首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TOP2A gene is located on chromosome 17 close to the HER-2 gene. It encodes an enzyme involved in the regulation of cell proliferation. Using fluorescence in situ hybridization (FISH), we have examined fine needle aspiration smears from 42 cases of breast carcinoma with probes for TOP2A, HER-2 and chromosome 17. We found that amplification of TOP2A is a frequent finding in breast cancer and is often but not exclusively accompanied by HER-2 gene amplification. It is associated with high histological grade and oestrogen receptor (ER) negativity. TOP2A deletions may also be associated with high histological grade and loss of ER. TOP2A amplification in the absence of HER-2 amplification may be associated with lower histological grade and ER positivity. Testing for TOP2A aberrations may be useful in the search for individually tailored treatment regimes for breast cancer.  相似文献   

2.
Chinese hamster ovary (CHO) cell lines are widely used for scientific research and biotechnology. A CHO genomic bacterial artificial chromosome (BAC) library was constructed from a mouse dihydrofolate reductase (DHFR) gene‐amplified CHO DR1000L‐4N cell line for genome‐wide analysis of CHO cell lines. The CHO BAC library consisted of 122,281 clones and was expected to cover the entire CHO genome five times. A CHO chromosomal map was constructed by fluorescence in situ hybridization (FISH) imaging using BAC clones as hybridization probes (BAC‐FISH). Thirteen BAC‐FISH marker clones were necessary to identify all the 20 individual chromosomes in a DHFR‐deficient CHO DG44 cell line because of the aneuploidy of the cell line. To determine the genomic structure of the exogenous Dhfr amplicon, a 165‐kb DNA region containing exogenous Dhfr was cloned from the BAC library using high‐density replica (HDR) filters and Southern blot analysis. The nucleotide sequence analysis revealed a novel genomic structure in which the vector sequence containing Dhfr was sandwiched by long inverted sequences of the CHO genome. Biotechnol. Bioeng. 2009; 104: 986–994. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Genomic rearrangements resulting in activating kinase fusions have been increasingly described in a number of cancers including malignant melanoma, but their frequency in specific melanoma subtypes has not been reported. We used break‐apart fluorescence in situ hybridization (FISH) to identify genomic rearrangements in tissues from 59 patients with various types of malignant melanoma including acral lentiginous, mucosal, superficial spreading, and nodular. We identified four genomic rearrangements involving the genes BRAF, RET, and ROS1. Of these, three were confirmed by Immunohistochemistry (IHC) or sequencing and one was found to be an ARMC10‐BRAF fusion that has not been previously reported in melanoma. These fusions occurred in different subtypes of melanoma but all in tumors lacking known driver mutations. Our data suggest gene fusions are more common than previously thought and should be further explored particularly in melanomas lacking known driver mutations.  相似文献   

4.
Methotrexate (MTX) is one of the most important drugs for osteosarcoma (OS) treatment. To identify genetic aberrations associated with the development of MTX resistance in OS cells, in addition to the previously reported expression changes of dihydrofolate reductase (DHFR) and reduced folate carrier (RFC) genes, comparative genomic hybridization (CGH)-based techniques were used. The direct comparison between MTX-resistant variants of U-2OS or Saos-2 human OS cell lines with their respective parental cell lines by CGH on chromosomes revealed that development of MTX resistance was associated with gain of the chromosomal regions 5q12-q15 and 11q14-qter in U-2OS variants, and with gain of 8q22-qter in Saos-2 variants. Further analyses by CGH on microarrays demonstrated a progressively increasing gain of mixed lineage leukemia (MLL) gene (11q23) in U-2OS MTX-resistant variants, which was also confirmed by fluorescence in situ hybridization (FISH), in addition to gain of FGR (1p36), amplification/overexpression of DHFR, and slight decrease of RFC expression. In Saos-2 MTX-resistant variants, gain of MYC (8q24.12-q24.13) was detected, together with a remarkable decrease of RFC expression. Further analyses of DHFR, MLL, MYC, and RFC gene status in four additional human OS cell lines revealed that only gain of DHFR and MLL were associated with an inherent lower sensitivity to MTX. These data demonstrate that genetic analyses with complementary techniques are helpful for the identification of new candidate genes, which might be considered for an early identification of MTX unresponsive tumors.  相似文献   

5.
Tissue microarray (TMA) technology has provided a high throughput means of evaluating potential biomarkers and therapeutic targets in archival pathological specimens. TMAs facilitate the rapid assessment of molecular alterations in hundreds of different tumours on a single slide. Sections from TMAs can be used for any in situ tissue analysis, including fluorescent in situ hybridization (FISH). FISH is a molecular technique that detects numerical and structural abnormalities in both metaphase chromosomes and interphase nuclei. FISH is commonly used as a prognostic and diagnostic tool for the detection of translocations and for the assessment of gene deletion and amplification in tumours. Performing FISH on TMAs enables researchers to determine the clinical significance of specific genetic alterations in hundreds of highly characterized tumours. The use of FISH on archival paraffin embedded tissues is technically demanding and becomes even more challenging when applied to paraffin embedded TMAs. The problems encountered with FISH on TMAs, including probe preparation, hybridization, and potential applications of FISH, will be addressed in this review.  相似文献   

6.
Somatic sequencing of cancers has produced new insight into tumorigenesis, tumor heterogeneity, and disease progression, but the vast majority of genetic events identified are of indeterminate clinical significance. Here, we describe a NextGen sequencing approach to fully analyzing 248 genes, including all those of known clinical significance in melanoma. This strategy features solution capture of DNA followed by multiplexed, high‐throughput sequencing and was evaluated in 31 melanoma cell lines and 18 tumor tissues from patients with metastatic melanoma. Mutations in melanoma cell lines correlated with their sensitivity to corresponding small molecule inhibitors, confirming, for example, lapatinib sensitivity in ERBB4 mutant lines and identifying a novel activating mutation of BRAF. The latter event would not have been identified by clinical sequencing and was associated with responsiveness to a BRAF kinase inhibitor. This approach identified focal copy number changes of PTEN not found by standard methods, such as comparative genomic hybridization (CGH). Actionable mutations were found in 89% of the tumor tissues analyzed, 56% of which would not be identified by standard‐of‐care approaches. This work shows that targeted sequencing is an attractive approach for clinical use in melanoma.  相似文献   

7.

Background

Topoisomerase I (Top1) is the target of Top1 inhibitor chemotherapy. The TOP1 gene, located at 20q12-q13.1, is frequently detected at elevated copy numbers in colorectal cancer (CRC). The present study explores the mechanism, frequency and prognostic impact of TOP1 gene aberrations in stage III CRC and how these can be detected by fluorescent in situ hybridization (FISH).

Methods

Nine CRC cell line metaphase spreads were analyzed by FISH with a TOP1 probe in combination with a reference probe covering either the centromeric region of chromosome 20 (CEN-20) or chromosome 2 (CEN-2). Tissue sections from 154 chemonaive stage III CRC patients, previously studied with TOP1/CEN-20, were analyzed with TOP1/CEN-2. Relationships between biomarker status and overall survival (OS), time to recurrence (TTR) in CRC and time to local recurrence (LR; rectal cancer only) were determined.

Results

TOP1 aberrations were observed in four cell line metaphases. In all cell lines CEN-2 was found to reflect chromosomal ploidy levels and therefore the TOP1/CEN-2 probe combination was selected to identify TOP1 gene gains (TOP1/CEN-2≥1.5). One hundred and three patients (68.2%) had TOP1 gain, of which 15 patients (14.6%) harbored an amplification (TOP1/CEN-20≥2.0). TOP1 gene gain did not have any association with clinical endpoints, whereas TOP1 amplification showed a non-significant trend towards longer TTR (multivariate HR: 0.50, p = 0.08). Once amplified cases were segregated from other cases of gene gain, non-amplified gene increases (TOP1/CEN-2≥1.5 and TOP1/CEN-20<2.0) showed a trend towards shorter TTR (univariate HR: 1.57, p = 0.07).

Conclusions

TOP1 gene copy number increase occurs frequently in stage III CRC in a mechanism that often includes CEN-20. Using CEN-2 as a measurement for tumor ploidy levels, we were able to discriminate between different mechanisms of gene gain, which appeared to differ in prognostic impact. TOP1 FISH guidelines have been updated.  相似文献   

8.
9.
10.
11.
Wang J  Xiang F  Xia G 《Planta》2005,221(2):277-286
The introgressed small-chromosome segment of Agropyron elongatum (Host.) Neviski (Thinopyrum ponticum Podp.) in F5 line II-1-3 of somatic hybrid between common wheat (Triticum aestivum L.) and A. elongatum was localized by sequential fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and karyotype data. Karyotype analysis offered basic data of arm ratios and relative lengths of 21 pairs of chromosomes in parent wheat Jinan177 and hybrid II-1–3. Using special high repetitive sequences pSc119.2 and pAs1 for FISH, the entire B- and D-genome chromosomes were detected. The FISH pattern of hybrid II-1-3 was the same as that of parent wheat. GISH using whole genomic DNA from A. elongatum as probe determined the alien chromatin. Sequential GISH and FISH, in combination with some of the karyotype data, localized the small chromosome segments of A. elongatum on the specific sites of wheat chromosomes 2AL, 1BL, 5BS, 1DL, 2DL and 6DS. FISH with probe OPF-031296 from randomly amplified polymorphic DNA (RAPD) detected E-genome chromatin of A. elongatum, which existed in all of the small chromosome segments introgressed. Microsatellite primers characteristic for the chromosome arms above were used to check the localization and reveal the genetic identity. These methods are complementary and provide comprehensive information about the genomic constitution of the hybrid. The relationship between hybrid traits and alien chromatin was discussed.  相似文献   

12.
Fluorescence in situ hybridization (FISH) is a useful method of determining the replication timing of specific genomic loci in mammals and of delineating replicon structures on DNA fibers in combination with in vivo replication labeling. In the case of simultaneous detection of a FISH probe and replicated forks, however, the DNA fibers are damaged by the DNA denaturation step for FISH detection, and the resulting fragmented fluorescence signals prevent analysis at high resolution. Here we found that hybridization of the probe to the genomic DNA was possible even under non-denaturing condition, but only at the time its genomic region replicated. Using the method designated non-denaturing FISH, we determined the replication timing of a specific BAC clone and the standard clones, and found that at least one replication origin exists within the genomic region covered by its BAC clone as an example.  相似文献   

13.
王燕  陈清  陈涛  张静  汤浩茹  王小蓉 《西北植物学报》2017,37(10):2087-2096
基因组原位杂交(GISH)技术可以鉴定植物多倍体物种起源、杂种亲本染色体来源和组成,分析栽培种与其近缘野生种的亲缘关系,研究减数分裂染色体行为等。基因组原位杂交包括多色基因组原位杂交、比较基因组原位杂交和自身基因组原位杂交等。基因组原位杂交技术的关键步骤是染色体制片、探针制备及长度优化、探针与封阻的浓度比例和杂交后洗脱强度。该文对近年来国内外有关基因组原位杂交技术的发展及其在园艺植物基因组研究中的应用现状进行了综述,并指出随着多种园艺植物全基因组的测定,未来应从基因组信息中寻找更多的染色体特异性标记,结合荧光显带及荧光原位杂交技术,为深入研究园艺植物的起源以及遗传关系鉴定等提供技术支持。  相似文献   

14.
American ginseng (Panax quinquefolius L.) is one of the most valuable herbs in the world. Its major active components are ginsenosides. In order to produce ginsenoside heterogeneously, somatic hybridization, a novel approach for genetic introgression, was employed in this study. Protoplasts derived from respective calli of carrot (Daucus carota var. sativus Hoffm.) and American ginseng (P. quinquefolius L.) were used as the fusion partners. Hybrid calli derived from single cell lines containing chromatin of American ginseng were confirmed by the analyses of isozyme, Random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH). High performance liquid chromatography (HPLC) results showed that the ginseng monomer Rb1 was synthesized in seven of the hybrid calli identified as well as in the parent American ginseng calli but not in the parent carrot calli. Results indicated that hybrid introgression lines could produce ginsenoside Rb1 and the ginsenoside Rb1 biosynthesis pathway has been introgressed into carrot cells via somatic hybridization. From the point of biosafety view concerning the consumer acceptance, the potential predominance to produce ginsenosides with somatic hybridization other than with genetic transformation is discussed. Lu Han and Chuanen Zhou contributed equally to this work.  相似文献   

15.
ABSTRACT

Cell suspension-derived protoplasts of two cultivated Rubus species, Rubus idaeus-raspberry (subgenus Idaeobatus 2n=2x=14) and R. fruticosus-blackberry (a complex species aggregate within the subgenus Eubatus, 2n=4x=28) were fused using different polyethylene glycol (PEG) fusion treatments. Duration of PEG treatment and choice of culture media influenced the rate of cell divisions and plating efficiency. Colony formation was initiated on solid media for the production of several callus lines. Cytological analyses were performed on selected callus lines with hexaploid chromosome number. Two hexaploid fusion callus lines, selected for their homogeneity in growth and ploidy level, were examined by molecular cytogenetic techniques of fluorescent in situ hybridisation (FISH) and genomic in situ hybridisation (GISH). GISH revealed the presence of the heterokaryon within the fusion callus lines. FISH probed with ribosomal DNA (rDNA) showed variable numbers and sizes of loci. Aberrant distribution and condensation of rDNA were common in interphase cells. FISH results suggest that large karyotype rearrangements occurred, including variation in chromosome number and rDNA loci translocations. Attempts to regenerate plants from the hexaploid callus lines following several applications of plant growth regulator combinations were unsuccessful. This may be attributed to the genomic reorganisation and instability of these long-term fusion callus cultures.  相似文献   

16.
Interspecific hybridization is a significant evolutionary force as well as a powerful method for crop breeding. Partial substitution of the AA subgenome in Brassica napus (AnAnCnCn) with the Brassica rapa (ArAr) genome by two rounds of interspecific hybridization resulted in a new introgressed type of B. napus (ArArCnCn). In this study, we construct a population of recombinant inbred lines of the new introgressed type of B. napus. Microsatellite, intron‐based and retrotransposon markers were used to characterize this experimental population with genetic mapping, genetic map comparison and specific marker cloning analysis. Yield‐related traits were also recorded for identification of quantitative trait loci (QTLs). A remarkable range of novel genomic alterations was observed in the population, including simple sequence repeat (SSR) mutations, chromosomal rearrangements and retrotransposon activations. Most of these changes occurred immediately after interspecific hybridization, in the early stages of genome stabilization and derivation of experimental lines. These novel genomic alterations affected yield‐related traits in the introgressed B. napus to an even greater extent than the alleles alone that were introgressed from the Ar subgenome of B. rapa, suggesting that genomic changes induced by interspecific hybridization are highly significant in both genome evolution and crop improvement.  相似文献   

17.

Purpose

The analysis of MET gene copy number (CN) has been considered to be a potential biomarker to predict the response to MET-targeted therapies in various cancers. However, the current standard methods to determine MET CN are SNP 6.0 in the genomic DNA of cancer cell lines and fluorescence in situ hybridization (FISH) in tumor models, respectively, which are costly and require advanced technical skills and result in relatively subjective judgments. Therefore, we employed a novel method, droplet digital PCR (ddPCR), to determine the MET gene copy number with high accuracy and precision.

Methods

The genomic DNA of cancer cell lines or tumor models were tested and compared with the MET gene CN and MET/CEN-7 ratio determined by SNP 6.0 and FISH, respectively.

Results

In cell lines, the linear association of the MET CN detected by ddPCR and SNP 6.0 is strong (Pearson correlation = 0.867). In tumor models, the MET CN detected by ddPCR was significantly different between the MET gene amplification and non-amplification groups according to FISH (mean: 15.4 vs 2.1; P = 0.044). Given that MET gene amplification is defined as MET CN >5.5 by ddPCR, the concordance rate between ddPCR and FISH was 98.0%, and Cohen''s kappa coefficient was 0.760 (95% CI, 0.498–1.000; P <0.001).

Conclusions

The results demonstrated that the ddPCR method has the potential to quantify the MET gene copy number with high precision and accuracy as compared with the results from SNP 6.0 and FISH in cancer cell lines and tumor samples, respectively.  相似文献   

18.
Several disease-resistant recombinants between barley (Hordeum vulgare) and bulbous barley grass (H. bulbosum) have been obtained in recent years, but the process of characterization is often laborious and time-consuming. In order to improve the identification and chromosomal location of introgressed chromatin from H. bulbosum into the barley genome, we employed sequential genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH). GISH enabled us to establish that an introgression was present in the disease-resistant recombinant line, and the subsequent use of FISH, with a short oligonucleotide sequence as probe, allowed us to locate the introgression on the long arm of barley chromosome 2H. These data were confirmed using RFLP probes that hybridize to barley chromosome 2HL. Received: 16 December 1998 / Accepted: 12 April 1999  相似文献   

19.
A significant amount of genetic and genomic resources have been developed in papaya (Carica papaya, $ {\hbox{2n = 2}} \times { = 18} $ ), including genetic linkage maps consisting of nine major and three minor linkage groups. However, the 12 genetic linkage groups have not been integrated with the nine chromosomes of papaya. Bacterial artificial chromosome (BAC) clones associated with each linkage group were recently isolated. These linkage group-specific BACs were mapped to meiotic pachytene chromosomes of papaya using fluorescence in situ hybridization (FISH). The FISH mapping results integrated the 12 linkage groups into the nine papaya chromosomes. We developed a pachytene chromosome-based high resolution karyotype for the hermaphrodite plant genome of papaya cultivar SunUp. The chromosomal distribution of heterochromatin in the papaya genome is provided in the karyotype with the X chromosome representing the most euchromatic chromosome in the papaya genome. FISH mapping also revealed a significant amplification of sequences related to the 5S ribosomal RNA genes, which was detected in the male-specific region of the Y chromosome, but not in the corresponding region in the X chromosome.  相似文献   

20.
In order to identify genomic changes associated with a resistant phenotype acquisition, we used comparative genomic hybridization (CGH) to compare a human ovarian cell line, Igrov1, and four derived subcell lines, resistant to vincristine and presenting a reversion of malignant properties. Multicolor FISH (Multiplex-FISH and Spectral Karyotype) and conventional FISH are also used to elucidate the karyotype of parental cell line. The drug-resistant subcell lines displayed many chromosomal abnormalities suggesting the implication of different pathways leading to a multidrug resistance phenotype. However, these cell lines shared two common rearrangements: an unbalanced translocation der(8)t(8;13)(p22;q?) and a deletion of the 11p. These chromosomal imbalances could reflected the acquisition of the chemoresistance (der(8)) or the loss of tumorigenicity properties (del(11p)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号