able to stabilize mass on a diet of acorns +5.0 g larvae supplement/day. These results suggest that acorn weevil larvae, or perhaps other insects, counteract the effects of acorn tannins in the jay diet allowing jays to subsist largely on acorns during the fall caching season. Oak demographic processes may be partly regulated by a tri-trophic relationship among plant, insect and bird. Acorn weevil larvae, considered damaging to oak populations, may actually facilitate oak recruitment and population vagility in the long-term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号