首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Aim This work investigates the population genetic effects of periodic altitudinal migrations and interstadial fragmentation episodes in long‐term Scots pine (Pinus sylvestris L.) populations at a regional scale. Location The study focuses on Scots pine populations in the northern Meseta and peripheral mountain chains, central and north‐western Iberian Peninsula. The ample macrofossil record in the area shows that this 60,000‐km2 region represent a glacial refugium for Scots pine. The species occupied large areas on the Meseta plains during glacial cold stages, but it has periodically sheltered at high elevation in the surrounding mountain chains during warm episodes, conforming to a fragmented pattern similar to its present‐day distribution. Methods We perform a fine‐scale chloroplast microsatellite (cpSSR) survey to assess the genetic structure of 13 montane Scots pine isolates in the northern Meseta (total N = 322 individuals). Using a hierarchical analysis of molecular variance (amova ), we test the hypothesis of genetic isolation among disjunct mountain areas. We use a standard coalescence model to estimate genealogical relationship among populations, investigating the potential role of the regional relief as a factor influencing historic gene exchange among Scots pine populations. Results Population haplotypic diversity was high among Scots pine populations (He = 0.978), greater than values reported for other more thermophilic pine species in the Iberian Peninsula. The amova revealed low (but significant) differentiation among populations (ΦST = 0.031, P = 0.010), showed that the disjoint montane distribution could not account for the genetic divergence among areas (ΦCT = 0.012, P = 0.253), and that there was non‐trivial subdivision among populations within the same mountain region (ΦSC = 0.021, P = 0.012). The genealogical relationships among populations showed that Scots pine isolates growing on disjoint mountain blocks, but on slopes flowing to the same basin, were genetically closer than populations growing on different slopes of the same mountain chain, flowing to different basins. Main conclusions The observed genetic structure for Scots pine is consistent with its population history, inferred from the palaeobotanical record, with vertical migrations throughout climatic pulses and with the drainage basins and large long‐term population sizes connecting different mountain blocks during the cooler glacial periods. Overall, the results suggest that, despite periodic interstadial fragmentation episodes, Scots pine biology provides for the long‐term maintenance of high within‐population and low among‐population genetic diversity at neutral genetic markers.  相似文献   

2.
Climate change affects both habitat suitability and the genetic diversity of wild plants. Therefore, predicting and establishing the most effective and coherent conservation areas is essential for the conservation of genetic diversity in response to climate change. This is because genetic variance is a product not only of habitat suitability in conservation areas but also of efficient protection and management. Phellodendron amurense Rupr. is a tree species (family Rutaceae) that is endangered due to excessive and illegal harvesting for use in Chinese medicine. Here, we test a general computational method for the prediction of priority conservation areas (PCAs) by measuring the genetic diversity of P. amurense across the entirety of northeast China using a single strand repeat analysis of twenty microsatellite markers. Using computational modeling, we evaluated the geographical distribution of the species, both now and in different future climate change scenarios. Different populations were analyzed according to genetic diversity, and PCAs were identified using a spatial conservation prioritization framework. These conservation areas were optimized to account for the geographical distribution of P. amurense both now and in the future, to effectively promote gene flow, and to have a long period of validity. In situ and ex situ conservation, strategies for vulnerable populations were proposed. Three populations with low genetic diversity are predicted to be negatively affected by climate change, making conservation of genetic diversity challenging due to decreasing habitat suitability. Habitat suitability was important for the assessment of genetic variability in existing nature reserves, which were found to be much smaller than the proposed PCAs. Finally, a simple set of conservation measures was established through modeling. This combined molecular and computational ecology approach provides a framework for planning the protection of species endangered by climate change.  相似文献   

3.
马琳  曲艺  孙工棋  肖静  苏日娜  李俊清 《生态学报》2015,35(13):4547-4557
阔叶红松林(Broadleaved Korean pine forest)是北温带物种最丰富的地带性群落之一,是极危动物东北虎(Panthera tigris altaica)的重要栖息地。长白山地区是阔叶红松林在中国范围内的中心分布区,中国政府建立了由24个自然保护区组成的网络来保护阔叶红松林及其他自然生态系统。以长白山地区为研究区域,在系统保护规划方法流程框架下,选择阔叶红松林生态系统中具有代表性的物种和群落做为优先保护对象,并制定量化保护目标,利用系统保护规划软件C-Plan,计算了研究区域规划单元的不可替代性值、各保护对象在保护网络中实现其保护目标的贡献值(Ti)及包含多个保护对象的保护区域的保护效率值(C),以此在多角度评估保护网络及其中各自然保护区的保护效率。结果显示:现有保护网络涵盖了本研究确立保护对象种类的90.4%,已达到保护目标的保护对象占其总数的25.3%。以保护阔叶红松林为"标尺"衡量各保护区的保护效率,长白山国家级自然保护区与松花江三湖省级自然保护区保护效率值最高,其余各保护区保护效率值不足10,整个保护网络保护效率值为59.99。不可替代性分析结果显示:仍有79.97%的高保护价值规划单元未被现有保护网络覆盖,空间上存在明显空缺。将空缺纳入保护网络后,新保护网络的保护效率值将提高到96.32,提高了36.33,77种保护对象达到保护目标(占保护对象总数的92.8%),5种保护对象仍未能达到保护目标,但保护对象贡献值Ti均不同程度提高,保护成效显著。  相似文献   

4.
This study reports the value of leaf cuticle characteristics in the identification and classification of Iberian Mediterranean species of the genus Pinus (P. nigra subsp. salzmannii, P. pinaster, P. pinea and P. halepensis), with the aim of using these characters to identify isolated cuticles and stomata in palynology slides. Preparations were made of the cuticles of pine needles belonging to one natural Iberian population of each of the above species. A number of epidermal morphological characteristics were then recorded with the aim of distinguishing these species from one another. The structure of the stomatal complex (the shape and arrangement of the subsidiary cells) was different in each species. The aperture of the epistomatal chamber was significantly smaller in P. pinea than in the other species examined, and the variables recorded for the thickening of the guard cells provided relationships that clearly distinguished all four taxa. The width and length of the stomata and the upper woody lamellae, the central distance between the external limits of the medial lamellae borders and the length of the stem were the most useful variables in this respect. The present results contribute to the ongoing discussion regarding the taxonomic classification of the members of Pinus, and provide valuable clues for the identification of Iberian Mediterranean pine species from small pine needle fragments or isolated stomata. After validation of the present results for multiple populations, these results could also be used to help identify fossil leaf macroremains and the scattered/isolated stomata commonly observed in palaeopalynological samples. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 436–448.  相似文献   

5.
Understanding the spatial pattern of genetic diversity may be pivotal to adaptive conservation management of a given taxon. The red-legged partridge (Alectorisrufa, Linnaeus 1758) is naturally widely distributed from the Mediterranean to humid temperate zones. According to a recent study, the genetic structure of this species comprises five clusters, three of which are in the Iberian Peninsula (glacial refugia). Partridge demographic expansion events and climatic shifts during Pleistocene glaciations have been used to test the hypotheses concerning Iberian red-legged partridge distribution. We tested the existence of climatic and geographic relationships on genetic diversity/distances. We employed markers from two different genetic systems, such as part of the mitochondrial DNA control region (n = 113) and 20 species-specific microsatellite DNA loci (n = 377), including climatic and geographic factors from the 14 Iberian localities where A. rufa populations were sampled. Our results showed a mitochondrial genetic diversity pattern associated with a thermic gradient, and a decrease of genetic diversity in peripheral populations that concurred with the ‘abundant centre’ hypothesis. Overall, current climatic variables reliably described genetic variation and differentiation in the red-legged partridge, which may be a result of local species adaptation.  相似文献   

6.
Aim The first aim of this paper was to evaluate the distribution of the three Sterocorax species found in the Iberian Peninsula by estimating the main environmental factors that constrain their distributions. The second aim was to explore the potential importance of competitive interactions in limiting their current distributions using predictive distribution models. Location Iberian Peninsula. Methods Species presence data were collected from records in the literature and private and public collections. Ecological niche factor analysis was performed to extract pseudo‐absences (probable absences), which, together with presence data, were modelled using generalized additive models. The models were run twice. Initially we used only environmental variables, and thereafter additional spatial variables were included in order to account for spatially structured factors not accounted for in the environmental variables. Results Highly reliable distribution models were obtained for the three species, with AUC scores (area under the receiver operating characteristics curve) higher than 0.96. The addition of spatial variables to the first model significantly improved the predicted distribution of Corax (Sterocorax) globosus and Corax (Sterocorax) insidiator, by reducing their potential distribution area. In contrast, the model of Corax (Sterocorax) galicianus was not improved by the addition of a spatial term. Main conclusions Generated pseudo‐absences, such as those used in this study, helped to avoid problems of using erroneous data (false absences) in distribution records. Pseudo‐absences greatly improved the models by only selecting absences within the area with the most unfavourable environmental conditions. The importance of spatial variables to both C. (S.) globosus and C. (S.) insidiator distributions probably relates to a number of unknown factors, such as unique historical events. The absence of established populations of C. (S.) globosus north of the Ebro Valley appears to be one such historical factor. The distribution of C. (S.) galicianus only marginally overlaps with that of C. (S.) globosus, according to our environmental factor models. As this overlap is restricted it is not likely to be a result of competitive exclusion; rather, their geographical segregation seems to be environmentally mediated. The addition of spatial variables reduced the potential habitat of C. (S.) insidiator, eliminating some environmentally optimal areas from its distribution. As no environmental barrier seems apparent in this case, competitive interaction with C. (S.) globosus is a plausible hypothesis for its absence in these optimal parts of its range.  相似文献   

7.
Species distribution patterns are widely studied through species distribution models (SDMs), focusing mostly on climatic variables. Joint species distribution models (JSDMs) allow inferring if other factors (biotic interactions, shared phylogenetic history or other unmeasured variables) can also have an influence on species distribution. We identified current distributional areas and optimal suitability areas of three species of the solitary snail‐shell bee Rhodanthidium (Hymenoptera: Megachilidae), and their host gastropod species in the Iberian Peninsula. We undertook SDMs using Maxent software, based on presence points and climatic variables. We also undertook JSDMs for the bees and the snails to infer if co‐occurrence could be a result of biotic interactions. We found that the three bee species: (1) use at least five different species of Mediterranean snails; (2) use empty shells not only for nesting but also for sheltering when there is adverse weather and during the night; (3) have their most suitable areas in the eastern and southern Iberian Peninsula, mostly on limestone areas; and (4) have their optimal range under Mediterranean climatic values for the studied variables. There is positive co‐occurrence of Rhodanthidium with the gastropod species, especially with the snail Sphincterochila candidissima. The contribution of the environmental component to the co‐occurrence is less than that of the residual component in those cases, suggesting that: (i) the use of biotic resources (between Rhodanthidium and the gastropod species); (ii) shared phylogenetic history (between R. septemdentatum and R. sticticum); or (iii) unmeasured variables are largely responsible for co‐occurrence.  相似文献   

8.
Aipysurus laevis and Emydocephalus annulatus typically occur in spatially discrete populations, characteristic of metapopulations; however, little is known about the factors influencing the spatial and temporal stability of populations or whether specific conservation strategies, such as networks of marine protected areas, will ensure the persistence of species. Classification tree analyses of 35 years of distribution data (90 reefs, surveyed 1–11 times) in the southern Great Barrier Reef (GBR) revealed that longitude was a major factor determining the status of A. laevis on reefs (present = 38, absent = 38 and changed = 14). Reef exposure and reef area were also important; however, these factors did not specifically account for the population fluctuations and the recent local extinctions of A. laevis in this region. There were no relationships between the status of E. annulatus (present = 16, absent = 68 and changed = 6) and spatial or physical variables. Moreover, prior protection status of reefs did not account for the distribution of either species. Biotic factors, such as habitat and prey availability and the distribution of predators, which may account for the observed patterns of distribution, are discussed. The potential for inter-population exchange among sea snake populations is poorly understood, as is the degree of protection that will be afforded to sea snakes by the recently implemented network of No-take areas in the GBR. Data from this study provide a baseline for evaluating the responses of A. laevis and E. annulatus populations to changes in biotic factors and the degree of protection afforded on reefs within an ecosystem network of No-take marine protected areas in the southern GBR. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Although future anthropogenic climate change is recognized as one of the major threats to European species, its implementation during reserve planning has only been started recently. We here describe climate change impacts on the Iberian endemic lizard Lacerta schreiberi expecting serious declines and range reductions due to a loss of suitable climate space in the next future. We apply species distribution models to assess possible future changes in the lizard’s range, identify areas with high extinction risk meriting conservation efforts and analyze whether the Natura 2000 network in its current stage will offer a sufficient protection for the genetically most valuable lineages. Despite a very good coverage and connectivity of the most valuable populations of L. schreiberi with the existing protected sites network, our results predict a strong loss of genetic variability by 2080. Also, two main patterns become evident: While the genetically less diverse north-western populations may be less affected by climate change, the climate change effects on the southern isolates and the genetically most diverse populations within the Central System may be devastating. To improve a successful prospective conservation of L. schreiberi the management of protected sites needs to consider the processes that threaten this species. Furthermore, our study highlights the urgent need to consider climate change effects on evolutionary significant units within the Natura 2000 framework.  相似文献   

10.
Aim We used abiotic environmental variables and historical locality records to infer distributions of endangered anuran species of Costa Rica to promote efficient strategies for future amphibian surveys. Location Costa Rica. Methods We used a Maximum Entropy Algorithm (Maxent) to predict potential distribution maps for 17 species of endangered anurans and create a consensus map of species richness. We compared the environmental conditions from localities where relictual amphibian populations were recently rediscovered with the conditions across their historical range to evaluate the possibility that these relictual populations might occur in specific climatic conditions that could explain their persistence. We used a multicriteria analysis considering the following factors: the intersection zones between the consensus map, conservation areas, potential Batrachochytrium dendrobatidis (Bd) distribution, collecting effort and areas within the precipitation range at which reappearances had occurred to locate sites for future surveys. Results The resulting predictions suggest that suitable areas for the highest number of species occur between 1300 and 2500 m.a.s.l and are concentrated along the Pacific slopes of the Cordillera de Talamanca and Cordillera Volcánica Central. Around 45% of the high potential richness area is under protection. Relictual populations of declined species seem to persist mainly in highly humid localities (2500–3500 mm of mean annual precipitation). Around 240 km2 has an ideal environment for the rediscovery of relictual populations. The multicriteria analysis showed that around 0.5% of the Costa Rican territory should be surveyed exhaustively for frogs. Main conclusions Many of the potential refugia we identified here have not been surveyed since 2000, the areas identified by the best model predictions correspond well with the localities of the relictual populations recently reported. We suggest future surveys of missing amphibian species should focus on these areas. The discovery of populations of endangered species can be used to propose conservation areas.  相似文献   

11.
Abstract. To evaluate the respective contributions of habitat, fire regime and colonization-extinction processes to the distribution of northern Pinus species, we investigated the distribution of P. banksiana (jack pine), P. resinosa (red pine) and P. strobus (white pine) on 117 islands of Lake Duparquet in northwestern Québec. Stepwise logistic regressions indicated that the extent of xeric areas on the islands was the sole factor predicting jack pine distribution. The distribution of white pine was predicted primarily by the combined effects of distance to the shoreline and elevation, with a smaller effect of area of xeric habitat. The distribution of red pine was predicted by other populations of red pine nearby, with a slightly smaller effect of the combined effects of distance to shoreline and elevation. None of the species completely saturates all available islands nor is any restricted to specific, very exposed aspects. The results suggest that pine is more frequent on islands with characteristics that promote lightning strikes and thus higher fire occurrence. However, absence of pine in several islands may not be explained by abiotic characteristics or recent fire history. The presence of very small populations, together with low invasion potential, suggests that the observed distribution is mainly driven by the process of random extinction. A disequilibrium between present and past fire regimes may explain why northern pines have discontinuous distributions inside their range limits.  相似文献   

12.
Question: How do studies of the distribution of genetic diversity of species with different life forms contribute to the development of conservation strategies? Location: Old‐growth forests of the southeastern United States. Methods: Reviews of the plant allozyme literature are used to identify differences in genetic diversity and structure among species with different life forms, distributions and breeding systems. The general results are illustrated by case studies of four plant species characteristic of two widespread old‐growth forest communities of the southeastern United States: the Pinus palustris – Aristida stricta (Longleaf pine – wiregrass) savanna of the Coastal Plain and the Quercus – Carya – Pinus (Oak‐hickory‐pine) forest of the Piedmont. Genetic variation patterns of single‐gene and quantitative traits are also reviewed. Results: Dominant forest trees, represented by Pinus palustris(longleaf pine) and Quercus rubra (Northern red oak), maintain most of their genetic diversity within their populations whereas a higher proportion of the genetic diversity of herbaceous understorey species such as Sarracenia leucophylla and Trillium reliquum is distributed among their populations. The herbaceous species also tend to have more population‐to‐population variation in genetic diversity. Higher genetic differentiation among populations is seen for quantitative traits than for allozyme traits, indicating that interpopulation variation in quantitative traits is influenced by natural selection. Conclusion: Developing effective conservation strategies for one or a few species may not prove adequate for species with other combinations of traits. Given suitable empirical studies, it should be possible to design efficient conservation programs that maintain natural levels of genetic diversity within species of conservation interest.  相似文献   

13.
Eurylophella iberica Keffermüller and Da Terra, 1978 is an endemic insect species of the Iberian Peninsula whose distribution has been poorly studied to date with rather old and scattered records. Here we compiled all existing distribution records and add new records from recent sampling activities. We also used this updated distributional information and environmental data (climate and geology) to estimate both current and future potential distributions in different climate change scenarios. We found that currently ca. 50% of the total Iberian region could present suitable environmental conditions for E. iberica (all the Iberian Peninsula, save the most eastern and Mediterranean areas). However, the potential distributions estimated when considering future climate change scenarios showed a marked reduction in the areas with suitable environmental conditions for the species, especially in the south. The northwest part of the Iberian Peninsula is a crucial zone for the future survival of this endemic species. We also found that most populations that occur in areas with suitable (both current and future) environmental conditions fall outside the Natura 2000 network of protected areas. Our results represent the first attempt to estimate the potential distribution of this endemic species providing important insights for its conservation.  相似文献   

14.
The introduction of alien species to new environments is one of the main threats to the conservation of biodiversity. One particularly problematic example is that of wild ungulates which are increasingly being established in regions outside their natural distribution range due to human hunting interests. Unfortunately, we know little of the effects these large herbivores may have on the host ecosystems. This study deals with a first comparative analysis of the habitat requirements of two ungulate species that may be facing competition for resources in the south of Europe: the native Iberian ibex (Capra pyrenaica) and the exotic aoudad (Ammotragus lervia). The aoudad is a North African caprid introduced in 1970 as a game species in south‐eastern Spain. It has adapted well, and populations have been freely expanding since then. Ecological Niche Factor Analysis is used to describe the realized niche of both species where their distribution ranges merge. Both species occupy marginal areas of rugged terrain in the region. Marginality is higher for the Iberian ibex, which also presents a higher tolerance of secondary environmental gradients than the aoudad. Highly suitable areas for each species are secondarily suitable for the other. Reclassified and cross‐tabulated habitat suitability maps showing the areas of potential spatial coexistence and differences in ecological traits between both species are provided. The results obtained do not allow inferring resource competition between these species. However, current aoudad expansion could result in it invading the favoured habitats of the ibex. Inadequate hunting policy and monitoring, and increasing climatic resemblance of the study region to the native aoudad areas, due to a strong desertification process, are facilitating a high rate of expansion. We strongly recommend to eradicate or, at least, monitor these exotic populations, and promote active conservation practices, if one wants to preserve the unique natural resources present in this European region.  相似文献   

15.
The barbastelle (Barbastella barbastellus) is a rare forest bat with a wide distribution in Europe. Here, we combine results from the analysis of two mtDNA fragments with species distribution modelling to determine glacial refugia and postglacial colonization routes. We also investigated whether niche conservatism occurs in this species. Glacial refugia were identified in the three southern European peninsulas: Iberia, Italy and the Balkans. These latter two refugia played a major role in the postglacial colonization process, with their populations expanding to England and central Europe, respectively. Palaeo‐distribution models predicted that suitable climatic conditions existed in the inferred refugia during the last glacial maximum (LGM). Nevertheless, the overlap between the current and the LGM distributions was almost inexistent in Italy and in the Balkans, meaning that B. barbastellus populations were forced to shift range between glacial and interglacial periods, a process that probably caused some local extinctions. In contrast, Iberian populations showed a ‘refugia within refugium’ pattern, with two unconnected areas containing stable populations (populations that subsisted during both glacial and interglacial phases). Moreover, the match between LGM models and the refugial areas determined by molecular analysis supported the hypothesis of niche conservatism in B. barbastellus. We argue that geographic patterns of genetic structuring, altogether with the modelling results, indicate the existence of four management units for conservation: Morocco, Iberia, Italy and UK, and Balkans and central Europe. In addition, all countries sampled possessed unique gene pools, thus stressing the need for the conservation of local populations.  相似文献   

16.
Aim Quaternary palaeopalynological records collected throughout the Iberian Peninsula and species distribution models (SDMs) were integrated to gain a better understanding of the historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain stasis in climatic and topographic ecological niche dimensions. In addition, the modelling results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental variables affecting their distribution, and to evaluate the ecological segregation between the two taxa. Location The Iberian Peninsula. Methods For the estimation of past Abies distributions, a hindcasting process was used. Abies pinsapo and A. alba were modelled individually, first calibrating the model for their current distributions in relation to the present climate, and then projecting it into the past—the last glacial maximum (LGM) and the Middle Holocene periods—in relation to palaeoclimate simulations. The resulting models were compared with Iberian‐wide fossil pollen records to detect areas of overlap. Results The overlap observed between past Abies refugia—inferred from fossil pollen records—and the SDMs helped to construct the Quaternary distribution of the Iberian Abies species. SDMs yielded two well‐differentiated potential distributions: A. pinsapo throughout the Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results propose that the two taxa remained isolated throughout the Quaternary, indicating a significant geographical and ecological segregation. In addition, no significant differences were detected comparing the three projections (present‐day, Mid‐Holocene and LGM), suggesting a relative climate stasis in the refuge areas during the Quaternary. Main conclusions Our results confirm that SDM projections can provide a useful complement to palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning past geographic patterns of Iberian Abies species. The integration of ecological‐niche characteristics from known occurrences of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to define appropriate areas in which to focus proactive conservation strategies.  相似文献   

17.
The funnel-web spider genus Macrothele is the only representative of the mygalomorph family Hexathelidae not found in Australia or New Zealand. Its 26 species occur in Central Africa and the Oriental region. Two Macrothele species are found in Europe: M. cretica Kulczynski, 1903 from Crete, and M. calpeiana (Walckenaer, 1805) type species of the genus and the largest European spider, whose distribution extends across the south-eastern Iberian Peninsula, and in two localities of North Africa. Macrothele calpeiana is the only spider protected under European legislation. The fragmentation and destruction of the cork oak forest, with which M. calpeiana was thought to be closely associated, prompted the inclusion of this species in the Bern Convention. Some authors, however, have challenged this view and consider M. calpeiana to be neither a cork oak forest bioindicator nor an endangered species. By contrast, other observations suggest that the distribution of the species is extremely fragmented and that most local populations should be considered as threatened. In this paper, we examine aspects of the conservation status of M. calpeiana in the light of molecular phylogenetic analyses based on mitochondrial markers of sample specimens from major populations. Our data confirm the fragmented distribution of M. calpeiana and reveal high levels of genetic differentiation across its populations. Local population growth cannot be ruled out, though the lineage as a whole has apparently not undergone population growth. Lineage age estimates suggest that M. calpeiana colonized the Iberian Peninsula during the Messinian salinity crisis and that the current population fragmentation originates from the Pliocene and Pleistocene. We argue that the fragmentation and deep genetic divergence across populations, along with evolutionary singularity and endemicity in one of Europe’s main biodiversity hotspots, support the preservation of its legally protected status.  相似文献   

18.
Recent changes in environmental conditions in populations of peat-bog pine (Pinus uliginosa Neumann) caused rapid decline or even extinction of the species in several stands in Central Europe. Conservation strategies forP. uliginosa require information about the evolutionary history and genetic structure of its populations. Using isozymes we assessed the genetic structure ofP. uliginosa from four isolated stands in Poland and compared the results to genetic structures of other closely related pine species including eight populations ofPinus mugo, ten ofPinus sylvestris and one ofPinus uncinata. The level of genetic variability ofP. uliginosa measured by the mean number of alleles per locus and average heterozygosity was similar to others related toP. uliginosa taxa from the reference group but it differs among populations. High genetic similarity was found between two populations ofP. uliginosa from Low Silesian Pinewood. The populations were genetically distinct as compared to other populations includinglocus classicus of the species from the peat bog at Batorów Reserve. Very low genetic distance (Dn = 0.002) and small genetic differentiation (GST = 0.003) were found betweenP. uliginosa andP. mugo in the sympatric populations of the species from Zieleniec peat bog suggesting the ongoing natural hybridisation and genetic contamination of peat-bog pine from this area. Some evidence for skew in allele frequency distribution potentially due to recent bottleneck was found in population from Low Silesian Pinewood. The analysed open pollinated progeny derived from twoP. uliginosa stands from Low Silesian Pine-wood showed the excess of homozygotes as compared to the maternal trees indicating high level of inbreeding (F = 0.105,F = 0.081). The results are discussed in the context of evolution ofP. uliginosa populations, taxonomic relationships between the analysed species and conservation strategies for active protection of peat-bog pine.  相似文献   

19.
The origin and natural range of the Stone pine (Pinus pinea L.) has been questioned for more than a century. In this work, we focus the investigation on one of the most important and controversial regions, viz., the Iberian Peninsula and, specifically, the Huelva and Cadiz populations in Andalusia, one of the most representative population cores. Although some authors maintain that it is an autochthonous Iberian species, most of them consider it to be exotic. From this idea, many works have been done and a sintaxonomic scheme has been created, which is accepted by the majority of the scientific community, not including Pinus pinea, nor its formations, since they are considered as man-induced forest crops. However, Stone has been present for several thousand years in the Iberian Peninsula and in the territory studied, as several paleobotanic and historical data show, proving that Pinus pinea is an autochthonous species of this region. This is a clear consequence to the field of geobotany, since – at least – the Stone pine woodlands from the Iberian Southeast must be considered as communities predominated by an autochthonous species that must be included in the sintaxonomichal schemes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
We examined the effects of climate change on the future conservation and distribution patterns of the cloud forests in eastern Mexico, by using as a species model to Fagus grandifolia Ehr. var. mexicana (Martínez) Little which is mainly located in this vegetation type, at the Sierra Madre Oriental. This species was selected because it is restricted to the cloud forest, where it is a dominant element and has not been considered for protection in any national or international law. It is probably threatened due to the fact that it plays an important social role as a source of food and furnishing. We used a floristic database and a bioclimatic modeling approach including 19 climatic parameters, in order to obtain the current potential distribution pattern of the species. Currently, its potential distribution pattern shows that it is distributed in six different Mexican Priority Regions for Conservation. In addition, we also selected a future climate scenario, on the basis of some climate changes predictions already proposed. The scenario proposed is characterized by +2 °C and −20% rainfall in the region. Under this predicted climatic condition, we found a drastic distribution contraction of the species, in which most of the remaining populations will inhabit restricted areas located outside the boundaries of the surrounding reserves. Consequently, our results highlight the importance of considering the effects of possible future climate changes on the selection of conservation areas and the urgency to conserve some remaining patches of existing cloud forests. Accordingly, we believe that our bioclimatic modeling approach represents a useful tool to undertake decisions concerning the definition of protected areas, once the current potential distribution pattern of some selected species is known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号