首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Although valproic acid (VPA) is used extensively for treating various kinds of epilepsy, it causes hepatotoxicity and teratogenicity. In an attempt to develop a more potent and safer second generation to VPA drug, the amide derivatives of the tetramethylcyclopropyl VPA analogue, 2,2,3,3‐tetramethylcyclopropanecarboxamide (TMCD), N‐methyl‐TMCD (MTMCD), 4‐(2,2,3,3‐tetramethylcyclopropanecarboxamide)‐benzenesulfonamide (TMCD‐benzenesulfonamide), and 5‐(TMCD)‐1,3,4‐thiadiazole‐2‐sulfonamide (TMCD‐thiadiazolesulfonamide) were synthesized and shown to have more potent anticonvulsant activity than VPA. Teratogenic effects of these CNS‐active compounds were evaluated in Naval Medical Research Institute (NMRI) mice susceptible to VPA‐induced teratogenicity by comparing them to those of VPA. METHODS: Pregnant NMRI mice were given a single sc injection of either VPA or TMC‐amide derivatives on gestation day 8.5, and then the live fetuses were examined to detect any external malformations on gestation day 18. After double‐staining for bone and cartilage, their skeletons were examined. RESULTS: In contrast to VPA, which induced NTDs in a high number of fetuses at 2.4–4.8 mmol/kg, TMCD, TMCD‐benzenesulfonamide, and TMCD‐thiadiazolesulfonamide at 4.8 mmol/kg and MTMCD at 3.6 mmol/kg did not induce a significant number of NTDs. TMCD‐thiadiazolesulfonamide exhibited a potential to induce limb defects in fetuses. Skeletal examination also revealed that fetuses exposed to all four of the tetramethylcyclopropanecarboxamide derivatives developed vertebral and rib abnormalities less frequently than those exposed to VPA. Our results established that TMCD, MTMCD, and TMCD‐benzenesulfonamide are distinctly less teratogenic than VPA in NMRI mice. CONCLUSIONS: The CNS‐active amides containing a tetramethylcyclopropanecarbonyl moiety demonstrated better anticonvulsant potency compared to VPA and a lack of teratogenicity, which makes these compounds good second‐generation VPA antiepileptic drug candidates. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
BACKGROUND: Although valproic acid (VPA) is used extensively for treating various kinds of epilepsies, it is well known that it causes neural tube and skeletal defects in both humans and animals. The amide and urea derivatives of the tetramethylcylcopropyl VPA analogue, N-methoxy-2,2,3,3-tetramethylcyclopropanecarboxamide (N-methoxy-TMCD) and 2,2,3,3-tetramethylcyclopropanecarbonylurea (TMC-urea), were synthesized and shown to have a more potent anticonvulsant activity than VPA. The objective of this study was to investigate the teratogenic effects of these compounds in NMRI mice. METHODS: Pregnant NMRI mice were given a single subcutaneous injection of either VPA, N-methoxy-TMCD, or TMC-urea at 1.8 and 3.6 mmol/kg on gestation day (GD) 8. Cesarean section was performed on GD 18. First, the live fetuses were examined to detect any external malformations, then their skeletons were double-stained for bone and cartilage and subsequently examined. RESULTS: Significant increases in fetal losses and neural tube defects were observed with administration of VPA at 3.6 mmol/kg when compared to the vehicle control. In contrast, upon cesarean section, there were no significant differences between either N-methoxy-TMCD or TMC-urea and the control groups for any parameter. Skeletal examination revealed that a number of the abnormalities were induced by VPA dose-dependently at high rates of incidence. These abnormalities were mainly at the axial skeletal level. However, lower frequencies of skeletal abnormality were observed with N-methoxy-TMCD and TMC-urea than with VPA. CONCLUSIONS: In addition to their more potent antiepileptic activity, these findings clearly indicate that N-methoxy-TMCD and TMC-urea are distinctly less teratogenic than VPA in NMRI mice.  相似文献   

3.
BACKGROUND: Valproic acid (VPA) is an anticonvulsant drug that is widely used therapeutically for a variety of neurological conditions. VPA is also well known for its teratogenic potential in both humans and experimental animal models. The typical malformations observed following VPA exposure include neural tube defects (NTDs) and craniofacial and skeletal malformations. Nevertheless, the mechanisms underlying VPA's anticonvulsant efficacy or its teratogenicity remain to be elucidated. It was recently suggested that a relationship exists between VPA exposure and the cellular depletion of myo-inositol (INO). Furthermore, INO has been shown to rescue NTDs in the curly tail mouse. The aim of this study was to investigate the interactions of VPA and INO in the developing embryo. METHODS: For this purpose, 2 strains of mice were used: SWV/Fnn (known to be sensitive to VPA) and LM/Bc (known to be resistant to VPA-induced NTDs). Pregnant females were randomly assigned to 4 experimental groups: control, VPA (600 mg/kg), INO (400 mg/kg), and VPA plus INO. VPA was injected IP at 8.5 days postcoitum (dpc). INO was administered PO twice a day from 6.5 to 10.5 dpc. At term the dams were killed, the uteri were removed, and all of the general toxicological parameters (number of implants, resorptions, dam weight, and fetus weight) were recorded and statistically analyzed. RESULTS: Postimplantation loss in the SWV/Fnn strain and NTDs in the LM/Bc strain were significantly increased after the coadministration of VPA and INO. CONCLUSIONS: This work clearly indicates that INO enhances VPA-induced teratogenicity in the mouse.  相似文献   

4.
Propylisopropyl acetamide (PID), an amide analogue of the major antiepileptic drug valproic acid (VPA), possesses favorable anticonvulsant and CNS properties. PID contains one chiral carbon atom and therefore exists in two enantiomeric forms. The purpose of this work was to synthesize the two PID enantiomers and evaluate their enantiospecific teratogenicity. Enantioselective synthesis of PID enantiomers was achieved by coupling valeroyl chloride with optically pure (4S)‐ and (4R)‐benzyl‐2‐oxazolidinone chiral auxiliaries. The two oxazolidinone enolates were alkylated with isopropyl triflate, hydrolyzed, and amidated to yield (2R)‐ and (2S)‐PID. These two PID enantiomers were obtained with excellent enantiomeric purity, exceeding 99.4%. Unlike VPA, both (2R)‐ and (2S)‐PID failed to exert teratogenic effects in NMRI mice following a single 3 mmol/kg subcutaneous injection. From this study we can conclude that individual PID enantiomers do not demonstrate stereoselective teratogenicity in NMRI mice. Due to its better anticonvulsant activity than VPA and lack of teratogenicity, PID (in a stereospecific or racemic form) has the potential to become a new antiepileptic and CNS drug. Chirality 11:645–650, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
BACKGROUND: The antiepileptic drug valproic acid (VPA) is well known to cause neural tube and skeletal defects in both humans and animals. The amidic VPA analogues valpromide (VPD) and valnoctamide (VCD) have much lower teratogenicity than VPA inducing exencephaly in mice. The objective of this study was to investigate the teratogenic effects of VPA, VPD, and VCD on the skeleton of NMRI mice. METHODS: Pregnant NMRI mice were given a single subcutaneous injection of VPA (400 and 800 mg/kg), VPD (800 mg/kg), or VCD (800 mg/kg) on the morning of gestation day (GD) 8. Cesarean section was carried out on GD 18. Live fetuses were double‐stained for bone and cartilage and their skeletons were examined. RESULTS: Significant increases in fetal loss and exencephaly rate were observed with VPA at 800 mg/kg compared to the vehicle control. There were no significant differences between either VPD or VCD and the control groups for any parameter at cesarean section. A number of abnormalities were dose‐dependently induced at high incidences by VPA in both the cartilage and bone of vertebrae, ribs and sternum. In contrast, lower frequencies of abnormality were exhibited with VPD and VCD than VPA in all skeletons affected by VPA. CONCLUSIONS: These findings clearly indicate that VPD and VCD are distinctly less teratogenic than VPA in the induction of not only neural tube defects, but also skeletal abnormalities. A structure‐teratogenicity relationship of VPA on the skeleton is suspected. Birth Defects Res B 71:47–53, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

6.
As part of our ongoing research on potential new antiepileptic drugs (AEDs), a series of tetramethylcyclopropanecarboxamide derivatives containing benzene ring were designed, synthesized, and evaluated for anticonvulsant activities in the murine maximal electroshock (MES) and subcutaneous pentylenetetrazole (scMet) seizure tests. The most potent compound emerging from this study was N-(2,2,3,3-tetramethylcyclopropanecarboxamide)-p-phenyl-sulfonamide (21), possessing an ED(50) value of 26mg/kg in the rat-MES test and a remarkable PI (PI=TD(50)/ED(50)) value above 19. The better anticonvulsant potency of compound 21 and its wider safety margin compared to valproic acid (VPA) and zonisamide make it a potential candidate to become a new AED second-generation to VPA.  相似文献   

7.
BACKGROUND: Valproic acid (VPA) is widely used to treat epilepsy and bipolar disorder and is also a potent teratogen, but its teratogenic mechanisms are unknown. We have attempted to describe a fundamental role of the Polycomb group (Pc-G) in VPA-induced transformations of the axial skeleton. METHODS: Pregnant NMRI mice were given a single subcutaneous injection of vehicle or VPA (800 mg/kg) on gestation day (GD) 8. The expression of genes encoding Polycomb and trithorax groups was measured by quantitative real-time RT-PCR using total RNA isolated from the embryos exposed to vehicle or VPA for 1, 3, and 6 hr. In addition, the use of two less teratogenic antiepileptic chemicals valpromide (VPD) and valnoctamide (VCD) provide reliable evidence to support the relationship between VPA teratogenicity and the Polycomb group. RESULTS: At a teratogenic level, VPA inhibits the expression of the Polycomb group genes, including Eed, Ezh2, Zfp144, Bmi1, Cbx2, Rnf2, and YY1 in the mouse embryos. In contrast, neither VPD nor VCD have significant effects on the expression of those genes affected by VPA. The trithorax group (trx-G) gene MLL, which is known to be required to maintain homeobox gene expression such as the Polycomb gene, is not affected by a teratogenic dose of VPA. CONCLUSIONS: We propose that, during embryonic development, VPA may affect the gene silencing pathway mediated by the Polycomb group complex. The epigenetic mechanism of VPA teratogenicity on anteroposterior patterning is suspected.  相似文献   

8.
Valproate (VPA) treatment in pregnancy leads to congenital anomalies, possibly by disrupting folate or homocysteine metabolism. Since methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of folate interconversion and homocysteine metabolism, we addressed the possibility that VPA might have different teratogenicity in Mthfr(+/+) and Mthfr(+/-) mice and that VPA might interfere with folate metabolism through MTHFR modulation. Mthfr(+/+) and Mthfr(+/-) pregnant mice were injected with VPA on gestational day 8.5; resorption rates and occurrence of neural tube defects (NTDs) were examined on gestational day 14.5. We also examined the effects of VPA on MTHFR expression in HepG2 cells and on MTHFR activity and homocysteine levels in mice. Mthfr(+/+) mice had increased resorption rates (36%) after VPA treatment, compared to saline treatment (10%), whereas resorption rates were similar in Mthfr(+/-) mice with the two treatments (25-27%). NTDs were only observed in one group (VPA-treated Mthfr(+/+)). In HepG2 cells, VPA increased MTHFR promoter activity and MTHFR mRNA and protein (2.5- and 3.7-fold, respectively). Consistent with cellular MTHFR upregulation by VPA, brain MTHFR enzyme activity was increased and plasma homocysteine was decreased in VPA-treated pregnant mice compared to saline-treated animals. These results underscore the importance of folate interconversion in VPA-induced teratogenicity, since VPA increases MTHFR expression and has lower teratogenic potential in MTHFR deficiency.  相似文献   

9.
A significant circadian rhythm of acute toxicity was demonstrated in mice with intraperitoneal (i.p.) injection of sodium valproate (VPA). The role of pharmacokinetics on the rhythms of the toxicity and electroshock seizure (ES) threshold was investigated. ICR male mice, housed under a light-dark (12 :12) cycle, were injected intraperitoneally 1200 mg/kg for the acute toxicity study and 300 mg/kg for the anticonvulsant effect study. In the acute toxicity, the highest mortality was found when VPA was injected at 1700 and the lowest at 0900 or 0100. The time course of mean plasma and brain VPA concentrations after an injection of VPA was not different between mice injected at 1700 and mice injected at 0100. In the anticonvulsant effect, no significant circadian rhythm was demonstrated for both the ES threshold and the plasma VPA concentrations after i.p. Injection, although a significant rhythm has been reported for them after oral administration. The results suggest that the circadian rhythm in the mortality after an i.p. Injection of VPA may be due to the rhythm in the sensitivity of the central nervous system to the drug and that the mechanism underlying the rhythm of VPA acute toxicity is different from that of the anticonvulsant action of VPA. The route and the time of drug administration are essentially important to study the anticonvulsant effect and acute toxicity of VPA in mice.  相似文献   

10.
Human neural tube defects (NTDs) are among the most common congenital defects. They have a highly heterogeneous etiology, and, in addition to those seen in association with genetic syndromes, there are also NTDs induced by pharmaceutical compounds in utero, such as the widely used anti-epileptic drug valproic acid (VPA). Although familial studies have suggested a genetic contribution to VPA-induced NTDs, this trait has not been adequately studied, nor have the responsible genetic factors been identified. We generated a series of mouse crosses and backcrosses using the highly inbred SWV/Fnn and C57BL/6J strains, in order to identify possible chromosomal loci contributing to VPA sensitivity. When exposed to a high dose of sodium VPA (600 mg/kg) via maternal intraperitoneal injection on gestational day E8.5, the fetuses manifested exencephaly in a strain-dependent manner. Our data show an autosomal recessive trait, plus a gender-related effect or an overall X-Chromosome (Chr) effect, as being primarily responsible for determining sensitivity to VPA-induced exencephaly. Genome scanning and further linkage analysis of 131 exencephalic backcross fetuses identified a major locus linked to D7Mit285 (p < 2 × 10–6), exceeding the threshold for significant linkage. These results suggest a major chromosomal locus associated with the sensitivity to VPA-induced exencephaly in mice.(Robert M. Cabrera and Kimblerly A. Greer) Both authors contributed equally to this work as second authors.  相似文献   

11.
The teratogenicity of trans-2-ene-valproic acid (300 and 400 mg/kg) was compared with that of valproic acid (VPA; 300 mg/kg) and controls (corn oil) administered by gavage to Sprague-Dawley CD rats on embryonic (E) days 7-18. At the 300 mg/kg dose, trans-2-ene-VPA produced no change in maternal weight, number of implantations, proportion of resorptions, proportion of malformations, or fetal weight. By contrast, the same dose of VPA (300 mg/kg) reduced maternal weight during gestation, increased malformations (12.0% vs. 0.7% in controls), and reduced fetal body weight by 25.1%. An even higher dose of trans-2-ene-VPA (400 mg/kg) produced a reduction in maternal body weight during treatment and reduced fetal body weight (by 7.9%), but did not increase resorptions or malformations in the fetuses. On day E18, maternal serum drug concentrations of VPA were higher in the VPA-treated group compared with those of trans-2-ene-VPA in the trans-2-ene-VPA-treated groups at 1 hr posttreatment. At 6 hr posttreatment the reverse was seen. trans-2-ene-VPA may be absorbed more rapidly and distributed differently than VPA. Overall, the data support the view that trans-2-ene-VPA at equal or higher doses than VPA is not teratogenic in rats.  相似文献   

12.
A series of azolylchroman derivatives were prepared as conformationally constrained analogs of (arylalkyl)azole anticonvulsants. The anticonvulsant activities of the compounds were evaluated by determining seizure latency and protective effect against pentylenetetrazole (PTZ)-induced lethal convulsions in mice at a dose of 5mg/kg. Among these compounds, 7-chloro-3-(1H-imidazol-1-yl)chroman-4-one and 3-(1H-1,2,4-triazol-1-yl)chroman-4-one exhibited significant action in delaying seizures as well as effective protection against PTZ-induced seizures and deaths.  相似文献   

13.
BACKGROUND: Valproic acid (VPA) causes the failure of neural tube closure in newborn mice. However, the molecular mechanism of its teratogenesis is unknown. This study was conducted to investigate the genomewide effects of VPA disruption of normal neural tube development in mice. METHODS: Microarray analysis was performed on the head part of NMRI mouse embryos treated for 1 hr with VPA on gestational day (GD) 8. Subsequently, we attempted to isolate genes that changed in correlation with the teratogenic action of VPA by employing reduced teratogenic VPA analogs, valpromide (VPD) and valnoctamide (VCD), in a real-time PCR study. RESULTS: Microarray results demonstrated that during neurulation, many genes, some of whose functions are known and some unknown, were either increased or decreased after VPA injection. Some genes were affected by VPD or VCD in the same way as VPA, but others were not changed by the analogs. In this way, our system identified 11 increased and 20 decreased genes. Annotation analysis revealed that the increased genes included gadd45b, ier5, per1, phfl3, pou3f1, and sox4, and the decreased genes included ccne2, ccnl, gas5, egr2, sirt1, and zfp105. CONCLUSIONS: These findings demonstrate that expression changes in genes having roles in the cell cycle and apoptosis pathways of neural tube cells were strongly expected to relate to the teratogenic, but not antiepileptic, activity of VPA. Our approach has allowed the expansion of the catalog of molecules immediately affected by VPA in the developing neural tube.  相似文献   

14.
Felix-Ortiz AC  Febo M 《PloS one》2012,7(5):e37313
Valproic acid (VPA) has been used clinically as an anticonvulsant medication during pregnancy; however, it poses a neurodevelopmental risk due to its high teratogenicity. We hypothesized that midgestational (GD) exposure to VPA will lead to lasting deficits in social behavior and the processing of social stimuli. To test this, animals were given a single IP injection of 600 mg/kg of VPA on GD 12.5. Starting on postnatal day 2 (PND2), animals were examined for physical and behavior abnormalities. Functional MRI studies were carried out after PND60. VPA and control animals were given vehicle or a central infusion of a V(1a) antagonist 90 minutes before imaging. During imaging sessions, rats were presented with a juvenile test male followed by a primary visual stimulus (2 Hz pulsed light) to examine the effects of prenatal VPA on neural processing. VPA rats showed greater increases in BOLD signal response to the social stimulus compared to controls in the temporal cortex, thalamus, midbrain and the hypothalamus. Blocking the V(1a) receptor reduced the BOLD response in VPA animals only. Neural responses to the visual stimulus, however, were lower in VPA animals. Blockade with the V(1a) antagonist did not revert this latter effect. Our data suggest that prenatal VPA affects the processing of social stimuli and perhaps social memory, partly through a mechanism that may involve vasopressin V(1a) neurotransmission.  相似文献   

15.
BACKGROUND: Fumonisin B1 (FB1) is a mycotoxin produced by the fungus Fusarium verticillioides, a common contaminant of corn worldwide. FB1 disrupts sphingolipid biosynthesis by inhibiting the enzyme ceramide synthase, resulting in an elevation of free sphingoid bases and depletion of downstream glycosphingolipids. A relationship between maternal ingestion of FB1-contaminated corn during early pregnancy and increased risk for neural tube defects (NTDs) has recently been proposed in human populations around the world where corn is a dietary staple. The current studies provide an in vivo mouse model of FB1 teratogenicity. METHODS: Pregnant LM/Bc mice were injected with increasing doses of FB1 on GD 7.5 and 8.5, and exposed fetuses were examined for malformations. Sphingolipid profiles and (3)H-folate concentrations were measured in maternal and fetal tissues. Immunohistochemical expression of the GPI-anchored folate receptor (Folbp1) and its association with the lipid raft component, ganglioside GM1, were characterized. Rescue experiments were performed with maternal folate supplementation or administration of gangliosides. RESULTS: Maternal FB1 administration (20 mg/kg of body weight) during early gestation resulted in 79% NTDs in exposed fetuses. Sphingolipid profiles were significantly altered in maternal and embryonic tissues following exposure, and (3)H-folate levels and immunohistochemical expression of Folbp1 were reduced. Maternal folate supplementation partially rescued the NTD phenotype, whereas GM1 significantly restored folate concentrations and afforded almost complete protection against FB1-induced NTDs. CONCLUSIONS: Maternal FB1 exposure altered sphingolipid metabolism and folate concentrations in LM/Bc mice, resulting in a dose-dependent increase in NTDs that could be prevented when adequate folate levels were maintained.  相似文献   

16.
The anticonvulsant effects of two doses of clonazepam (CZP, Rivotril Roche, 0.1 and 1 mg/kg i.p.) were studied on model motor seizures induced by strychnine, bicuculline, 3-mercaptopropionic acid and metrazol in male laboratory rats (Wistar strain). In the first part the effects of different doses of the convulsants were investigated and for interaction with CZP doses were chosen after which more than 70% of the animals displayed generalized tonic-clonic convulsions (a grand mal seizure). Strychnine induced this type of seizure only: two doses (2 and 3 mg/kg s.c.) were used. CZP reduced the incidence of convulsions only after the larger dose, but plain solvent (propylene glycol, ethanol, water) was equally effective. The other substances first induced a seizure of minimal (mainly clonic) convulsions and only later a grand mal seizure. CZP was highly effective against bicuculline (3 mg/kg s.c.) and metrazol (100 mg/kg s.c.), but was less so against 3-mercaptopropionic acid. The effect on grand mal seizures was more pronounced in every case than on minimal seizures. The decisive role in the anticonvulsant effect of CZP is played by the mechanisms by which the convulsants induce epileptic manifestations. CZP is most effective against substances acting on the supramolecular complex GABA receptor (benzodiazepine receptor) chloride ionophore (bicuculline and probably metrazol).  相似文献   

17.
In utero exposure to valproic acid (VPA), an anticonvulsant and histone deacetylase inhibitor (HDACi), increases the risk of congenital malformations. Although the mechanisms leading to the teratogenicity of VPA remain unsolved, several HDAC inhibitors increase cell death in cancer cell lines and embryonic tissues. Moreover, P53, the master regulator of apoptosis, is an established HDAC target. The purpose of this study was to investigate the effects of VPA on P53 signaling and markers of apoptosis during midorganogenesis in vitro limb development. Timed‐pregnant CD1 mice (gestation day 12) were euthanized; embryonic forelimbs were excised and cultured in vitro for 3, 6, 12, or 24 hr in the presence or absence of VPA or valpromide (VPD), a non‐HDACi analog of VPA. Quantitative RT‐PCR and Western blots were used to assess the expression of candidate genes and proteins involved in P53 signaling and apoptosis. P53 hyperacetylation and a decrease (Survivin/Birc5 and Bcl2) or an increase (p21/Cdkn1a) in the expression of p53 target genes was observed only in VPA‐exposed limbs. VPA exposure also triggered an increase in markers of apoptosis and DNA damage; the concentrations of cleaved caspase 9 and caspase 3, cleaved‐poly (ADP‐ribose) polymerase, and γ‐H2AX were increased in VPA‐exposed limbs. VPD treatment caused a small but significant increase in cleaved caspase 3. Thus, in vitro exposure to an HDACi such as VPA leads to P53 hyperacetylation, enhances the expression of P53 target genes, and triggers an increase in apoptosis that may contribute to teratogenicity  相似文献   

18.
The effects of sodium valproate (VPA; 100, 200, and 400 mg/kg, i.p.) on ventral hippocampal and anterior caudate putamen extracellular levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) were examined using in vivo microdialysis. VPA induced dose-related increases in dialysate DA, 3,4-dihydroxyphenylacetic acid, and 5-HT in the ventral hippocampus. Anterior caudate putamen dialysate 5-HT was also dose dependently elevated by the drug, whereas DA levels tended to decrease with increasing VPA dose. In contrast, VPA (200, 400, and 800 mg/kg, i.p.) produced no significant elevation of DA in posterior caudate putamen dialysates, although 5-HT levels were significantly elevated at the 400- and 800-mg/kg doses. In all three regions studied, dialysate concentrations of 5-hydroxyindoleacetic acid and homovanillic acid remained at basal levels following VPA treatments. The results are discussed with regard to the possible anticonvulsant mode of action of VPA.  相似文献   

19.
The effects of valproate (VPA) and delta sleep-inducing peptide (DSIP) on metaphit-induced generalized, audiogenic seizure in adult rat males were compared. The animals were i.p. injected with: (1) Saline; (2) metaphit (mp, 10 mg kg(-1)); 3. metaphit (10 mg kg(-1)) and 8 h later with DSIP (0.1, 0.2, 0.4 or 1.0 mg kg(-1)), 4. metaphit (10 mg kg(-1)) and 8 h later with VPA (50, 75 or 100 mg kg(-1)); 5. DSIP alone (1.0 mg kg(-1)) and 6. VPA, alone (100 mg kg(-1)). The rats were exposed to sound stimulation at hourly intervals and the behavior and EEG were analyzed. The EEG signals in metaphit rats appeared as a sleep-like pattern and spike-wave complexes with increased power spectra. Valproate and DSIP reduced the incidence of seizure and prolonged duration of latency in a dose-dependent manner. ED50 of valproate in the 1st hour after administration was 63.19 mg kg(-1) and that of DSIP 3.19 mg kg(-1) four hours after injection. This suggests that VPA, reached a peak of action immediately after the application, while DSIP had a prolonged action, mildly reducing, but not abolishing metaphit seizure. None of the applied VPA and DSIP doses eliminated the metaphit-provoked EEG signs of epileptiform activity.  相似文献   

20.
Y F Chang  V Hargest  J S Chen 《Life sciences》1988,43(15):1177-1188
L-lysine, an essential amino acid for man and animals, and its metabolite pipecolic acid (PA) have been studied for their effects on pentylenetetrazol (PTZ)-induced seizures in mice. L-Lysine or L-PA i.p. significantly increased clonic and tonic latencies in a dose-dependent manner against 90 mg/kg PTZ-induced seizures. L-Lysine but not L-PA enhanced the anticonvulsant effect of diazepam (DZ) (0.2 mg/kg). L-PA (0.1 mmol/kg) i.c.v. showed a slight decrease in clonic latency; it did not enhance the antiseizure activity of DZ; it caused seizures at 0.6 mmol/kg. D-PA (0.1 mmol/kg) i.c.v. displayed an opposite effect compared to its L-isomer. The anticonvulsant effect of L-lysine in terms of increase in seizure latency and survival was even more amplified when tested with a submaximal PTZ concentration (65 mg/kg). L-Lysine showed an enhancement of specific 3H-flunitrazepam (FZ) binding to mouse brain membranes both in vitro and in vivo. The possibility of L-lysine acting as a modulator for the GABA/benzodiazepine receptors was demonstrated. Since L-PA showed enhancement of 3H-FZ binding only in vitro but not in vivo, the anticonvulsant effect of L-PA may not be linked to the GABA/benzodiazepine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号