首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat degradation and fragmentation are major drivers of amphibian declines. The loss of environmental features that allow for movement between water sources may be particularly detrimental for amphibians in arid environments. Climate changes will increase the importance of microhabitats to amphibians. Enhancing areas to facilitate movement may be a necessary conservation strategy for many animal species that depend on wetlands, including federally threatened Chiricahua leopard frogs (Lithobates chiricahuensis). Habitat preferences of this frog species are not well understood. We sought to better understand fine‐scale habitat selection, to inform conservation of Chiricahua leopard frogs. We conducted our study on the Ladder Ranch, a privately owned working bison ranch in New Mexico, USA that supports a large proportion of the remaining Chiricahua leopard frogs in the state. We attached radio transmitters to 44 frogs during summer 2014. We located each frog daily for up to 8 weeks (median = 30 days). We assessed fine‐scale habitat selection by comparing characteristics at each frog location and a random location 5 m away using conditional logistic regression. Frogs preferred features that likely reduce desiccation, even after accounting for the presence of water. Frogs selected areas with more low‐lying cover, especially aquatic vegetation and woody debris, a tree overstory, and a mud substrate. We recommend managing potential movement corridors for Chiricahua leopard frogs by ensuring the presence of muddy creek bottoms, woody debris, riparian overstory, low‐lying ground cover, and pools. Microclimates created by these features seem especially valuable given warming temperatures and modified precipitation regimes, resulting in decreased surface water, soil moisture, and vegetation cover. Retaining or creating preferred habitat features and microclimates in areas between water sources may increase connectivity among isolated populations of Chiricahua leopard frogs and could improve persistence and recovery of other water‐obligate species in arid landscapes.  相似文献   

2.
Non-native fish and bullfrogs (Lithobates catesbeianus) are frequently cited as contributing to the decline of ranid frogs in the western United States, so we hypothesized that non-native species, habitat, or a combination of these relate to the probability of local extinction for northern red-legged frogs (Rana aurora) in Oregon, USA. We also hypothesized that the probability of colonization relates to land use, wetland size, or riparian forest. In a 5-yr study, we found no support for an effect of non-native species on northern red-legged frogs. Instead, probability of local extinction decreased with the extent of emergent vegetation and riparian forest. This finding suggests that managers consider the role of habitat when confronting non-native species problems. © 2010 The Wildlife Society.  相似文献   

3.
Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species‐rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species.  相似文献   

4.
Global amphibian declines suggest a major shift in the amount and quality of habitat for these sensitive taxa. Many species that were once widespread are now experiencing declines either in part of or across their historic range. The northern leopard frog (Rana [Lithobates] pipiens] has undergone significant declines particularly in the western United States and Canada. Leopard frog population losses in Nevada are largely due to habitat fragmentation and the introduction of nonnative fish, amphibian, and plant species. Only two populations remain in the Truckee and Carson River watersheds of western Nevada which represents the western boundary of this species range. We used sequence data for an 812 base pair fragment of the mitochondrial NADH dehydrogenase 1 (ND1) gene to support a native origin for western Nevada populations. All frogs had a single haplotype (W07) from the distinct western North America ND1 haplotype clade. Data from seven polymorphic microsatellite loci show that Truckee and Carson River populations are highly differentiated from each other and from leopard frogs collected from eastern Nevada sites. Lack of gene flow among and distinct color morphs among the western Nevada populations likely predates the current geographical isolation. Comparisons with other peripheral L. pipiens populations show western Nevada populations have similar levels of gene diversity despite their contemporary isolation (H(E) 0.411, 0.482). Restoration of leopard frog populations in these watersheds will be challenging given well-entrenched nonnative bullfrog populations and major changes to the riparian zone over the past century. Declines of once common amphibian species has become a major conservation concern. Contemporary isolation of populations on a species range periphery such as the leopard frog populations in the Truckee and Carson rivers further exacerbate extirpation risk as these populations are likely to have fewer genetic resources to adaptively respond to rapidly changing biotic and abiotic environments.  相似文献   

5.
Suggestions that the extinct Vegas Valley leopard frog (Rana fisheri = Lithobates fisheri) may have been synonymous with one of several declining species have complicated recovery planning for imperiled leopard frogs in southwestern United States. To address this concern, we reconstructed the phylogenetic position of R. fisheri from mitochondrial and nuclear sequence data obtained from century-old museum specimens. Analyses incorporating representative North American Rana species placed archival specimens within the clade comprising federally Threatened Chiricahua leopard frogs (Rana chiricahuensis = Lithobates chiricahuensis). Further analysis of Chiricahua leopard frogs recovered two diagnosable lineages. One lineage is composed of R. fisheri specimens and R. chiricahuensis near the Mogollon Rim in central Arizona, while the other encompasses R. chiricahuensis populations to the south and east. These findings ascribe R. chiricahuensis populations from the northwestern most portion of its range to a resurrected R. fisheri, demonstrating how phylogenetic placement of archival specimens can inform recovery and conservation plans, especially those that call for translocation, re-introduction, or population augmentation of imperiled species.  相似文献   

6.
ABSTRACT Population-level responses of amphibians to forest management regimes are partly dictated by individual behavioral responses to habitat alteration. We examined the short-term (i.e., 24-hr) habitat choices and movement patterns of 3 amphibian species—southern leopard frogs (Rana sphenocephala), marbled salamanders (Ambystoma opacum), and southern toads (Bufo terrestris)—released on edges between forest habitats and recent clear-cuts in the Upper Coastal Plain of South Carolina, USA. We predicted that adult frogs and salamanders would preferentially select forest using environmental cues as indicators of habitat suitability. We also predicted that movement patterns would differ in clear-cuts relative to forests, resulting in lower habitat permeability of clear-cuts for some or all of the species. Using fluorescent powder tracking, we determined that marbled salamanders selected habitat at random, southern toads preferred clear-cuts, and southern leopard frogs initially selected clear-cuts but ultimately preferred forests. Frogs exhibited long-distance, directional movement with few turns. In contrast, toads exhibited wandering behavior and salamanders moved relatively short distances before locating cover. Southern toads and southern leopard frogs moved farther in forests, and all 3 species made more turns in clear-cuts than in forests. Habitat selection by southern toads did not vary according to body size, sex, or the environmental cues we measured. However, marbled salamanders were more likely to enter clear-cuts when soil moisture was high, and southern leopard frogs were more likely to enter clear-cuts when relative humidity and air temperature were higher in the clear-cut than in adjacent forest. Although we found evidence of reduced habitat permeability of clear-cuts for southern leopard frogs and southern toads, none of the species exhibited strong behavioral avoidance of the small (4-ha) clear-cuts in our study. Further studies of long-term habitat use and the potential physiological and other costs to individuals in altered forests are needed to understand the effects of forest management on population persistence. To reduce potentially detrimental effects of clear-cutting on amphibians in the Southeast, wildlife managers should consider the vagility and behavior of species of concern, especially in relation to the size of planned harvests adjacent to breeding sites.  相似文献   

7.
Patterns and processes of nestedness in a Great Basin butterfly community   总被引:2,自引:0,他引:2  
We examined nestedness and potential mechanisms causing that distributional pattern in resident butterfly communities of the Toiyabe Range, a mountain range in the central Great Basin of western North America. We tested whether life history characteristics, including habitat use and vagility, affected the relative degree of nestedness or mean species incidence. We also tested whether nestedness at the level of individual species was independent of life history. Relationships between distributional patterns and habitat use, particularly in ecologically sensitive riparian areas, are relevant to ongoing conservation planning in the Great Basin. The distributional pattern of the 68 resident butterfly species in 19 Toiyabe Range canyons was significantly nested, as was the distribution of all functional subgroups that we tested. Life history affected neither relative nestedness of species groups nor mean species incidence. More than 80% of the individual butterfly species that inhabit the Toiyabe Range had distributions that were more nested than expected. Colonization does not appear to have played an important role in determining the composition of butterfly communities in Toiyabe Range canyons. Likewise, selective dispersal has probably played a minor role in producing nested distributions of Toiyabe Range butterflies. Our results suggest either that impacts to riparian areas are not jeopardizing species viability, or that highly sensitive butterfly species have already been extirpated from the Toiyabe Range. Received: 15 February 1998 / Accepted: 19 December 1998  相似文献   

8.
Interpretations of habitat use in tropical frog assemblages have centred on resource partitioning and stressed the influence of interspecific interaction and climatic fluctuation on numbers of species using various habitats. We used audio strip transects and visual methods to determine the species composition, reproductive modes, and habitat occupancy patterns of the entire assemblage of frog species in 1900 hectares of primary forest north of Manaus in the central Amazon. We then compared taxon, reproductive mode, and habitat of species at six analogous lowland forest sites of similar species richness (five in the Amazon and one in Southeast Asia) to determine similarity of habitat use among sites and whether habitat is strongly associated with species» systematic positions. In all lowland Amazonian faunas, most species with aquatic development use pools, many species undergo some degree of terrestrial development, and few species are riparian or develop in streams. In contrast, about half the species in Southeast Asian assemblages are riparian and develop in streams, and few species develop terrestrially. Because reproductive mode and habitat associate strongly with taxon, patterns of habitat use observed at this regional scale are better explained by historical biogeography and differential rates of speciation than by proximal selection generated by contemporary environmental conditions. This study presents an inventory of frog species in a central Amazonian terre-firme forest and measurements of habitat availability and use by an entire assemblage of frogs throughout a large area (other portions of this study were published by Gascon, 1990, 1991; Zimmerman & Rodrigues, 1990; Zimmerman, 1991). We asked whether this local pattern of habitat occupancy differed from the regional Amazonian pattern and whether local species composition could be predicted from (sub)habitat composition. Viewing the assemblage at the local level did reveal species-(sub)habitat relationships masked at the broader regional level. About half the pool-breeders at the Manaus forest study sites would not use pools that could be flooded by a permanent stream; several species distinguished between permanent and temporary ponds; and some species occupied all available breeding habitat, whereas others occurred patchily. This pattern was maintained over four breeding seasons, and species composition could be predicted from (sub)habitat composition. Phylogeny was not a predictor of subhabitat occupancy. Perhaps species are phylogenetically constrained to develop in pool, stream, riparian, or terrestrial habitats, but contemporary selection governs their narrow distribution within these major habitat types. Finally, we asked whether anuran species richness in the central Amazon differs from that of the upper or lower Amazon. One genus, Eleutherodactylus , accounts for elevated species richness at upper Amazonian sites. Dry seasons in the central and lower Amazon are unlikely to restrict the spread of eleutherodactylines, which reproduce terrestrially. There are as many non-eleutherodactylines with terrestrial development at seasonal sites as there are at continually wet sites. Colonization history and the topography of central and lower Amazonia are more likely to limit eleutherodactyline richness.  相似文献   

9.
ABSTRACT.   Despite the interest of resource managers and conservationists in the status of Common Black-Hawk ( Buteogallus anthracinus ) populations in the southwestern United States, little is known about their nesting success and habitat requirements. Because such information is essential for effective population and habitat management, I examined the nesting success and nest-site selection of Common Black-Hawks in southwestern New Mexico during 2000 and 2001. Of the 37 nesting attempts in 21 territories, ≥1 young fledged from 25 nests (68%). Comparison of nest-sites and nonused sites suggested that breeding Common Black-Hawks selected nest-sites in areas with a sparser and shorter subcanopy tree layer and in trees with a smaller trunk diameter and a greater minimum crown diameter. These differences appear to be related to variation in forest ages within territories, with nonused sites having fewer, but older, canopy trees than nest-sites. Sites with younger, smaller subcanopy trees may provide forest structure for more effective foraging, whereas the characteristics of younger nest tree canopies may reduce the risk of nest predation or offer more protection from inclement weather. Due to the limited range of this species in the southwestern United States, efforts to encourage the establishment and maturation of riparian forests in Common Black-Hawk breeding areas could be important in sustaining available nesting habitat and, in turn, maintaining or expanding current population levels.  相似文献   

10.
Seasonally-flooded wetlands occur throughout the world and provide important foraging, resting, and breeding habitat for a broad array of organisms. This review summarizes our current understanding of vertebrate community composition at seasonal forest pools in the northeastern United States. These wetlands typically have hydroperiods that range from temporarily flooded to intermittently exposed, which reduces densities of many potential predators (e.g., fish). Current research has shown that pool hydroperiod, canopy closure, vegetation structure within pools, presence of potential predators, and landscape structure surrounding pools are the key factors determining vertebrate diversity at seasonal forest pools. Of 25 species of amphibians in the region, frogs (10 of 12 species) are more likely to breed in seasonal forest pools than salamanders (6 of 13 species). Seven of 10 amphibian species that breed in seasonal forest pools are state-listed as threatened or endangered. Among 27 species of reptiles, 3 of 15 species of snakes, and 6 of 12 species of turtles utilize seasonal pools during at least one stage of their annual cycle. Seasonal forest pools are important foraging and basking habitat for three species of turtles listed as threatened or endangered. Compared to other vertebrate taxa, most species of mammals are habitat generalists, with 50 of 63 mammal species potentially foraging at seasonal pools during part of their annual cycle. Chiroptera (bats; all 9 species) are believed to actively forage at seasonal pools and some Insectivora, particularly Sorex palustris Richardson and S. fumeus (Miller) and Condylura cristata (L.), are detected regularly at seasonal pools. Breeding birds are less likely to utilize seasonal pools than other vertebrate taxa, although 92 of 233 species might forage or breed near seasonal pools. Several species of Anatidae, Rallidae, and some Passeriformes use seasonally flooded pools. All vertebrates that use seasonal forest pools use other habitats during some stage in their life cycle; thus gaining a clear understanding of their habitat requirements is critical to their long-term persistence.  相似文献   

11.
Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m?2 day?1) was 25 % higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon’s H′) was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.  相似文献   

12.
One-hundred twelve amphibians, including 51 blue-spotted salamanders, Ambystoma laterale, 30 eastern American toads, Bufo americanus americanus, and 31 northern leopard frogs, Rana pipiens, were collected during April-October 1996 from Waukesha County, Wisconsin and examined for helminth parasites. The helminth compound community of this amphibian assemblage consisted of at least 10 species: 9 in American toads, 8 in leopard frogs, and 3 in blue-spotted salamanders. American toads shared 7 species with leopard frogs, and 2 species occurred in all 3 host species. Although there was a high degree of helminth species overlap among these sympatric amphibians, statistically significant differences were found among host species and percent of indirect or direct-life cycle parasites of amphibian species individual component communities (chi2 = 1,015, P < 0.001). American toads had a higher relative abundance of nematodes, 59%, than larval cestodes, 31%, and larval and adult trematodes, 10%, whereas leopard frogs had a higher relative abundance of larval cestodes, 71.3%, and larval and adult trematodes, 25.3%, than nematodes 3.4%. This is related to ecological differences in habitat and dietary preferences between these 2 anuran species. Helminth communities of blue-spotted salamanders were depauperate and were dominated by larval trematodes, 94%, and few nematodes, 6%. Low helminth species richness in this host species is related to this salamander's relatively small host body size, smaller gape size, lower vagility, and more fossorial habitat preference than the other 2 anuran species. Adult leopard frogs and toads had significantly higher mean helminth species richness than metamorphs, but there was no significant difference in mean helminth species richness among adult and metamorph blue-spotted salamanders. Considering adult helminths, the low species richness and low vagility of caudatans as compared with anurans suggest that local factors may be more important in structuring caudatan helminth communities of salamanders than of anuran hosts. Helminth species infecting salamanders may be more clumped in their geographic distribution as compared with anurans, and the role of other hosts and their parasites at the compound community level may be important in structuring helminth communities of salamanders.  相似文献   

13.
Dynamics of many amphibian populations are governed by the distribution and availability of water. Therefore, understanding the hydrological mechanisms that explain spatial and temporal variation in occupancy and abundance will improve our ability to conserve and recover populations of vulnerable amphibians. We used 16 years of survey data from intermittent mountain streams in the Sonoran Desert to evaluate how availability of surface water affected survival and adult recruitment of a threatened amphibian, the lowland leopard frog (Lithobates yavapaiensis). Across the entire study period, monthly survival of adults ranged from 0.72 to 0.99 during summer and 0.59 to 0.94 during winter and increased with availability of surface water (Z = 7.66; P < 0.01). Recruitment of frogs into the adult age class occurred primarily during winter and ranged from 1.9 to 3.8 individuals/season/pool; like survival, recruitment increased with availability of surface water (Z = 3.67; P < 0.01). Although abundance of frogs varied across seasons and years, we found no evidence of a systematic trend during the 16-year study period. Given the strong influence of surface water on population dynamics of leopard frogs, conservation of many riparian obligates in this and similar arid regions likely depends critically on minimizing threats to structures and ecosystem processes that maintain surface waters. Understanding the influence of surface-water availability on riparian organisms is particularly important because climate change is likely to decrease precipitation and increase ambient temperatures in desert riparian systems, both of which have the potential to alter fundamentally the hydrology of these systems.  相似文献   

14.
Altered hydrology of southwestern United States rivers has led to a decline in native cottonwood (Populus deltoides). Areas historically dominated by cottonwood have been replaced by invasive saltcedar (Tamarix chinensis). Restoration of historic hydrology through periodic flooding of riparian areas has been a means of restoring native species. However, due to similarity in germination requirements of cottonwoods and saltcedars, flooding may create an unwanted increase in the number of saltcedar seedlings. Therefore, we evaluated competitive aspects of these co-occurring species in an extant riparian habitat in the arid southwestern US. We measured effects of competition between cottonwood and saltcedar seedlings and among cottonwood seedlings during the first growing season following seedling establishment in 360, 0.5 × 0.5-m plots at the Bosque del Apache National Wildlife Refuge, New Mexico. We used five interspecific density treatments and five intraspecific density treatments. Cottonwood seedling biomass and height were twice that of saltcedar seedlings across all density treatments. As density of cottonwood increased, intraspecific competition increased in severity and biomass of cottonwood seedlings decreased. At 4 plants/0.25 m2, cottonwood seedlings had the greatest biomass; whereas, survival was highest at 10 plants/0.25 m2. Our results support greenhouse studies and suggest that if favorable germination conditions are established for cottonwood in floodplains, saltcedar seedlings that cogerminate could be outcompeted by native cottonwood seedlings.  相似文献   

15.
Batrachochytrium dendrobatidis (Bd) is a fungus that can potentially lead to chytridiomycosis, an amphibian disease implicated in die-offs and population declines in many regions of the world. Winter field surveys in the last decade have documented die-offs in populations of the lowland leopard frog Rana yavapaiensis with chytridiomycosis. To test whether the fungus persists in host populations between episodes of observed host mortality, we quantified field-based Bd infection rates during nonwinter months. We used PCR to sample for the presence of Bd in live individuals from nine seemingly healthy populations of the lowland leopard frog as well as four of the American bullfrog R. catesbeiana (a putative vector for Bd) from Arizona. We found Bd in 10 of 13 sampled populations. The overall prevalence of Bd was 43% in lowland leopard frogs and 18% in American bullfrogs. Our results suggest that Bd is widespread in Arizona during nonwinter months and may become virulent only in winter in conjunction with other cofactors, or is now benign in these species. The absence of Bd from two populations associated with thermal springs (water >30°C), despite its presence in nearby ambient waters, suggests that these microhabitats represent refugia from Bd and chytridiomycosis.  相似文献   

16.
Abstract: A major challenge facing wildlife biologists is understanding why some species go extinct while others persist in the same habitat. To address this question, we investigated whether tree canopy closure over ponds affects growth and survival of rare and common tadpoles within ponds and mediates competitive interactions among species. We conducted 2 experiments to test whether canopy closure and competition may have contributed to the decline of the endangered dusky gopher frog (Rana sevosa), but allowed the persistence of the southern leopard frog (R. sphenocephala). We explored the response of both species to canopy closure in single-species and mixed- (1:1) species treatments of identical total tadpole density. An experiment using aquatic enclosures in temporary ponds showed that canopy closure reduced tadpole growth approximately 20% for both species. Survival of dusky gopher frog tadpoles was higher in mixed-species enclosures than in single-species enclosures. In a complementary experiment using artificial ponds, dusky gopher frogs had lower survival to metamorphosis, reduced size at metamorphosis, and produced a lower total biomass of metamorphosed juveniles in shaded ponds. Southern leopard frogs exhibited reduced body size at metamorphosis only when shaded. These studies suggest that pond canopy closure, not larval competition, may be contributing to the decline of the dusky gopher frog. The different responses to canopy closure suggest a potential mechanism for the loss of dusky gopher frogs and the persistence of southern leopard frogs. Removal of trees from historically open-canopy ponds may help facilitate the recovery of dusky gopher frogs and benefit similar species.  相似文献   

17.
Weather can shape movements of animals and alter their exposure to anthropogenic threats. Bald eagles (Haliaeetus leucocephalus) are increasingly at risk from collision with turbines used in onshore wind energy generation. In the midwestern United States, development of this energy source typically occurs in upland areas that bald eagles use only intermittently. Our objective was to determine the factors that cause wintering bald eagles to occupy riparian areas and riskier, upland areas. We tracked 20 bald eagles using telemetry in the Upper Midwest (MN, IA, MO, WI, IL, USA) during winter 2014–2015 and 2015–2016 and evaluated habitat use by eagles in response to variation in weather and time of year. Eagles used riparian areas more when wind speed and atmospheric pressure were low. Exclusive use of uplands was more frequent during weather systems with low pressure and high humidity and after long periods of cold weather. There was a non-linear response to time of year (measured by days before migration) in the frequency of exclusive use of uplands or riparian areas. Probability of exclusive use of either landscape was generally constant within 95 days prior to migration. The probability of use of riparian areas, however, was markedly less during dates >100 days before migration. Our results suggest that eagles are most likely to be exposed to wind energy developments located in upland areas during low pressure systems, after long periods of cold weather, and several months before the onset of spring migration. This information helps to better understand the factors influencing bald eagle habitat use in winter and will be useful to managers and developers wishing to establish effective strategies to avoid, minimize, and mitigate take, and to survey for mortalities at wind energy developments. © 2020 The Wildlife Society.  相似文献   

18.
19.
Rick A. Relyea 《Oecologia》2009,159(2):363-376
The ubiquity of anthropogenic chemicals in nature poses a challenge to understanding how ecological communities are impacted by them. While we are rapidly gaining an understanding of how individual contaminants affect communities, communities are exposed to suites of contaminants yet investigations of the effects of diverse contaminant mixtures in aquatic communities are rare. I examined how a single application of five insecticides (malathion, carbaryl, chlorpyrifos, diazinon, and endosulfan) and five herbicides (glyphosate, atrazine, acetochlor, metolachlor, and 2,4-D) at low concentrations (2–16 p.p.b.) affected aquatic communities composed of zooplankton, phytoplankton, periphyton, and larval amphibians (gray tree frogs, Hyla versicolor, and leopard frogs, Rana pipiens). Using outdoor mesocosms, I examined each pesticide alone, a mix of insecticides, a mix of herbicides, and a mix of all ten pesticides. Individual pesticides had a wide range of direct and indirect effects on all trophic groups. For some taxa (i.e., zooplankton and algae), the impact of pesticide mixtures could largely be predicted from the impacts of individual pesticides; for other taxa (i.e., amphibians) it could not. For amphibians, there was an apparent direct toxic effect of endosulfan that caused 84% mortality of leopard frogs and an indirect effect induced by diazinon that caused 24% mortality of leopard frogs. When pesticides were combined, the mix of herbicides had no negative effects on the survival and metamorphosis of amphibians, but the mix of insecticides and the mix of all ten pesticides eliminated 99% of leopard frogs. Interestingly, these mixtures did not cause mortality in the gray tree frogs and, as a result, the gray tree frogs grew nearly twice as large due to reduced competition with leopard frogs. In short, wetland communities can be dramatically impacted by low concentrations of pesticides (both separate and combined) and these results offer important insights for the conservation of wetland communities.  相似文献   

20.
Amphibians are a globally distributed and diverse lineage, but much of our current understanding of their population genetic structure comes from studies in mesic temperate habitats. We characterize the population genetic structure of two sympatric explosive breeding amphibians in the southwestern deserts of the United States: the Great Plains toad ( Anaxyrus cognatus ) and Couch's spadefoot toad ( Scaphiopus couchii ). For both species, we find limited genetic differentiation even between populations in adjacent valleys separated by dispersal barriers such as mountainous habitats. To understand how population genetic patterns in these two arid-adapted species compare to taxa in more mesic environments, we computed a standardized measure of population differentiation for A. cognatus , S. couchii , and for pond-breeding amphibians that inhabit mesic temperate environments. Our results indicate that the arid-adapted species have lower population genetic structure at fine and moderate scales than most other amphibian species we surveyed. We hypothesize that stochasticity in the availability of appropriate breeding sites as well as landscape homogeneity may result in increased population connectivity in desert-adapted frogs. Future work examining fine-scale population structure in amphibians from a diversity of habitats will test the generality of our findings. Intraspecific comparisons among localities with varied seasonality and habitats will be particularly useful for investigating the interaction between species-typical population dynamics and environmental characteristics as determinants of population connectivity in pond-breeding amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号