首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: During the past decade, compositional analysis (CA) has been used widely in animal—habitat and resource selection studies. Despite this popularity, CA has not been tested for potential systematic biases such as incorrect identification of preferred resources. We used computer-simulated data based on known habitat use and availability parameters to assess the potential for CA to incorrectly identify preferred habitat use. We consider in particular the situation when available habitat categories not used by all animals are included in the resource selection analysis, with substitution of a relatively small value, such as 0.01, for each 0% utilization value. Progressively larger misclassification-error*** rates in preferred habitat use resulted from substituting progressively smaller positive values for each 0% utilization of a habitat category.  相似文献   

2.
European biodiversity has suffered from serious declines during the past few decades, with alterations of land use practices resulting in a loss of fine-scale habitat heterogeneity being a dominant driver. This heterogeneity was maintained by extensive landscape management, which has gradually been replaced by either intensive exploitation or land abandonment. It has been suggested that military training can generate habitat heterogeneity that may support the existence of species of conservation concern, but studies rigorously testing the real importance of military training areas for biodiversity are lacking. Here we address this issue by analyses of two datasets. First, we compared land cover classes between all large military training areas (MTAs) and surrounding control areas (CAs) of the same size in the Czech Republic using multivariate redundancy analysis. We found that the difference in land cover between MTAs and CAs was significant and represented the strongest gradient in land cover classes: from various farmland and artificial habitats typical for CAs to forest and scrubland-grassland mosaic typical for MTAs. Second, we selected one of these areas and compared bird species richness between the MTA and the nearby CA using generalized linear mixed effects models. We found that the number of species of conservation concern was significantly higher in the MTA than in the CA. With respect to habitats, bird species richness was significantly higher in the MTA than in the CA for open habitats, but not for forest habitats. Our results are thus consistent with the view that military training creates areas that are different from the surrounding landscape in terms of land cover, and that this difference translates to a suitability for species of conservation concern. It is remarkable that the positive influence of military training is confined to open habitats, which are subject to the most intensive military activities and also suffer the highest degree of deterioration in European landscapes.  相似文献   

3.
Shovelnose sturgeon Scaphirhynchus platorynchus are a large‐river fish distributed throughout the Mississippi River basin, including the lower 1,533 km of the Mississippi River where riverine habitat has been and continues to be modified for navigation and is a potential site for development of instream hydrokinetic electric power generation. Information about habitat use and preference is essential to future conservation efforts. Shovelnose sturgeon have previously been found to select particular habitat types, and these selected habitats vary seasonally; although these past analyses do not consider the selected habitats in a landscape context. We used ecological niche factor analysis (ENFA) that uses distributions of telemetry locations and environmental variables to model habitat suitability in a landscape context. We recorded 333 locations of shovelnose sturgeon during July–December 2013 that included periods of relatively high and low river stages. The ENFA analysis indicated high‐suitability locations were in or near deep water during both high and low river stages. During high river stages, high‐suitability locations were near island tip habitat, deep water, and steep bottom slope and far from main channel habitat. During low stages, high‐suitability locations were in or near deep water and main channel habitat and far from secondary channel and wing dike habitats. This landscape‐scale analysis supports seasonal shifts in habitat use and provides insights that can be used to inform habitat conservation and management to benefit shovelnose sturgeon in the lower Mississippi River and possibly other large rivers.  相似文献   

4.
Although off-channel habitats in the estuaries of large rivers impart many benefits to fish that rear within them, it is less clear how these habitats benefit migrating anadromous species that utilize these habitats for short periods of time. We evaluated the physiological correlates (nutritional condition, growth, and smoltification) of habitat utilization (main-channel vs. off-channel) by juvenile Chinook salmon Oncorhynchus tshawytscha during emigration. Fish from the off-channel had higher condition factor scores and relative weights than fish from the main-channel throughout the study period. Plasma triglyceride and protein concentrations were significantly different between habitat types and across the sampling period, suggesting that fish utilizing the off-channel habitats were compensating for energy losses associated with emigration as compared to main-channel fish. Growth potential (RNA to DNA ratio) did not vary by habitat or sampling period, presumably due to short residency time. There were no differences in osmoregulatory capacity (gill Na(+), K(+)-ATPase activity) based on habitat type. Our results indicate that short-term off-channel habitat use may mitigate for energy declines incurred during migration, but likely does not impart significant gains in energy stores or growth.  相似文献   

5.
There have been considerable advances in our understanding of the tolerance of species interaction networks to sequential extinctions of plants and animals. However, communities of species exist in a mosaic of habitats, and the vulnerability of habitats to anthropogenic change varies. Here, we model the cascading effects of habitat loss, driven by plant extinctions, on the robustness of multiple animal groups. Our network is constructed from empirical observations of 11 animal groups in 12 habitats on farmland. We simulated sequential habitat removal scenarios: randomly; according to prior information; and with a genetic algorithm to identify best‐ and worst‐case permutations of habitat loss. We identified two semi‐natural habitats (waste ground and hedgerows together comprising < 5% of the total area of the farm) as disproportionately important to the integrity of the overall network. Our approach provides a new tool for network ecologists and for directing the management and restoration of multiple‐habitat sites.  相似文献   

6.
  • 1 For Trichoptera occurring in two sites of the Upper Rhône River (France) we examine: (i) relationships among species traits; (ii) habitat utilization of Trichoptera species; (iii) the relationship between species traits and habitat utilization; (iv) trends of species traits in the framework of spatial–temporal habitat variability to test predictions of the habitat templet concept; and (v) trends of species richness in the framework of spatial–temporal habitat variability to test predictions of the patch dynamics concept.
  • 2 Of the sixteen species traits selected, twelve have high correlation ratios for the seventy-five species used in this analysis; these traits are related to behavioural, morphological, or physiological aspects. Traits related to reproduction or life cycle have lower correlation ratios.
  • 3 An ordination by species traits separates the five main families into three groups: (i) Hydropsychidae and Polycentropodidae; (ii) Hydroptilidae; and (iii) Leptoceridae and Limnephilidae. An ordination of the habitat utilization of the species in ten habitats indicates that the Hydropsychidae occur preferentially in the main channel, Hydroptilidae, Polycentropodidae, and Limnephilidae occur in backwaters or oxbow lakes, and the Leptoceridae are ubiquitous.
  • 4 The Hydropsychidae exhibit a relationship between species traits and habitat utilization, i.e. they use similar habitat types with similar species traits. The species traits of the other four families are similar but their habitat utilization is quite different.
  • 5 The Hydropsychidae occur in lowest spatial–temporal variability habitats and Limnephilidae in the highest. Therefore, net spinners and filterers are characteristic of habitats with a low spatial–temporal variability, whereas shredders and case makers using plant material are characteristic of habitats with high spatial–temporal variability. The trends in species traits show little agreement with trends predicted from the river habitat templet.
  • 6 Trends of species richness in the framework of spatial and temporal variability do not follow the predictions of the patch dynamics concept because richness is similar in all superficial habitats. This implies that each habitat, in spite of large differences in their spatial and temporal variability, offers Trichoptera a similar but limited number of ecological niches.
  相似文献   

7.
Because invasive species are often opportunistic and behaviourally flexible, they tend to be successful in urban landscapes, where they may use space differently than in their more traditional habitats. Consequently, control strategies developed for invasive pest species in non-urban areas may not succeed in an urban context. Using GPS tracking, we examined habitat use by an invasive pest, the brushtail possum (Trichosurus vulpecula) in residential New Zealand habitats; these habitats comprise a large proportion of the urban landscape and are currently not targeted for pest control. We predicted that home ranges of possums in residential areas would be larger than those in non-urban habitats due to lower densities of their primary food resource, plant material; that possums would prefer forest fragment habitat; and that they would avoid roads due to the mortality risk. Home range sizes estimated using mechanistic Brownian bridges and 100 % minimum convex polygons were smaller or similar in size to those recorded in rural and forest habitats. Resource utilization functions and the regression of utilization distribution probabilities against environmental variables showed that possums selected forest fragments primarily, followed by residential habitat characterised by large gardens with a degree of vegetative structural complexity. Roads were not avoided. Control operations should expand their scope to include residential areas containing mature, diverse vegetation rather than only focussing on forest fragments, a strategy that ignores biodiversity values in residential habitats, and is likely to be unsuccessful due to reinvasion potential from neighbouring residential areas.  相似文献   

8.
  • 1 Based on information obtained from analysis of thirteen taxonomic groups of plants and animals occurring in the alluvial floodplain habitats of the Upper Rhône River, France, we synthesize results obtained on: (i) relationships among species traits; (ii) habitat utilization by species; (iii) the relationship between species traits and habitat utilization; (iv) trends in species traits in a framework of spatial and temporal variability; and (v) tests of trends predicted for species traits and species richness in the framework of spatial and temporal habitat variability in terms of the river habitat templet and patch dynamics concept.
  • 2 Species traits describing reproductive characteristics, food, and size had the closest relationships with each other in the various correspondence analyses performed. Faunal and floral separation by species traits produced groupings similar to those based on traditional taxonomy.
  • 3 Two major gradients appear in the utilization of the floodplain habitats: a vertical gradient from interstitial to superficial habitats; and a transverse gradient from the main channel to oxbow lakes, temporary waters, and terrestrialized habitats.
  • 4 For the majority of the groups examined, a statistically significant relationship was evident between the structure of the species trait and habitat utilization arrays. For these groups, the characteristics of the habitat act as a templet for species traits. Moreover, species trait modalities (i.e. categories defining traits) were significantly arranged along the axis of spatial and temporal variability for most groups, which indicates that such variability acts as a templet for species traits.
  • 5 Species traits did not conform to predictions of the river habitat templet because the observed modality sequences did not follow the trends predicted in a framework of spatial and temporal variability. Moreover, there was no clear pattern in the distribution of species traits along an axis of temporal variability for groups of organisms having different sizes, which is a correlate of longevity, nor did modalities of species traits that occur under conditions of low temporal variability also tend to occur under conditions of high spatial variability (or vice versa). Clearly, species traits occur as alternative suites of characteristics in various groups of organisms.
  • 6 The patch dynamics concept, which predicts that highest species richness occurs at intermediate levels of temporal variability and highest levels of spatial variability, was supported by observations in only two of the thirteen groups exaniined, and only partially (for spatial variability) when all 548 taxa were examined together.
  • 7 The predictions of the river habitat templet and patch dynamics concepts were not supported, perhaps because templet theories do not yet accommodate alternative suites of characteristics and trade-offs between combinations of traits, or perhaps because the single scale of variability considered in the analyses, the inhomogeneity of the available biological information, and the aggregation of spedes traits that were used created methodological problems.
  • 8 Ecologically sound river management polides eventually may be based on two key points that emerged from this synthesis: that the habitat acts as a templet for spedes traits, and that composite taxonomic groupings represent relatively homogeneous assemblages of spedes trait modalities.
  • 9 The use of statistical approaches developed in this project to analyse other long-term data sets may clarify questions about the applicability of habitat templet theories to river ecology, and hasten development of ecologically sound river management policies.
  相似文献   

9.
Top predators need to develop optimal strategies of resources and habitats utilization in order to optimize their foraging success. At the individual scale, a predator has to maximize his intake of food while minimizing his cost of foraging to optimize his energetic gain. At the ecosystem scale, we hypothesized that foraging strategies of predators also respond to their general energetic constraints. Predators with energetically costly lifestyles may be constrained to select high quality habitats whereas more phlegmatic predators may occupy both low and high quality habitats. The objectives of this study were 1) to investigate predator responses to heterogeneity in habitat quality with reference to their energetic strategies and 2) to evaluate their responses to contemporaneous versus averaged habitat quality. We collected cetacean and seabird data from an aerial survey in the Southwest Indian Ocean, a region characterized by heterogeneous oceanographic conditions. We classified cetaceans and seabirds into energetic guilds and described their habitats using remotely sensed covariates at contemporaneous and time‐averaged resolutions and static covariates. We used generalized additive models to predict their habitats at the regional scale. Strategies of habitat utilization appeared in accordance with predators energetic constraints. Cetaceans responded to the heterogeneity in habitat quality, with higher densities predicted in more productive areas. However, the costly Delphininae appeared to be more dependent on habitat quality (showing a 1‐to‐13 ratio between the lowest and highest density sectors) than the more phlegmatic sperm and beaked whales (showing only a 1‐to‐3 ratio). For seabirds, predictions primarily reflected colony locations, although the colony effect was stronger for costly seabirds. Moreover, our results suggest that predators may respond better to persistent oceanographic features. To provide a third dimension to habitat quality, cetacean strategies of utilization of the vertical habitat could be related to the distribution of micronekton in the water column.  相似文献   

10.
  • 1 This paper summarizes twenty years of ecological research on aquatic oligochaetes of the Upper Rhône River and its alluvial floodplain (France). Species traits of fifty species of the ninety taxa recorded from two areas Gons and Brégnier-Cordon) were used to examine the relationships among species traits, habitat utilization of these species, whether a relationship exists between species traits and habitat utilization, and the applicability of predictions from the river habitat templet and the patch dynamics concept in the framework of spatial and temporal habitat variability. We used fourteen habitat types and sixteen species traits in this analysis.
  • 2 When examined by correspondence analysis, species traits separate the Naididae (with a higher potential for reproduction, small size, high mobility, and opportunistic diet) from all other families.
  • 3 Habitat utilization by oligochaetes demonstrates two gradients: a vertical gradient that arranges species by their affinity for interstitial habitats (stygophily) and a transversal gradient that arranges them by their affinity for main channel habitats (rheophily).
  • 4 No significant relationship was found between species traits and habitat utilization in a co-inertia analysis.
  • 5 Trends observed for species traits within the framework of spatial-temporal habitat variability show only minor agreement with predictions of the river habitat templet.
  • 6 Species richness is generally higher in superficial and interstitial habitats that are permanently connected with the main channel, and peaks in the superficial parapotamons (backwaters that are permanently connected with the main channel) characterized by intermediate levels of spatial as well as temporal variability; this pattern only partially fits with predictions of the patch dynamics concept.
  相似文献   

11.
Understanding herbivore selection and utilization of vegetation types is fundamental to conservation of multispecies communities. We tested three hypotheses for how ungulate species select their habitats and how this changes with season: first, resources are distributed as a mosaic of patches so that ungulates are also distributed patchily; this distribution reflects habitat selection, which changes with season, the different ungulates behaving differently. Second, resources become scarcer in the dry season relative to those in the wet season. If interspecific competition prevails, then all species should show a contraction of habitats chosen. Third, if predation is limiting, competition will be minimal, and hence, habitat selection by herbivores will not differ between seasons. We used frequencies of occurrence in four common vegetation types in western Serengeti National Park to determine selection coefficients and utilization patterns and Chi‐square analysis to test the hypotheses. The results showed that selection changes differently in each species, agreeing with the first hypothesis. Herbivores did not all become more selective, as predicted by the competition hypothesis, nor did selection remain the same across seasons, as predicted by the predation hypothesis. These results can be useful in constructing habitat suitability maps for ungulate species with special conservation needs.  相似文献   

12.
Aim We evaluated variation in fish assemblages on the basis of taxonomic composition and functional groups based on Pleistocene glacial boundaries in the Ohio River basin. We tested for the influence of habitat and hydrology on fish assemblage variation. Location Ohio River basin of North America, including the states of Ohio, Indiana and Illinois. Methods Fish collection sites were identified as Wisconsinan, pre‐Wisconsinan or unglaciated regions. Multivariate analyses, multi‐response permutation procedures, discriminant analysis and indicator species analyses were used to test whether taxonomic and functional assemblages were distinct among regions with varying glacial histories. Principal components analysis was used to identify habitat and water quality, as well as hydrological gradients that could be discerned by glacial region. Results We identified significant differences in both taxonomic and functional fish assemblage structure and habitat variation among regions that had different glaciation histories. The largest differences in taxonomic and functionally based fish communities were for unglaciated and pre‐Wisconsinan regions, while unglaciated and Wisconsinan regions were most similar. We correctly classified study regions in 71% and 60% of sites using taxonomy and functional analyses, respectively. Wisconsinan sites were characterized by Cyprinidae and Catostomidae assemblages with high abundances of tolerant fishes that tended to occur in habitats with reduced current velocity. Pre‐Wisconsinan sites were characterized by Cyprinidae, Catostomidae, Centrarchidae and Percidae families with increased abundances of intolerant fishes that tended to occur in habitats with coarser substrates and increased water velocity in streams of varying size. Unglaciated sites were characterized by Cyprinidae and Percidae families and were not closely associated with any habitat‐based functional group. Habitat in the unglaciated and pre‐Wisconsinan sites was significantly different from that in the Wisconsinan sites, which were characterized by increased channel structure and reduced stream size. Main conclusions Pleistocene glaciation events formed a lasting template of predictable regional differences in stream habitat and in the corresponding taxonomic and functional fish assemblage structures. While many factors impact the distribution of fishes, these results suggest that historical influences such as glaciation may be used to further explain the underlying mechanisms of spatial variation in fish assemblages.  相似文献   

13.
The aim of the study was to evaluate the exclusivity and/or preference of macroinvertebrate taxa for river habitats. Indicator species analysis and random forests methods were applied to the data set of macroinvertebrate samples taken from 58 sampling points. Samples were classified according to habitat types defined by the position in a river channel and local hydraulic characteristics. 86 macroinvertebrate taxa were included in the analyses. High indicative values for habitats (importance value ≥50 and/or indicator value ≥40) were identified for 26 taxa. The results of both methods can be considered similar. Merged habitats of channel margin (margin of main channel and side arms) were mainly defined by “negative” indicator taxa (correct classification of given samples was caused by non-occurrence and low abundances of certain taxa in this habitat). In general, there was only a small group of taxa preferring these habitats. Taxa were not fully habitat specific because they mostly occurred in two or three habitat types. This could be the result of autecological plasticity of individual taxa and the connectivity among habitats. According to the experience from this case study, it can be concluded that both random forests and IndVal methods are suitable for the detection of indicative species, and random forests method has some additional advantages.  相似文献   

14.
Abstract: Loss of quality brood rearing habitat, resulting in reduced chick growth and poor recruitment, is one mechanism associated with decline of greater sage-grouse (Centrocercus urophasianus) populations. Low chick survival rates are typically attributed to poor-quality brood rearing habitat. Models that delineate suitability of sage-grouse nesting or brood rearing habitat at the landscape scale can provide key insights into the relationship between sage-grouse and the environment, allowing managers to identify and prioritize habitats for protection or restoration. We used Southwest Regional Gap landcover types to identify early and late greater sage-grouse brood rearing in east-central Nevada. We conducted an Ecological Niche Factor Analysis to 1) examine the effect these landcover types and other ecogeographical variables have on sage-grouse selection of brood rearing habitat, and 2) generate landscape-scale suitability maps. We also evaluated if incorporating a fitness component (brood survival) in landscape spatial analyses of habitat quality influenced our assessment of habitat suitability. Because 36% of our 6,500-km2 study area was identified as early brood rearing habitat, we believe this habitat may not be limiting greater sage-grouse populations in east-central Nevada, USA, at least in wet years. We found strong selection for particular landcover types (e.g., higher elevation, moist sites with riparian shrubs or montane sagebrush) during late brood rearing. Late brood rearing habitat on which broods were successfully reared represented only 2.8% of the study area and had a restricted distribution, suggesting the potential that such habitat could limit sage-grouse populations in east-central Nevada.  相似文献   

15.
  • 1 For practical reasons, conceptual developments in community ecology are usually based on studies of a restricted systematic group. The cooperation of thirty or so specialists in the synthesis of long-term ecological research on the Upper Rhône River, France, provided a unique occasion to investigate relationships among species traits, the habitat utilization by species, the relationship between species traits and habitat utilization, and trends of species traits and species richness in the framework of spatial-temporal habitat variability for 548 species of plants (Hyphomycetes, aquatic macrophytes, floodplain vegetation) and animals (Tricladida, Oligochaeta, several groups of Crustacea, Insecta and Vertebrata).
  • 2 Using correspondence analysis, 100 modalities of eighteen species traits were examined; the resulting typology demonstrates that systematic groups are the most important elements for separating species traits such as size, fecundity of individuals, parental care, mobility, body form, and food type. Small species have an intermediate number of descendants per reproductive cycle and few reproductive cycles both per year and per individual; in contrast, large species have a high number of descendants per reproductive cycle and few reproductive cycles per year but many potential reproductive cycles per individual.
  • 3 The analysis of habitat utilization in the Upper Rhône River and its floodplain by the 548 species demonstrated a vertical gradient separating interstitial from superficial habitats; a transverse gradient for superficial habitats from the main channel towards more terrestrial ones is also evident.
  • 4 Because of a significant (P < 0.01) relationship between species traits and habitat utilization, traits such as size, fecundity of individuals, parental care, tolerance to variation in humidity, and respiration are arranged along the vertical and transverse habitat gradient. Size, the number of reproductive cycles per individual, and the tolerance to variation of humidity increases from permanent waters to temporary waters, aggrading habitats, and terrestrial habitats.
  • 5 Species traits showed significant (P < 0.01) trends in the framework of spatial-temporal habitat variability and were compared with predictions based on the river habitat templet. Although each habitat showed a mixture of species traits at low temporal and spatial variability, and at high variability sites, trends corresponded to predictions for three traits (number of descendants per reproductive cycle, number of reproductive cycles per individual, attachment to soil or substrate) along a gradient of increasing temporal habitat variability.
  • 6 The species richness of each habitat within the Upper Rhône River and its floodplain significantly (P = 0.03) increased as the spatial variability of habitats increased but there is no statistical correlation between spedes richness and temporal variability. An altemative hypothesis predicting that fewer spedes per resource occur in temporally stable habitats is also not supported.
  相似文献   

16.
Habitat selection in a variable environment   总被引:1,自引:0,他引:1  
A Monte Carlo simulation scheme was utilized to determine optimal strategies of habitat utilization in a variable environment. The model allows for differences in quality among habitats at any one time and for varying levels of environmental variance and autocorrelation. When habitats are on the average equal in quality, tracking of temporal fluctuations in environment through variable habitat selection is universally advantageous with the gain in fitness limited by environmental variance, autocorrelation, and number of available habitats. Average differences in quality among habitats will restrict the advantage of variable habitat utilization (over complete usage of the average better habitat) to cases of high environmental autocorrelation or high ratios of enviromental variance to mean habitat separation. Extending an earlier prediction of Levins (1965), the average heterozygosity per individual in a natural population should increase with increasing environmental variance.  相似文献   

17.
  • 1 Recent developments in ecological theory concerned with habitat templets, species assemblages, and life history traits were examined for the riverine fish communities of the Upper Rhône River, France, in the context of spatial–temporal habitat variability. Relationships among species traits, habitat utilization of species, the relationship between species traits and habitat utilization, and trends of species traits and species richness in the spatial–temporal variability of the habitat types were analysed.
  • 2 Relationships among twelve species traits, and utilization of eight habitats were examined for twenty-five fish species using correspondence analysis; the relationship between species traits and habitat utilization was investigated by co-inertia analysis.
  • 3 Positive relationships among species traits were observed for size, fecundity, and the number of reproductive cycles per individual. However, species were not well differentiated according to the habitat utilization, except for habitats rarely connected with the main channel (i.e. two types of oxbow lakes).
  • 4 No significant relationship was found between species traits and habitat utilization, nor for either species traits or species richness when examined in the framework of spatial–temporal habitat variability. Only two species traits corresponded (with slight trends) to predictions in a river habitat templet: (i) the number of descendants per reproductive cycle increased along with temporal variability; and (ii) the number of reproductive cycles per individual was either low or high at low temporal variability and intermediate at elevated temporal variability.
  • 5 The discrepancy between the predictions of the river habitat templet as well as of the patch dynamics concept and the results observed for the fish in the Upper Rhône was explained in terms of scale problems, the evolutionary ecology of the European fish fauna, and the history of the Rhône River.
  相似文献   

18.
Density‐dependent habitat selection has been used to predict and explain patterns of abundance of species between habitats. Thermal quality, a density‐independent component of habitat suitability, is often the most important factor for habitat selection in ectotherms which comprise the vast majority of animal species. Ectotherms may reach high densities such that individual fitness is reduced in a habitat due to increased competition for finite resources. Therefore, density and thermal quality may present conflicting information about which habitat will provide the highest fitness reward and ectotherm habitat selection may be density‐independent. Using ornate tree lizards Urosaurus ornatus at 10 sites each straddling two adjacent habitats (wash and upland), we tested the hypothesis that habitat selection is density‐dependent even when thermal quality differs between habitats. We first tested that fitness proxies decline with density in each habitat, indicating density‐dependent effects on habitat suitability. We also confirmed that the two habitats vary in suitability (quantified by food abundance and thermal quality). Next, we tested the predictions that habitat selection depends on density with isodar analyses and that fitness proxies are equal in the two habitats within a site. We found that monthly survival rates decreased with density, and that the wash habitat had more prey and higher thermal quality than the upland habitat. Lizards preferred the habitat with more food and higher thermal quality, lizard densities in the two habitats were positively correlated, and fitness proxies of lizards did not differ between habitats. These patterns are consistent with density‐dependent habitat selection, despite differences in thermal quality between habitats. We expect that density‐dependent habitat selection is widespread in terrestrial ectotherms when densities are high and temperatures are close to their optimal performance range. In areas where thermal quality is low, however, we expect that depletable resources, such as food, become less limiting because assimilating resources is more difficult.  相似文献   

19.
Aim Based on a priori hypotheses, we developed predictions about how avian communities might differ at the edges vs. interiors of ecoregions. Specifically, we predicted lower species richness and greater local turnover and extinction probabilities for regional edges. We tested these predictions using North American Breeding Bird Survey (BBS) data across nine ecoregions over a 20‐year time period. Location Data from 2238 BBS routes within nine ecoregions of the United States were used. Methods The estimation methods used accounted for species detection probabilities < 1. Parameter estimates for species richness, local turnover and extinction probabilities were obtained using the program COMDYN. We examined the difference in community‐level parameters estimated from within exterior edges (the habitat interface between ecoregions), interior edges (the habitat interface between two bird conservation regions within the same ecoregion) and interior (habitat excluding interfaces). General linear models were constructed to examine sources of variation in community parameters for five ecoregions (containing all three habitat types) and all nine ecoregions (containing two habitat types). Results Analyses provided evidence that interior habitats and interior edges had on average higher bird species richness than exterior edges, providing some evidence of reduced species richness near habitat edges. Lower average extinction probabilities and turnover rates in interior habitats (five‐region analysis) provided some support for our predictions about these quantities. However, analyses directed at all three response variables, i.e. species richness, local turnover, and local extinction probability, provided evidence of an interaction between habitat and region, indicating that the relationships did not hold in all regions. Main conclusions The overall predictions of lower species richness, higher local turnover and extinction probabilities in regional edge habitats, as opposed to interior habitats, were generally supported. However, these predicted tendencies did not hold in all regions.  相似文献   

20.
  • 1 The purpose of this study was to test predictions of the habitat templet and the patch dynamics concept by analysing the relationship between either the species traits or species richness of amphibians and the spatial–temporal variability of eight habitat types of the Upper Rhône River and its floodplain, France.
  • 2 The information on species traits of the twelve amphibian species was accumulated primarily from the literature; that on habitat utilization was based on field surveys. The information was ‘fuzzy coded’, analysed by ordination techniques, and finally linked to the spatial–temporal variability of habitat types elaborated elsewhere in this issue.
  • 3 After elimination of the variance caused by the differences between urodeles and anurans, correspondence analysis of the matrix of species traits demonstrated that the flexibility of the temporal pattern of reproduction was the major source of variation among amphibian species. A less significant source of variation within anurans was related to traits usually linked to the concept of r–K selection (potential number of descendants per reproductive cycle and ratio of egg size to female size).
  • 4 A correspondence analysis of habitat utilization by amphibian species separated four groups of habitat types, corresponding to different degrees of influence that the active channel had on adjacent waters in the floodplain (i.e. from habitats that are most frequently disturbed by floods, to habitats of braided sections, old oxbow lakes, and the more terrestrialized habitats).
  • 5 A co-inertia analysis of the relationship between species traits and habitat utilization separated two habitat types (terrestrialized former meanders and oxbow lakes) from the others. Species of terrestrialized habitats had a reproductive display, a low number of descendants per reproductive cycle, and a high ratio of egg size to female size. Species of oxbow lakes were early or synchronous breeders, and laid a single clutch.
  • 6 Neither the predictions of the habitat templet concept nor those of the patch dynamics concept were validated. Species traits were not significantly correlated to the axes of the spatial–temporal variability templet. The highest species richness was observed in habitat types with the highest temporal variability; in addition, richness did not peak at highest spatial variability.
  • 7 Deviation from the predictions of the river habitat templet could be explained by: (i) the over-simplification of this model with regard to the evolution of the complex life cycles of the amphibians; and (ii) an underestimation of the importance of phylogenetic constraints and the evolution of community interactions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号