首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We compiled, summarized, and reviewed 269 incidents of bear–human conflict involving firearms that occurred in Alaska during 1883–2009. Encounters involving brown bears (Ursus arctos; 218 incidents, 81%), black bears (Ursus americanus; 30 incidents, 11%), polar bears (Ursus maritimus; 6 incidents, 2%), and 15 (6%) unidentified species provided insight into firearms success and failure. A total of 444 people and at least 367 bears were involved in these incidents. We found no significant difference in success rates (i.e., success being when the bear was stopped in its aggressive behavior) associated with long guns (76%) and handguns (84%). Moreover, firearm bearers suffered the same injury rates in close encounters with bears whether they used their firearms or not. Bears were killed in 61% (n = 162) of bear–firearms incidents. Additionally, we identified multiple reasons for firearms failing to stop an aggressive bear. Using logistic regression, the best model for predicting a successful outcome for firearm users included species and cohort of bear, human activity at time of encounter, whether or not the bear charged, and if fish or game meat was present. Firearm variables (e.g., type of gun, number of shots) were not useful in predicting outcomes in bear–firearms incidents. Although firearms have failed to protect some users, they are the only deterrent that can lethally stop an aggressive bear. Where firearms have failed to protect people, we identified contributing causes. Our findings suggest that only those proficient in firearms use should rely on them for protection in bear country. © 2012 The Wildlife Society.  相似文献   

2.
There is a long and contentious history of brown bear (Ursus arctos) harvest management in Alaska, USA, the state that hosts the largest brown bear population in North America. In the mid-1990s, the Alaska Board of Game set the population objective for brown bears in Game Management Unit 13 A, located in interior southcentral Alaska, to be reduced by 50% to improve survival of moose (Alces alces) calves. The Board began further liberalizing brown bear harvest regulations for the unit beginning in regulatory year 1995, though adult females and their dependent offspring (i.e., cubs <2 yrs old) were protected. To evaluate progress toward this abundance objective, we captured and collared bears between 2006 and 2011 and conducted a capture-mark-resight density survey during summer 2011 for comparison to a similar baseline survey conducted in 1998. We report the results of the density survey and vital rates estimated from resight histories of collared bears and harvest information spanning from 1985 (10 years before establishment of the population objective) to 2012. There was a 25–40% reduction in abundance between 1998 and 2011. Population growth rates derived from density estimates and a matrix population projection model indicated that the population declined by 2.3–4.2% annually. We estimated harvest rates to be 8–15% annually, but harvest composition data indicated no changes in skull size, age distribution, or overall sex ratio. There was evidence of an increase in the proportion of older females in the harvest. Demographic analysis indicated high reproductive output and recruitment, potentially indicating a density-dependent compensatory response to reduced population size. Despite 13 years of harvest rates in excess of what had previously been considered to be sustainable for this population, the objective of reducing bear abundance by 50% had not been achieved as of 2011. The protection of females and dependent offspring in our study population appears to be a sufficient safeguard against a precipitous population decline while still permitting progress toward the population objective through high harvest on other segments of the population. © 2020 The Wildlife Society.  相似文献   

3.
Human-caused mortality in general, and unregulated hunting in particular, have been implicated in reductions in brown bear (Ursus arctos) populations throughout much of their range. In northwestern Alaska, USA, bear densities have not been assessed in 20 years while harvest regulations have been liberalized, raising concerns that broad undetected population declines might occur. We used a modified mark-resight approach to estimate brown bear density during 2005–2018 in 4 subareas throughout the region. We also summarized harvest information for each subarea and used our survey results to estimate harvest rates. We estimated densities for independent bears assuming constant or heterogeneous probabilities of detection and occurrence. We present the results of the constant model for more direct comparison with past work and the heterogeneity model results to provide estimates of density that are less likely to be negatively biased. Using the constant model, we estimated the density of independent bears was 17.0, 49.2, 24.9, and 19.4/1,000 km2 on portions of the Seward Peninsula, the lower Noatak River, the upper Noatak River, and Gates of the Arctic National Park and Preserve, respectively. These estimates are broadly similar to those from past work in interior and northwestern Alaska, with the exception of the lower Noatak River subarea where our estimates are the highest reported for a bear population in northern Alaska. We estimated that the harvest rate on the Seward Peninsula was approximately 5.2% or 7.7% on average, depending upon the model used. In the remaining areas, we estimated annual harvest rates were <2.5%, well within sustainability guidelines from past work. Overall, our results suggest that brown bear densities are similar or somewhat higher than in the past in much of northwestern Alaska and that current harvest rates are sustainable in most areas, except perhaps the Seward Peninsula. Ongoing survey work will be useful for further evaluating the assumptions of the modified mark-resight survey approach, assessing population trajectory, and determining the effect of harvest on brown bear populations. © 2021 The Wildlife Society.  相似文献   

4.
ABSTRACT Increasing demand for backcountry recreation opportunities during winter (e.g., snowshoeing, helicopter-assisted skiing, snowmobiling) in steep, high-elevation terrain has elevated concern about disturbance to brown bears (Ursus arctos) denning on the Kenai Peninsula, Alaska, USA. To help identify areas where such conflicts might occur, we developed a spatially explicit model to predict potential den habitat. The model indicated brown bears selected locations for den sites with steep slopes, away from roads and trails. Den sites were associated with habitat high in elevation and away from potential human contact. We then compared areas with the highest probability of providing den habitat with patterns of snowmobile and nonmotorized recreation on a portion of the Kenai Peninsula. We found limited overlap between the 2 recreation activities and potential den habitat for brown bears. At the landscape scale, however, backcountry skiing overlapped more high-quality den habitat than did snowmobile riding. Our results may be used by land management agencies to identify potential conflict sites and to minimize the potential effects of recreation activities on brown bears in dens.  相似文献   

5.
Several studies have documented the effectiveness of bear spray in protecting users from aggressive bears. Bear spray failures, however, have also been reported along with speculation regarding the influences of temperature, wind, repeated canister use, and canister age on spray efficacy. We designed lab and field experiments to document the influence that temperature, wind, repeated discharges from the same canister, and canister age have on bear spray performance. To determine the influence of temperature on spray performance, we recorded canister head pressures at temperatures ranging from −23°C to 25°C and found a strong, positive linear relationship. Even at the lowest temperature tested (−23°C), bear spray had a range >4 m, though the plume was narrow and the spray was not well aerosolized. As canister temperature increased, head pressure, plume distance, and dispersion increased. We used computational fluid dynamics modeling and simulated the effect that headwinds, crosswinds, and tailwinds of varying speeds had on spray performance. Even under high headwind and crosswind scenarios (>10 m/sec), sprays reached targets that were approximately 2 m directly in front of the user. Crosswinds affected spray plume distance similar to headwinds, but the effect was not as pronounced. Tailwinds improved spray performance with respect to speed and distance. By weighing unused canisters ≤18 years old, brands tested lost weight ranging from 0.65 g/year to 1.92 g/year, presumably because of propellant that escaped canister seals. We also documented that bear spray head pressure declines in a logarithmic, not linear, fashion; over half of a new (7-sec spray time) canister's pressure was lost in the first 1 second of spray. We recommend not test-firing cans, keeping cans warm when in the cold, and retiring them when ≥4 years of age. Our results provide no compelling reason to not carry bear spray in all areas where bears occur, even if it is windy or cold. © 2020 The Wildlife Society.  相似文献   

6.
ABSTRACT We encourage informed and transparent decision-making processes concerning the recently expanded programs in Alaska, USA, to reduce predation on moose (Alces alces). The decision whether to implement predator control ultimately concerns what society should value; therefore, policymakers, not objective biologists, play a leadership role. From a management and scientific standpoint, biological support for these predator-control programs requires convincing evidence that 1) predators kill substantial numbers of moose that would otherwise mostly live and be available for harvest, 2) low predation can facilitate reliably higher harvests of moose, 3) given less predation, habitats can sustain more moose and be protected from too many moose, and 4) sustainable populations of Alaska's brown bears (Ursus arctos), black bears (Ursus americanus), and wolves (Canis lupus) will exist in and out of control areas. We reviewed 10 moose mortality studies, 36 case histories, 10 manipulative studies, 15 moose nutrition studies, and 3 recent successful uses of nutrition-based management to harvest excess female moose. Results of these studies support application of long-term, substantial predator control for increasing yield of moose in these simple systems where moose are a primary prey of 3 effective predators. We found no substantive, contradictory results in these systems. However, to identify and administer feasible moose population objectives, recently established moose nutritional indices must be monitored, and regulatory bodies must accept nutrition-based management. In addition, the efficacy of techniques to reduce bear predation requires further study. Predicting precise results of predator control on subsequent harvest of moose will continue to be problematic because of a diversity of changing interactions among biological, environmental, and practical factors. In Alaska, the governor has the prerogative to influence regulations on predator control by appointing members to the Board of Game. At least annually, the Board of Game hears a wide spectrum of public opinions opposing and favoring predator control. We summarized these opinions as well as the societal and cultural values and expectations that are often the primary basis for debates. Advocates on both sides of the debate suggest they hold the higher conservation ethic, and both sides provide biased science. We recommend a more constructive and credible dialogue that focuses openly on values rather than on biased science and fabricated conspiracies. To be credible and to add substance in this divisive political arena, biologists must be well informed and provide complete information in an unbiased and respectful manner without exaggeration.  相似文献   

7.
The brown bears of coastal Alaska have been recently regarded as comprising from one to three distinct genetic groups. We sampled brown bears from each of the regions for which hypotheses of genetic uniqueness have been made, including the bears of the Kodiak Archipelago and the bears of Admiralty, Baranof and Chichagof (ABC) Islands in southeast Alaska. These samples were analysed with a suite of nuclear microsatellite markers. The 'big brown bears' of coastal Alaska were found to be part of the continuous continental distribution of brown bears, and not genetically isolated from the physically smaller 'grizzly bears' of the interior. By contrast, Kodiak brown bears appear to have experienced little or no genetic exchange with continental populations in recent generations. The bears of the ABC Islands, which have previously been shown to undergo little or no female-mediated gene flow with mainland populations, were found not to be genetically isolated from mainland bears. The data from the four insular populations indicate that female and male dispersal can be reduced or eliminated by water barriers of 2–4 km and 7km in width, respectively.  相似文献   

8.
Timber interests target coastal temperate rainforests, and within them stands composed of large trees potentially selected by American black bears (Ursus americanus) for denning. We identified the location of 75 black bear dens (used ≥14 days) in an intensively logged area on Prince of Wales Island, Alaska, USA. We ground-visited a subset (n = 43) of these sites to measure the diameter of living trees and woody structures used by black bears for denning. We contrasted dens with random trees available in the study area in a series of models to characterize black bear den selection. All but 1 of 43 ground-visited dens were located within woody structures, and all but 2 of these structures were >1 m diameter at breast height (dbh). We built resource selection functions (RSFs) to investigate black bear den selection across a range of spatial scales, though estimated selection was generally scale invariant. Black bears strongly selected large-diameter woody structures (dead or alive) as dens at the home-range scale, with the estimated relative strength of selection (RSS) for a 2-m-diameter tree approximately 166 times that of a 1-m-diameter tree. The estimated RSS of logged forest was unexpectedly greater (2.75 times) than that of the remaining commercially valuable old-growth forest. Selection for den structures within stumps in previously logged stands suggests features of the woody structure may be of greater importance to black bears selecting dens than attributes of the surrounding forest. There was no observed correlation between bear den selection and second-growth age, indicating that stumps may persist as suitable dens well after logging. Because denning is an important part of their life history and the denning structures used by black bears on Prince of Wales Island will eventually decay, retaining habitat value for bears in areas intensively managed for timber harvest requires strategies to recruit very large, old trees throughout the landscape. © 2021 The Wildlife Society.  相似文献   

9.
Human–wildlife interactions are often associated with a myriad of stakeholder groups, intense political scrutiny, and limited biological data, creating complex decision-making situations for wildlife management agencies. Limited research exists on the development and testing of tools (e.g., models to predict the spatial distribution of interactions) to reduce human–black bear (Ursus americanus) interactions (HBI). Available models predicting spatial distribution of HBI are usually developed at scales too large to predict across urban areas, are rarely tested against independent data sets, and usually do not incorporate both landscape and anthropogenic variables. Our objective was to develop a predictive modeling tool that could identify areas of high conflict potential across urban landscapes. We compared locations of HBI in Missoula, MT, recorded by Montana Fish, Wildlife & Parks from 2003 to 2008, to random locations using logistic regression. The final model discriminated the relative spatial probability of HBI within Missoula well, and a second study area moderately. The probability of HBI in Missoula increased when residents lived close to forested patches and major rivers and streams and in intermediate housing densities (approx. 6.59 houses/ha). Our results provide a wildlife management tool and a repeatable statistical framework that predicts spatial distribution of HBI using only a small set of variables. © 2011 The Wildlife Society.  相似文献   

10.
Abstract We developed a snare for collection of black bear (Ursus americanus) hair that obtained a unique hair sample at each snare site, improved the quantity of collected hair compared to barbed-wire corrals, and was easy to deploy over a wide range of topographical features and habitat conditions. This device allowed us to implement intensive sampling methodology needed in mark-recapture experiments with minimal effort. By improving the quantity of hair collected, we also lowered the potential for bear identification errors at the lab. During 2003–2004, bears in 2 study areas triggered snares 1,104 times, which resulted in the collection of 981 hair samples. Of the samples we collected, 79% (775) produced valid genetic data. In 2003, 454 samples identified 79 genetically distinct individuals, and 321 samples identified 86 genetically distinct individuals in 2004. Analysis of capture-recapture data indicated that capture probabilities were affected by heterogeneity among individuals and behavioral responses, but showed little evidence of time effects. Consequently, we used the Pollock and Otto (1983) estimator for model Mbh to estimate abundance with reasonably good precision (CV: 12–14%). Density on the Steamboat and Toketee, Oregon, USA, study areas over the 2-year period averaged 19 bears/100 km2 and 22 bears/100 km2, respectively. Average capture and recapture probabilities over the 2 years of the study were 30% and 63%, respectively, indicating a trap-prone behavioral response. Knowledge of bear densities on the Steamboat and Toketee study areas will enable managers to set hunting quotas, advise land management agencies on habitat issues, and create a baseline database to assist in the long-term monitoring of bear trends in a changing landscape.  相似文献   

11.
ABSTRACT Global Positioning System (GPS) telemetry is a prevalent tool now used in the study of large mammals. Global Positioning Systems either store the data on board the collar or contain a remote-transfer system that allows for data recovery at more frequent intervals. Spread spectrum (S-S) technology is a new mode of data transfer designed to overcome interference problems associated with narrow-band very high frequency and ultra high frequency data-transfer systems. We evaluated performance of S-S GPS radiocollars deployed on grizzly (Ursus arctos) and black bears (U. americanus). We also evaluated variables that influenced GPS fix success rates, with particular focus on animal activity, time of year, and temperature. The S-S GPS collars performed to our expectations and met study objectives; we did not experience any major problems with the data-transfer system. We observed varying rates of fix success that were directly related to recorded activity counts. Using logistic regression, we verified that activity counts were a reasonable measure of resting or feeding-traveling in both bear species. Our results showed that 73% and 79% of missed fixes, respectively, occurred when we predicted black and grizzly bears to be resting. Temperatures measured in the canister of the collar were not correlated with air temperature, suggesting posture and activity influenced canister temperature. Both measures of temperature were predictive of fix success. We did not find that fix success was related to body morphology (i.e., neck circumference, mass, and chest girth), fix interval, position of the GPS antenna relative to the sky, or sex of the bear. We conclude that fix success for both species is strongly related to activity patterns and time of year. Activity counters appear to be a reasonable measure of this behavior, and we recommend researchers consider including an activity-count system when deploying GPS collars. We also recommend researchers explore building separate models of habitat selection based upon categories of activity to account for bias in fix success associated with bear behavior.  相似文献   

12.
13.
Abstract: Augmentation of large carnivore populations can be a valuable management and recovery tool, but success of many programs has not been well documented. The Cabinet—Yaak grizzly bear (Ursus arctos) population was located in northwestern Montana and northern Idaho, USA, and was estimated at 30–40 individuals. The Cabinet Mountains portion of this area may be isolated from the remainder of the zone and was the site of a test of grizzly bear population augmentation. Experimental objectives included evaluating site fidelity, reproduction, and long-term survival of the translocated bears. Four subadult females (2–6 yr old) were translocated from southeastern British Columbia, Canada, from 1990 to 1994. Three of 4 transplanted bears remained in the target area for ≥1 year and satisfied the short-term goal for site fidelity. Recent genetic evidence gathered through hair-snagging efforts has determined that at least one of the original transplanted animals has reproduced, thereby providing evidence of success for the long-term goals of survival and reproduction.  相似文献   

14.
Grizzly bears (Ursus arctos) and American black bears (U. americanus) are sympatric in much of Yellowstone National Park. Three primary bear foods, cutthroat trout (Oncorhynchus clarki), whitebark pine (Pinus albicaulis) nuts, and elk (Cervus elaphus), have declined in recent years. Because park managers and the public are concerned about the impact created by reductions in these foods, we quantified bear diets to determine how bears living near Yellowstone Lake are adjusting. We estimated diets using: 1) stable isotope and mercury analyses of hair samples collected from captured bears and from hair collection sites established along cutthroat trout spawning streams and 2) visits to recent locations occupied by bears wearing Global Positioning System collars to identify signs of feeding behavior and to collect scats for macroscopic identification of residues. Approximately 45 ± 22% ( ± SD) of the assimilated nitrogen consumed by male grizzly bears, 38 ± 20% by female grizzly bears, and 23 ± 7% by male and female black bears came from animal matter. These assimilated dietary proportions for female grizzly bears were the same as 10 years earlier in the Lake area and 30 years earlier in the Greater Yellowstone Ecosystem. However, the proportion of meat in the assimilated diet of male grizzly bears decreased over both time frames. The estimated biomass of cutthroat trout consumed by grizzly bears and black bears declined 70% and 95%, respectively, in the decade between 1997–2000 and 2007–2009. Grizzly bears killed an elk calf every 4.3 ± 2.7 days and black bears every 8.0 ± 4.0 days during June. Elk accounted for 84% of all ungulates consumed by both bear species. Whitebark pine nuts continue to be a primary food source for both grizzly bears and black bears when abundant, but are replaced by false-truffles (Rhizopogon spp.) in the diets of female grizzly bears and black bears when nut crops are minimal. Thus, both grizzly bears and black bears continue to adjust to changing resources, with larger grizzly bears continuing to occupy a more carnivorous niche than the smaller, more herbivorous black bear. © 2012 The Wildlife Society.  相似文献   

15.
Black bears (Ursus americanus) were once abundant in Nevada and distributed throughout the state, yet recognition of the species' historical occurrence in the state is uncommon and has therefore been ignored in published distribution maps for North America. The lack of representation on distribution maps is likely due to the lack of any scientific data or research on bears in Nevada until 1987. Historical records dating back to the 1840s compiled by Nevada Department of Wildlife (NDOW) biologist Robert McQuivey indicate presence of black bears throughout the state in the 1800s through about 1930. The paucity of historical references after 1931 suggest extirpation of black bears from Nevada's interior mountain ranges by this time. We report on historical records of black bears in the state of Nevada and the results of a current population estimate of black bears derived from a sample of marked bears (n = 420) captured 707 times between 1997 and 2008. Using Pradel and Cormack–Jolly–Seber models in Program MARK, we estimated overall population size, finite rate of growth (λ = 1.16), quarterly and annual survival rates for males and females, seasonal capture probabilities, and recruitment rates. Our results indicate an overall population size of 262 ± 31 adult black bears in western Nevada. These results suggest that the once abundant, then extirpated population of black bears in Nevada is increasing at an annual average rate of 16%. Although the current distribution is limited to the western part of the state, our findings suggest possible expansion of the population into historical habitat within the interior and eastern portions of the state that have been absent of bears for >80 years. Finally, based on historical records, we present suggested revised historical distribution maps for black bears that include the Great Basin ranges in Nevada. © 2013 The Wildlife Society.  相似文献   

16.
Abstract: Regional wildlife-habitat models are commonly developed but rarely tested with truly independent data. We tested a published habitat model for black bears (Ursus americanus) with new data collected in a different site in the same ecological region (i.e., Ouachita Mountains of Arkansas and Oklahoma, USA). We used a Mahalanobis distance model developed from relocations of black bears in Arkansas to produce a map layer of Mahalanobis distances on a study area in neighboring Oklahoma. We tested this modeled map layer with relocations of black bears on the Oklahoma area. The distributions of relocations of female black bears were consistent with model predictions. We conclude that this modeling approach can be used to predict regional suitability for a species of interest.  相似文献   

17.
18.
Most animals concentrate their movement into certain hours of the day depending on drivers such as photoperiod, ambient temperature, inter‐ or intraspecific competition, and predation risk. The main activity periods of many mammal species, especially in human‐dominated landscapes, are commonly set at dusk, dawn, and during nighttime hours. Large carnivores, such as brown bears, often display great flexibility in diel movement patterns throughout their range, and even within populations, striking between individual differences in movement have been demonstrated. Here, we evaluated how seasonality and reproductive class affected diel movement patterns of brown bears of the Dinaric‐Pindos and Carpathian bear populations in Serbia. We analyzed the movement distances and general probability of movement of 13 brown bears (8 males and 5 females) equipped with GPS collars and monitored over 1–3 years. Our analyses revealed that movement distances and probability of bear movement differed between seasons (mating versus hyperphagia) and reproductive classes. Adult males, solitary females, and subadult males showed a crepuscular movement pattern. Compared with other reproductive classes, females with offspring were moving significantly less during crepuscular hours and during the night, particularly during the mating season, suggesting temporal niche partitioning among different reproductive classes. Adult males, solitary females, and in particular subadult males traveled greater hourly distances during the mating season in May‐June than the hyperphagia in July–October. Subadult males significantly decreased their movement from the mating season to hyperphagia, whereas females with offspring exhibited an opposite pattern with almost doubling their movement from the mating to hyperphagia season. Our results provide insights into how seasonality and reproductive class drive intrapopulation differences in movement distances and probability of movement in a recovering, to date little studied, brown bear population in southeastern Europe.  相似文献   

19.
ABSTRACT The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly-black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear-human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats.  相似文献   

20.
Habitat fragmentation and loss contribute to isolation of wildlife populations and increased extinction risks for various species, including many large carnivores. We studied a small and isolated population of American black bears (Ursus americanus) that is of conservation concern in central Georgia, USA (i.e., central Georgia bear population [CGBP]). Our goal was to evaluate the potential for demographic and genetic interchange from neighboring bear populations to the CGBP. To evaluate resource selection and movement potential, we used 35,487 global positioning system locations collected every 20 minutes from 2012 to 2014 from 33 male bears in the CGBP. We then developed a step selection function model based on conditional logistic regression. Male bears chose steps that avoided crops, roads, and human developments and were closer to forests and woody wetlands than expected based on availability. We used a geographic information system to simulate 300 bear movement paths from nearby bear populations in northern Florida, northern Georgia, and southern Georgia to estimate the potential for immigration to the CGBP. Only 4 simulated movement paths from the nearby populations intersected the CGBP. The creation of a hypothetical 1-km-wide corridor between the southern Georgia population and the CGBP produced only minor improvements in interchange. Our findings suggest that demographic connectivity between the CGBP and surrounding bear populations may be limited, and coupled with previous works showing genetic isolation in the CGBP, that creation of corridors may have only marginal effects on restoring gene flow, at least in the near term. Management actions such as translocation and the establishment of stepping stone populations may be needed to increase the genetic diversity and demographic stability of bears in the CGBP. © 2021 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号