首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Risk assessments can be used to identify threats, which vary both in space and time, to declining species. Just as hot spots describe locations where threat processes operate at a higher rate than in surrounding areas, hot moments refer to periods when threat rates are highest. However, the identification of hot moments can be challenging because the temporal complexity of some threat processes makes their effects on population viability difficult to predict. Declining throughout much of their range, Blanding's turtle (Emydoidea blandingii) populations are potentially most vulnerable to road mortality where road densities and traffic volumes are high. The temporal variations in road-mortality risk faced by these and other semiaquatic turtles at the population level are a consequence of several factors, including sex-specific movement characteristics and seasonal changes in traffic volume. We examined these risk factors for Blanding's turtle populations in Maine, USA, by integrating temporally explicit roadkill probabilities with demographic parameters informed by local and range-wide studies. Specifically, we used population simulations to estimate the relative risk for 14 2-week periods during the turtles’ active season. Our analysis clearly identified early summer as a period of elevated risk, with June through mid-July signaling a road-mortality hot moment for Blanding's turtles (for both M and F). These findings provide guidance for the implementation of temporally explicit conservation measures such as cautionary road signage, traffic management, and public outreach that, if timed strategically, could help to mitigate population impacts from road mortality.  相似文献   

2.
Freshwater turtle hatchlings primarily use visual cues for orientation while dispersing from nests; however, hatchlings rapidly develop a relationship between a sun or geomagnetic compass and a dispersal target that allows them to maintain an established direction of movement when target habitats are not visible. We examined dispersal patterns of hatchling snapping turtles (Chelydra serpentina) and Blanding's turtles (Emydoidea blandingii) dispersing in large arenas in a mowed field and in dense corn. The dispersal of three categories of hatchlings were examined: (1) naïve individuals (no previous dispersal experience), (2) arena‐experienced (limited dispersal experience in arenas in natural habitat), and (3) natural‐experienced hatchling Blanding's turtles (captured after extensive experience dispersing W in natural habitats toward wetlands). Experienced hatchlings were assigned to treatments consisting of having a magnet or a non‐magnetic aluminum sham or nothing glued to their anterior carapace before release in the corn arena. Dispersal patterns of naïve hatchlings of both species were strongly directional in the field arena with visible target horizons and primarily random in the corn arena where typical target horizons were blocked. When released in corn, dispersal patterns were similar for arena‐experienced hatchlings with magnets or shams attached and differed from their prior dispersal headings in the field arena as naïve hatchlings. Natural‐experienced hatchling Blanding's turtles with and without magnets were able to accurately maintain their prior headings to the WNW while dispersing in the field or corn arenas (i.e., the presence of a magnet did not disrupt their ability to maintain their prior heading). Based on the assumption that no other type of compass exists in hatchlings, we conclude that they were not using a geomagnetic compass, but by default were using sun compass orientation to maintain dispersal headings in dense corn where no typical target habitats were visible.  相似文献   

3.
Expanding the scope of landscape genetics beyond the level of single species can help to reveal how species traits influence responses to environmental change. Multispecies studies are particularly valuable in highly threatened taxa, such as turtles, in which the impacts of anthropogenic change are strongly influenced by interspecific differences in life history strategies, habitat preferences and mobility. We sampled approximately 1500 individuals of three co‐occurring turtle species across a gradient of habitat change (including varying loss of wetlands and agricultural conversion of upland habitats) in the Midwestern USA. We used genetic clustering and multiple regression methods to identify associations between genetic structure and permanent landscape features, past landscape composition and landscape change in each species. Two aquatic generalists (the painted turtle, Chrysemys picta, and the snapping turtle Chelydra serpentina) both exhibited population genetic structure consistent with isolation by distance, modulated by aquatic landscape features. Genetic divergence for the more terrestrial Blanding's turtle (Emydoidea blandingii), on the other hand, was not strongly associated with geographic distance or aquatic features, and Bayesian clustering analysis indicated that many Emydoidea populations were genetically isolated. Despite long generation times, all three species exhibited associations between genetic structure and postsettlement habitat change, indicating that long generation times may not be sufficient to delay genetic drift resulting from recent habitat fragmentation. The concordances in genetic structure observed between aquatic species, as well as isolation in the endangered, long‐lived Emydoidea, reinforce the need to consider both landscape composition and demographic factors in assessing differential responses to habitat change in co‐occurring species.  相似文献   

4.
Great Lakes coastal wetlands are important habitats for turtles but few studies have looked at factors driving community structure in these systems. We evaluated the effects of wetland type, vegetation, and abiotic conditions on turtle communities for 56 wetlands in Lakes Huron, Michigan, and Superior with data collected during the summers of 2000–2008. Overall, 1,366 turtles representing seven species were captured using fyke nets. For the majority of species, catches were highest in drowned river mouth wetlands In addition, turtles tended to be more abundant in water lilies, submersed aquatic vegetation, and cattails compared to bulrush. We also found positive correlations between catches of four of the species as well as total turtle catch and turtle species richness with a human disturbance gradient. These correlations suggest that turtles may be able to utilize coastal wetland areas that are inhospitable to fish because of hypoxic conditions. Our results show the importance Great Lakes coastal wetlands to turtles, and stress the need for managers to take into account turtle populations when preparing conservation and restoration strategies.  相似文献   

5.
ABSTRACT Riparian wetlands are complex ecosystems containing species diversity that may easily be affected by anthropogenic disturbances. Preble's meadow jumping mouse (Zapus hudsonius preblei) is a federally threatened subspecies dependent upon riparian wetlands along the Front Range of Colorado and southeastern Wyoming, USA. Although habitat improvements for Preble's meadow jumping mouse are designed at multiple spatial scales, most knowledge about its habitat requirements has been described at a landscape scale. Our objective was to improve our understanding of Preble's meadow jumping mouse microhabitat characteristics within high-use areas (hotspots), which are essential for the development of effective management and conservation strategies. We evaluated Preble's meadow jumping mouse habitat by describing areas of high use and no use as determined from monitoring radiocollared individuals. A comparison of microhabitat characteristics from random samples of high-use and no-use areas indicated that mice use areas closer to the center of the creek bed and positively associated with shrub, grass, and woody debris cover. Distance to center of the creek bed, and percent of shrub and grass cover also had the greatest relative importance of habitat variables modeled when describing high-use areas. High-use areas contained 3 times more grass cover than forb cover, and overall had a greater proportion of wetland shrub and grass cover. However, proportion of cover type (shrub or grass) did not vary greatly between high-use and no-use areas. Our results suggest that management and conservation efforts should continue to focus on establishment of native wetland vegetation near streams and creeks. For example, vegetation should include shrubs such as willow (Salix spp.), narrowleaf cottonwood (Populus angustifolia), alder (Alnus incana), grasses such as fescue (Fescue spp.), sedges (Carex spp.), and rush (Juncus spp).  相似文献   

6.
This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross‐date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross‐dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.  相似文献   

7.
Eastern box turtles (Terrapene carolina carolina) are widely distributed throughout the eastern United States. Although once common throughout much of its distribution, the species has experienced declines in local populations. Understanding resource selection is important for the conservation of this species; however, few data exist on resource selection for eastern box turtles in the southeastern United States. We estimated home range and resource selection for 100 individual turtles in the Blue Ridge, Ridge and Valley, and Cumberland Plateau and Mountains physiographic regions in Tennessee, USA, from 2016 to 2018. We used step-selection functions to investigate eastern box turtle resource selection during May–August 2017 and May–August 2018 at 2 spatial scales. We classified vegetation type, measured vegetation composition and structure, recorded time since fire, and measured coarse woody debris abundance at 1,225 used telemetry locations and 1,225 associated available points. Home range sizes averaged 9.3 ha ± 3.0 (SE) using minimum convex polygon analysis, 8.25 ha ± 2.88 using 95% kernel density analysis, and 1.50 ha ± 0.56 using 50% kernel density analysis. Box turtles selected areas with greater visual obstruction at the 0–0.25-m level, greater amounts of 10-hour and 100-hour fuels (timelag categories used in fire-danger ratings), and greater litter depths compared to available locations. Box turtles were more likely to select areas with greater cover of brambles and coarser woody debris and were less likely to select areas with less vegetation cover. Vegetation type and time since last fire did not affect selection. Our data suggest that management activities that encourage greater understory vegetation cover, greater visual obstruction at the 0–0.25-m level, and greater bramble cover will enhance habitat quality for eastern box turtles. © 2020 The Wildlife Society.  相似文献   

8.
Freshwater turtles are important consumers in Australian freshwater ecosystems. They serve as scavengers, nutrient regulators, and as food sources and Totems for Traditional Owners throughout Australia. Despite their importance, most Australian freshwater turtle species are declining. The impact of winter wetland drying on turtle populations remains unknown, and winter exposure of hibernating turtles may be an important additional source of mortality. We aimed to examine turtle responses to seasonal and episodic wetland drying in wetlands using acoustic telemetry and active trapping. Wetlands were chosen that spanned a range of hydrological connectivity to the adjacent Edward/Kolety-Wakool River. We found that tagged Emydura macquarii typically exit wetlands disconnected from the adjacent permanent river prior to winter, and overwinter in the river. Female E. macquarii rapidly re-entered ‘home’ wetlands (wetlands in which they were initially tagged) the following spring, whereas males tended to leave the study area, returning occasionally. Although we were not able to evaluate a winter drying event, one of the wetlands experienced partial summer drying. All three local turtle species (E. macquarii, Chelodina expansa, C. longicollis) exited the wetland long before winter drying would have become a potential threat. Our results suggest that turtles in this system may be protected from winter wetland drying because they move to the adjacent permanent river prior to winter. Spending the winter in the river channel reduces the risks of being trapped in a drying wetland as temperatures drop in winter.  相似文献   

9.
Abstract: In the mid-Atlantic region, urban sprawl and development have resulted in habitat alterations and fragmentation; however, the effects on eastern box turtle (Terrapene carolina carolina) populations are unclear. To investigate the status of eastern box turtle populations in a fragmented landscape, we used mark—recapture and radiotelemetry to estimate population density, sex ratio, age structure, and survival on 4 study areas with differing degrees of isolation and human disturbance in northern New Castle County, Delaware, USA. We estimated adult population densities ranging from 0.81 turtles/ha to 3.62 turtles/ha among our 4 study areas. Sex ratios were male-biased at 2 study areas and balanced at 2 study areas. Proportion of juveniles ranged from 0% to 31%. Estimated annual survival rate ranged from 0.813 to 0.977. Mortality of radiotagged and marked turtles was primarily due to natural causes, but mowing was the primary cause of human-induced mortality. We found evidence of population decline at one study area due to low survival and recruitment. Human disturbances, isolation, and habitat composition appear to have the greatest influence on the box turtle populations we studied. To minimize mortality from human disturbance, we suggest planting crops adjacent to forest habitat that require no mowing or mowing at a height ≥15 cm. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):745–753; 2008)  相似文献   

10.
We describe the cloning and characterization of seven microsatellite loci from [CA]‐ and [GA]‐enriched partial genomic libraries of Blanding's turtle, Emydoidea blandingii, and their use in two other species of freshwater turtle, Chrysemys picta and Chelydra serpentina. These loci will be used in a long‐term ecological study of the reproductive success of these co‐occurring freshwater turtle species.  相似文献   

11.
12.
ABSTRACT Although the habitat requirements of breeding populations of Henslow's Sparrow (Ammodramus henslowii) have been examined, less is known about their habitat requirements and ecology during the nonbreeding season. We estimated population densities and quantified habitat associations of Henslow's Sparrows wintering in saline soil barrens in southern Arkansas. Densities of Henslow's Sparrows in the saline soil barrens were similar to those in the Longleaf Pine (Pinus palustris) Ecosystem of the southeastern United States, considered by many to be their primary wintering habitat. Henslow's Sparrows were closely associated with open areas with greater cover of Aristida spp. and globe beaksedge (Rhynchospora globularis), greater stem density at 11–20 cm above ground, more lichens, more herbaceous cover, more bare ground, greater occurrence of little bluestem (Schizacyrium scoparium) as the tallest vegetation, less moss, and less shrub cover than randomly selected sites. In contrast to the results of studies conducted in the Longleaf Pine Ecosystem, the presence of Henslow's Sparrows in our study was not correlated with the height of the tallest vegetation. Our results indicate that saline soil barrens of southern Arkansas support a high density of wintering Henslow's Sparrows and do so for longer postdisturbance periods than longleaf pine savanna. We also found that stem density near the ground was similar to that reported from longleaf pine savanna, but only about half that observed on their breeding grounds. Areas used by Henslow's Sparrows had more lichen and less moss cover, suggesting that those areas were drier than random sites within the barrens. Further research is needed to determine if large populations of Henslow's Sparrows winter in other saline soil barrens and if fire influences habitat associations and densities in the barrens.  相似文献   

13.
Roads are one of the most widespread human‐caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget. We tested whether reptiles avoid roads or road crossings and explored whether the energetic consequences of road avoidance decreased individual fitness. Using telemetry data from Blanding's turtles (Emydoidea blandingii; 11,658 locations of 286 turtles from 15 sites) and eastern massasaugas (Sistrurus catenatus; 1,868 locations of 49 snakes from 3 sites), we compared frequency of observed road crossings and use of road‐adjacent habitat by reptiles to expected frequencies based on simulated correlated random walks. Turtles and snakes did not avoid habitats near roads, but both species avoided road crossings. Compared with simulations, turtles made fewer crossings of paved roads with low speed limits and more crossings of paved roads with high speed limits. Snakes made fewer crossings of all road types than expected based on simulated paths. Turtles traveled longer daily distances when their home range contained roads, but the predicted energetic cost was negligible: substantially less than the cost of producing one egg. Snakes with roads in their home range did not travel further per day than snakes without roads in their home range. We found that turtles and snakes avoided crossing roads, but road avoidance is unlikely to impact fitness through energetic expenditures. Therefore, mortality from vehicle strikes remains the most significant impact of roads on reptile populations.  相似文献   

14.
ABSTRACT Although brood survival has a pronounced effect on population growth in mallards (Anas platyrhynchos), knowledge of brood ecology is more limited than for other vital rates. During 1993–1997 we collected wetland selection data from 210 radiomarked mallard broods on 15 study areas located throughout the Canadian Prairie-Parklands. We used information-theoretic approaches to select the best-approximating model of habitat selection in relation to wetland characteristics. Wetland permanence, cover type, width of flooded emergent vegetation, and interactions between these variables and date, moisture level, and dominant species of emergent vegetation were all important predictors of wetland selection. Mallard broods selected deeper wetlands, especially later in the brood-rearing season. Mallard broods also selected wetlands with large central expanses of open water and wide peripheral zones of flooded emergent cover. These habitat characteristics can most easily be met in landscapes that already contain an abundance and diversity of natural wetland habitats. Where such wetlands are unavailable, restoration or management of deeper wetlands may be necessary to meet the habitat requirements of mallard ducklings.  相似文献   

15.
Remote sensing provides a complementary approach to field sampling to assess whether restored wetland areas provide suitable habitat for the Light-footed Clapper Rail (Rallus longirostris levipes). Habitat requirements for the clapper rail are specified by the composition of vegetation species and their spatial extent in its nesting home range. A major salt marsh construction project has been completed at the Sweetwater Marsh National Wildlife Refuge (“the refuge”), San Diego County. In this paper we describe the application of image classification techniques to high-spatial-resolution digital video imagery (0.8-m pixels) to delimit patches of different marsh vegetation at the refuge. Using maps of vegetation types derived from multi spectral imagery, we estimated the area occupied by each vegetation type in potential clapper rail home ranges. Preliminary field-checking results indicate that this approach is an accurate, noninvasive and cost-efficient means of providing ecological information for restoration monitoring in southern California's remnant wetlands.  相似文献   

16.
Abstract: Shrubland birds are declining throughout the eastern United States. To manage scrub-shrub habitats for birds, managers need information on avian habitat relationships. Past studies have produced contradictory results in some cases and may be of limited generality because of site- and habitat-specific factors. We studied shrubland birds across 6 habitats in 3 New England states to provide more general information on habitat relationships than has been possible in past studies. Our study sites included all major scrub-shrub habitats in New England: wildlife openings, regenerating clear-cuts, beaver ponds, utility rights-of-way, pitch pine (Pinus rigida) woodlands, and scrub oak (Quercus ilicifolia) barrens and ranged from Connecticut to northern New Hampshire, with research conducted from 2002 to 2007. Using N-mixture models of repeated point counts, we found that 6 of 12 shrubland birds preferred areas with greater shrub cover. An additional 4 species appeared to prefer areas with lower-stature vegetation and greater forb cover. Eight of 10 bird species showed relationships with cover of individual plant species, with Spiraea spp., willows (Salix spp.), alders (Alnus spp.), and invasive exotics being the most important. We recommend that shrubland management for birds focus on providing 2 distinct habitats: 1) areas of tall (>1.5 m) vegetation with abundant shrub cover and 2) areas of lower (<1.5 m) vegetation with abundant forb cover but fewer shrubs.  相似文献   

17.
The large-scale effects of habitat alteration produced by oil-industry related pollution on the habitat use of four species of freshwater turtles (Pelusios castaneus, Pelusios niger, Pelomedusa subrufa, Trionyx triunguis) were studied in the River Niger Delta, southern Nigeria (West Africa) between 1996 and 2004. The numbers of turtle specimens observed during our study declined drastically in polluted sites, despite a nearly identical field effort. The number of specimens of all turtle species declined considerably at all habitat types, but complete disappearance in polluted areas was found only with regard to one habitat type for Trionyx triunguis and two habitat types for Pelomedusa subrufa. The mean values of species dominance and diversity indexes were not statistically significant between pristine and altered areas. Based on the interspecific similarity in proportional frequencies of turtle specimens found in each habitat type, a multivariate set of analyses (UPGMA) showed that the turtles were arranged in three ‘ecological’ clusters: a group formed by Pelomedusa subrufa at both polluted and unpolluted areas and Trionyx triunguis at polluted areas; (ii) a group formed by Pelusios castaneus in polluted areas and Pelusios niger in polluted areas; (iii) a group formed by Pelusios castaneus in unpolluted areas and Pelusios niger in unpolluted areas; however, this latter cluster was not very close, as the linkage distance was close to 80% of Euclidean distance. Habitat use similarity among turtles in both polluted and unpolluted study areas was evaluated by the use of two types of overlap formulas (Pianka and Czechanowski) and the use of Monte Carlo randomisations in order to control for the eventual role of chance in the actual data matrix. These data indicated that, for a pair of species (Pelusios niger vs. Pelusios castaneus), there was a statistically significant increase in the similarity of habitat use in the polluted areas vs. the unpolluted areas, and that this pattern was not dependent on the chance. Considering that these two species are ecologically and morphologically similar, we conclude that the most likely consequence at the community level is an increase in the intensity of interspecific competition for space between Pelusios niger and Pelusios castaneus in the polluted areas. Although the direction of the intensification of this competition process could not be easily predicted, it is likely that the species which is least adapted to life in main rivers and creeks may be disadvantaged over the other competitor. The general implications for habitat preservation are also discussed.  相似文献   

18.
Shifts in resource use may be an important mechanism by which organisms can adjust to novel environmental conditions, such as those imposed by climate change. However, for such shifts to be possible, environmental space must exist into which organisms can move. Habitat that ensures successful survival and reproduction is one such critical resource. We studied resource selection of shade cover over nest sites by painted turtles in populations in Illinois (center of range) and New Mexico (southern edge of range). We targeted this habitat feature because shade can influence hatching success and offspring phenotype (including sex in the study species) by affecting nest microenvironments. We found that while turtles in both populations selected nest sites that were shadier than average available sites, overall resource selection differed between the populations. This disparity may have been due to differences in structure of vegetation that provides shade at each site, because areas with high shade cover in New Mexico (low dense thickets) were much more difficult for turtles to access than those in Illinois (dense tree canopy cover). Further, shade cover predicted different parameters of incubation regime at each site, suggesting that turtles must assess dissimilar components of shade cover in order to choose nest sites and predict their future incubation regimes. Our results suggest that shade cover within nesting areas is a key component of painted turtle habitat, and that accessible, highly-shaded nest sites may be limited at the New Mexico site. Maintaining a range of shade cover from which turtles can select nest sites would permit plasticity in nest-site choice to be expressed, which may be important in preventing sex ratio skews due to climate change.  相似文献   

19.
Emys orbicularis is receding from Europe, mainly due to anthropogenic habitat changes. Its parasite, Placobdella costata, is widely distributed within both the former and the present distribution range of the host. Though closely associated with the mud turtle, it may have other hosts (birds, amphibians, reptiles). Its reproductive period coincides with that of its host’s migration to the breeding grounds, thus facilitating dispersal of the parasite. Based on literature data we have analyzed the geographic spread of P. costata and mud turtle to observe the possible overlap of their habitats. Observations on the population of mud turtle and the associated leech species (P. costata) were carried out in eastern Poland — Podlasie Lowland. The studies were conducted in spring and summer in 1986–1993. The leeches were collected from the turtles caught in the water and on land. Observations showed that most leeches were found on turtles inhabiting the lake or moving to a breeding area. The greatest intensity of invasion was observed in June and July and that most leeches were observed in female E. orbicularis characterized by greater length of the carapace and weight, compared with males and juvenile individuals.  相似文献   

20.
The damage caused by some invertebrates to the eggs and hatchlings of loggerhead turtles, Caretta caretta, was investigated during the summer of 2002 on Dalaman beach, Turkey. The specimens, identified to family or genus levels, from nine families representing seven orders were recorded as infesting nests of loggerhead turtles. The heaviest impacts on loggerhead turtle nests was made by Pimelia sp. (Tenebrionidae, Coleoptera). Twenty-four (36.3%) out of 66 intact loggerhead hatched nests were affected by these larvae. Larval damage by Pimelia sp. was recorded in 188 (10.6%) out of 1773 eggs, but only in two (0.28%) hatchlings. The results show that fewer insects were in the nest the further from vegetation and therefore the relocation of nests from the water's edge to further inland close to vegetation may increase the infestation rate of the eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号