首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: Climate projections predict drier and warmer conditions in the Mediterranean basin in the next decades. The possibility of such climatic changes modifying the growth of two Mediterranean species, Erica multiflora and Globularia alypum, which are common components of Mediterranean shrublands, was assessed. METHODS: A field experiment was performed from March 1999 to March 2002 to prolong the drought period and to increase the night-time temperature in a Mediterranean shrubland, where E. multiflora and G. alypum are the dominant species. Annual growth in stem diameter and length of both species was measured and annual stem biomass production was estimated for 1999, 2000 and 2001. Plant seasonal growth was also assessed. KEY RESULTS: On average, drought treatment reduced soil moisture 22 %, and warming increased temperature by 0.7-1.6 degrees C. Erica multiflora plants in the drought treatment showed a 46 % lower annual stem elongation than controls. The decrease in water availability also reduced by 31 % the annual stem diameter increment and by 43 % the annual stem elongation of G. alypum plants. New shoot growth of G. alypum was also strongly reduced. Allometrically estimated biomass production was decreased by drought in both species. Warming treatment produced contrasting effects on the growth patterns of these species. Warmer conditions increased, on average, the stem basal diameter growth of E. multiflora plants by 35 %, raising also their estimated stem biomass production. On the contrary, plants of G. alypum in the warming treatment showed a 14 % lower annual stem growth in basal diameter and shorter new shoots in spring compared with controls. CONCLUSIONS: The results indicate changes in the annual productivity of these Mediterranean shrubs under near future drier and warmer conditions. They also point to alterations in their competitive abilities, which could lead to changes in the species composition of these ecosystems in the long term.  相似文献   

2.
We tested the effect of forecasted soil drought and warming climate conditions for the next decades on emission rates of isoprenoids by mediterranean shrublands. We measured isoprenoid emissions by whole dominant mediterranean woody plants (Erica multiflora L. and Globularia alypum L.) inhabiting the studied shrublands. Monoterpene emissions were detected in both species, but isoprene was emitted only by E. multiflora. Maximum emission rates were found during the hottest periods (except for G. alypum, in which they occurred in autumn), and minimum emission rates in winter in E. multiflora. Terpene emission rates ranged from 0.08 μg/(g dry wt h) in winter in E. multiflora to 8.8 μg/(g dry wt h) in G. alypum in autumn. In E. multiflora, the terpene emission rates decreased in response to soil drought only in summer, but increased in response to warming in spring and autumn. Isoprene emissions ranged from 0.1 μg/(g dry wt h) in spring to 4.4 μg/(g dry wt h) in summer. The effect of the treatments was only detected in autumn when soil drought and warming had a negative effect on isoprene emission rates. These data might improve our knowledge of isoprenoid emissions at the canopy level and in response to climate change, soil drought, or warming. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 1, pp. 35–45. The text was submitted by the authors in English.  相似文献   

3.
4.
Abstract. Question: Does the influence of plant canopy on seedling establishment interact with climate conditions, and particularly, do intensified drought conditions, enhance a positive effect of the vegetation canopy on seedlings in Mediterranean‐type ecosystems. Location: Mediterranean shrubland near Barcelona, Spain at 210 m a.s.l. Methods: Over the course of four years we recorded seedling emergence and survival in open areas and below vegetation under control, drier and warmer experimental climatic conditions. Results: Seedling emergence is more sensitive to climate conditions than later stages of growth. When considering the whole set of species, the total number of established seedlings at the end of the experiment was lower in the drought and warming stands than in control ones, and vegetation canopy increased the number of these seedlings in the drought stands. Drought reduced seedling emergence but not warming, while the interaction between climate treatments and vegetation canopy was not significant. Seedling survival was lower in the warming treatment than in the control. Under drought conditions, vegetation canopy increased seedling emergence of the dominant Globularia alypum. In control stands, vegetation canopy reduced their survival. Vegetation canopy increased the survival of the dominant Erica multiflora in warming stands, and it reduced the survival of G alypum in drought stands. No significant effects of drought and warming were observed in the seed rain of these two species. Conclusions: The balance of the facilitation‐competition interactions between vegetation canopy and seedling establishment in Mediterranean‐type ecosystems determined by water availability, and drought conditions enhance the positive effect of vegetation canopy. This interaction is species‐specific and shows important between‐year variability.  相似文献   

5.
We conducted a field experiment simulating the warming and drought in a Mediterranean shrubland dominated by Erica multiflora and Globularia alypum with the aim to simulate the next future climate conditions predicted by the IPCC and ecophysiological models. As P is frequently a limiting nutrient in Mediterranean ecosystems, we investigated the drought and warming effects on soil phosphatases activities, soil P contents and availability, litter and leaf P concentration, and the capacity of this community to maintain soil P reserves and retain this nutrient in the ecosystem. Warming treatment increased soil and air temperature (an average of 1°C) and drought treatment decreased soil water content in one of the seasons analysed (28% in autum 2004). Warming increased (68%) the activities of soil acid phosphatases in summer and alkaline phosphatase activity (22%) in spring 2004, and increased P concentrations in E. multiflora. Instead, warming decreased P concentrations in litterfall of this same species, E. multiflora, and soil HCO3-extractable Pi (Olsen-Pi) in some seasons, decreasing total P soil concentration (37%) after 6 years of treatment. The drought treatment did not change soil phosphatase activities, nor available Pi. The effects of climate change on soil P dynamics in Mediterranean areas will thus be strongly dependent on whether the main variable involved in the local change is warming or drought. If warming is the main change without significant changes in water availability, the increases of biological activity can accelerate plant growth, P capture by plants and increase soil-phosphatase activity, altogether decreasing P contents in soil. If drought is the main change, a reduction in P demands by plants is expected, increasing P stocks in soils.  相似文献   

6.
Soil enzymes are central in the response of terrestrial ecosystems to climate change, and their study can be crucial for the models’ implementation. We investigated for 1 year the effects of warming and seasonality on the potential activities of five soil extracellular enzymes and their relationships with soil moisture, phosphorus (P) concentration, and other soil parameters in a P‐limited Mediterranean semiarid shrubland. The site was continuously subjected to warming since 1999, and we compared data from this study to analogous data from 2004. Warming uniformly increased all enzymes activities, but only when a sufficient amount of soil water was available. Seasonality unevenly altered enzyme activities, thus affecting enzymatic stoichiometry. P deficiency affected enzymatic stoichiometry, favoring the activities of the phosphatases. The effect of warming was stronger in 2014 than 2004, excluding the hypothesis of acclimation of rhizospheric responses to higher temperatures and suggesting that further increases in extracellular enzymatic activities are to be expected if sufficient water is available. Climatic warming will likely generally stimulate soil enzymatic activities and accelerate nutrient mineralization and similar ecological processes such as the production and degradation of biomass and changes in community composition, but which will be limited by water availability, especially in Mediterranean soils in summer. Winters in such ecosystems will benefit from a general increase in activity and production, but biological activity could even decrease in summer, potentially leading to a negative overall balance of nutrient mineralization. This study suggests that a general increase in activity due to warming could lead to faster mineralization of soil organic matter and water consumption in colder climates, until one of these factors in turn becomes limiting. Such trade‐offs between water and temperature in relation with enzyme activity should be considered in biogeochemical models.  相似文献   

7.
A field experiment involving drought and warming manipulation was conducted over a 6-year period in a Mediterranean shrubland to simulate the climate conditions projected by IPCC models for the coming decades (20% decreased soil moisture and 1°C warming). We investigated P and K concentration and accumulation in the leaves and stems of the dominant species, and in soil. Drought decreased P concentration in Globularia alypum leaves (21%) and in Erica multiflora stems (30%) and decreased K concentration in the leaves of both species (20% and 29%, respectively). The general decrease of P and K concentration in drought plots was due to the reduction of soil water content, soil and root phosphatase activity and photosynthetic capacity that decreased plant uptake capacity. Warming increased P concentration in Erica multiflora leaves (42%), but decreased it in the stems and leaf litter of Erica multiflora and the leaf litter (33%) of Globularia alypum, thereby demonstrating that warming improved the P retranslocation and allocation from stem to leaves. These results correlate with the increase in photosynthetic capacity and growth of these two dominant shrub species in warming plots. Drought and warming had no significant effects on biomass P accumulation in the period 1999–2005, but drought increased K accumulation in aboveground biomass (10 kg ha−1) in Globularia alypum due to the increase in K concentration in stems. The stoichiometric changes produced by the different responses of the nutrients led to changes in the P/K concentration ratio in Erica multiflora leaves, stems and litter, and in Globularia alypum stems and litter. This may have implications for the nutritional value of these plant species and plant–herbivore relationships. The effects of climate change on P and K concentrations and contents in Mediterranean ecosystems will differ depending on whether the main component of change is drought or warming.  相似文献   

8.
We conducted a night-time warming and drought field experiment for 7 years (1999–2005) in a Mediterranean shrubland. We focused on the two dominant shrub species, Erica multiflora L. and Globularia alypum L. and the tree Pinus halepensis L. and the final years to study the effects of the experimental night-time warming and drought on Fv/Fm, photosynthesis, and stomatal conductance. Warming treatment increased mean air temperature and mean soil temperature through the years by an average of 0.7 and 0.9°C respectively, and drought treatment reduced soil moisture through the years by an average of 19%. Warming tended to increase photosynthetic rates in E. multiflora, G. alypum and P. halepensis mostly in the cold seasons, when plants were more limited by temperature, as shown by the lowest values of Fv/Fm being detected in winter in the three studied species. A negative effect of warming was only detected for E. multiflora in summer 2003. Drought treatment generated different responses of net photosynthetic rates depending on the species, season and year. Stomatal conductance showed the same pattern as photosynthesis for the three studied species, displaying seasonal and inter-annual variability, although with an overall negative effect of drought for P. halepensis. Photosynthetic rates decreased significantly in the dry winter 2005 and spring 2005 in comparison to the same seasons of 2003 and 2004. There were positive correlations between the photosynthetic rates in different seasons for E. multiflora, G. alypum and P. halepensis and the soil moisture of the week prior to measurements. The great variation in the photosynthetic rates was thus explained in a significant part by soil moisture levels. The lowest Fv/Fm values usually corresponded with lowest stomatal conductances suggesting that drought stress could be associated to stress by low temperatures in winter.  相似文献   

9.
This article describes new approaches for manipulation of temperature and water input in the field. Nighttime warming was created by reflection of infrared radiation. Automatically operated reflective curtains covered the vegetation at night to reduce heat loss to the atmosphere. This approach mimicked the way climate change, caused by increased cloudiness and increased greenhouse gas emissions, alters the heat balance of ecosystems. Drought conditions were created by automatically covering the vegetation with transparent curtains during rain events over a 2–5-month period. The experimental approach has been evaluated at four European sites across a climate gradient. All sites were dominated (more than 50%) by shrubs of the ericaceous family. Within each site, replicated 4-m × 5-m plots were established for control, warming, and drought treatments and the effect on climate variables recorded. Results over a two-year period indicate that the warming treatment was successful in achieving an increase of the minimum temperatures by 0.4–1.2°C in the air and soil. The drought treatment resulted in a soil moisture reduction of 33%–82% at the peak of the drought. The data presented demonstrate that the approach minimizes unintended artifacts with respect to water balance, moisture conditions, and light, while causing a small but significant reduction in wind speed by the curtains. Temperature measurements demonstrated that the edge effects associated with the treatments were small. Our method provides a valuable tool for investigating the effects of climate change in remote locations with minimal artifacts.  相似文献   

10.
We present evidence of a recent drying in the eastern Mediterranean, based on weather and tree‐ring data for Samos, an island of the eastern Aegean Sea. Rainfall declined rapidly after the late 1970s following trends for the entire Mediterranean and was associated with reduced tree‐ring width in Pinus brutia. The most recent decline led to the lowest annual radial stem increment after the last 100 years (as far as records reach). As moisture availability decreased best correlations of tree growth with rainfall were obtained for progressively longer integration periods (1–2 years in moister periods, 5–6 years during the severe dryness of 20th century's last decades), suggesting increasing dependency in deep soil water. Such long‐term integration periods of tree‐growth responses to precipitation have not been reported before. They may reflect a tree‐rooting pattern adapted to cope with even several successive dry years. In late summer 2000, moisture reserves became exhausted, however, and a substantial fraction of low altitude pines died, including some 80‐year‐old trees, which underlines the exceptional extent this trend had reached. Our findings provide empirical support for Intergovernmental Panel on Climate Change projections derived from global circulation models that the Mediterranean, its eastern basin in particular, should become drier as temperature rises, as was the case in the recent past.  相似文献   

11.
Field‐scale experiments simulating realistic future climate scenarios are important tools for investigating the effects of current and future climate changes on ecosystem functioning and biogeochemical cycling. We exposed a seminatural Danish heathland ecosystem to elevated atmospheric carbon dioxide (CO2), warming, and extended summer drought in all combinations. Here, we report on the short‐term responses of the nitrogen (N) cycle after 2 years of treatments. Elevated CO2 significantly affected aboveground stoichiometry by increasing the carbon to nitrogen (C/N) ratios in the leaves of both co‐dominant species (Calluna vulgaris and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the N concentration of Deschampsia litter. Belowground, elevated CO2 had only minor effects, whereas warming increased N turnover, as indicated by increased rates of microbial NH4+ consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced belowground gross N mineralization and decreased fauna N mass and fauna N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss is highly sensitive to changes and variability in amount and timing of precipitation. Interactions between treatments were common and although some synergistic effects were observed, antagonism dominated the interactive responses in treatment combinations, i.e. responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue in response to elevated CO2, as well as drought‐induced decreases in litter N production and fauna N mineralization prevailed in the full treatment combination. Overall, the simulated future climate scenario therefore lead to reduced N turnover, which could act to reduce the potential growth response of plants to elevated atmospheric CO2 concentration.  相似文献   

12.
This study analyses the temporal and spatial changes in abundance and distribution of the warm water species round sardinella (Sardinella aurita) in the western Mediterranean over the last decades in relation to sea water temperature. In the western Mediterranean basin (1950–2003), a significant positive relationship was found between round sardinella landings and temperature anomalies. Along a latitudinal gradient off the Mediterranean Iberian coast (1989–2004), a gradual increase in species abundance was observed from south to north, with a certain time lag going northwards, associated with the increase in sea water temperature. The abundance of round sardinella in the two warmest and southernmost areas was positively and significantly correlated with sea surface temperature registered during the start of gonad maturation the previous year. In addition, the positive relationship established between water temperature and abundance of round sardinella in the coldest and northernmost study area demonstrates that there is a temperature limit for the distribution of this species in the western Mediterranean. In addition, this study analyses round sardinella larvae distribution and abundance in the summers of 2003 and 2004, and conducts a comparison with the situation 20 years ago (summer 1983). Results show a marked increase in larval abundance during the last decades and the present appearance of larvae in the northernmost study areas, where they did not occur 20 years ago. This indicates the successful reproduction of round sardinella in the northern part of the Mediterranean, where the species has expanded, confirming its establishment in the area.  相似文献   

13.
14.
15.
The soil nitrogen cycle was investigated in a pre‐established Lolium perenne sward on a loamy soil and exposed to ambient and elevated atmospheric CO2 concentrations (350 and 700 μL L?1) and, at elevated [CO2], to a 3 °C temperature increase. At two levels of mineral nitrogen supply, N– (150 kgN ha?1 y?1) and N+ (533 kgN ha?1 y?1), 15N‐labelled ammonium nitrate was supplied in split applications over a 2.5‐y period. The recovery of the labelled fertilizer N was measured in the harvests, in the stubble and roots, in the macro‐organic matter fractions above 200 μm in size (MOM) and in the aggregated organic matter below 200 μM (AOM). Elevated [CO2] reduced the total amount of N harvested in the clipped parts of the sward. The harvested N derived from soil was reduced to a greater extent than that derived from fertilizer. At both N supplies, elevated [CO2] modified the allocation of the fertilizer N in the sward, in favour of the stubble and roots and significantly increased the recovery of fertilizer N in the soil macro‐organic matter fractions. The increase of fertilizer N immobilization in the MOM was associated with a decline of fertilizer N uptake by the grass sward, which supported the hypothesis of a negative feedback of elevated [CO2] on the sward N yield and uptake. Similar and even more pronounced effects were observed for the native N mineralized in the soil. At N–, a greater part of the fertilizer N organized in the root phytomass resulted in an underestimation of N immobilized in dead roots and, in turn, an underestimation of N immobilization in the MOM. The 3 °C temperature increase alleviated the [CO2] effect throughout much of the N cycle, increasing soil N mineralization, N derived from soil in the harvests, and the partitioning of the assimilated fertilizer N to shoots. In conclusion, at ambient temperature, the N cycle was slowed down under elevated [CO2], which restricted the increase in the aboveground production of the grass sward, and apparently contributed to the sequestration of carbon belowground. In contrast, a temperature increase under elevated [CO2] stimulated the soil nitrogen cycle, improved the N nutrition of the sward and restricted the magnitude of the soil C sequestration.  相似文献   

16.
Interactive effects of CO2 and water availability have been predicted to alter the competitive relationships between C3 and C4 species over geological and contemporary time scales. We tested the effects of drought and CO2 partial pressures (pCO2) ranging from values of the Pleistocene to those predicted for the future on the physiology and growth of model C3 and C4 species. We grew co-occurring Abutilon theophrasti (C3) and Amaranthus retroflexus (C4) in monoculture at 18 (Pleistocene), 27 (preindustrial), 35 (current), and 70 (future) Pa CO2 under conditions of high light and nutrient availability. After 27 days of growth, water was withheld from randomly chosen plants of each species until visible wilting occurred. Under well-watered conditions, low pCO2 that occurred during the Pleistocene was highly limiting to C3 photosynthesis and growth, and C3 plants showed increased photosynthesis and growth with increasing pCO2 between the Pleistocene and future CO2 values. Well-watered C4 plants exhibited increased photosynthesis in response to increasing pCO2, but total mass and leaf area were unaffected by pCO2. In response to drought, C3 plants dropped a large amount of leaf area and maintained relatively high leaf water potential in remaining leaves, whereas C4 plants retained greater leaf area, but at a lower leaf water potential. Furthermore, drought-treated C3 plants grown at 18 Pa CO2 retained relatively greater leaf area than C3 plants grown at higher pCO2 and exhibited a delay in the reduction of stomatal conductance that may have occurred in response to severe carbon limitations. The C4 plants grown at 70 Pa CO2 showed lower relative reductions in net photosynthesis by the end of the drought compared to plants at lower pCO2, indicating that CO2 enrichment may alleviate drought effects in C4 plants. At the Pleistocene pCO2, C3 and C4 plants showed similar relative recovery from drought for leaf area and biomass production, whereas C4 plants showed higher recovery than C3 plants at current and elevated pCO2. Based on these model systems, we conclude that C3 species may not have been at a disadvantage relative to C4 species in response to low CO2 and severe drought during the Pleistocene. Furthermore, C4 species may have an advantage over C3 species in response to increasing atmospheric CO2 and more frequent and severe droughts.  相似文献   

17.
We used a nonintrusive field experiment carried out at six sites – Wales (UK), Denmark (DK), the Netherlands (NL), Hungary (HU), Sardinia (Italy – IT), and Catalonia (Spain – SP) – along a climatic and latitudinal gradient to examine the response of plant species richness and primary productivity to warming and drought in shrubland ecosystems. The warming treatment raised the plot daily temperature by ca. 1 °C, while the drought treatment led to a reduction in soil moisture at the peak of the growing season that ranged from 26% at the SP site to 82% in the NL site. During the 7 years the experiment lasted (1999–2005), we used the pin‐point method to measure the species composition of plant communities and plant biomass, litterfall, and shoot growth of the dominant plant species at each site. A significantly lower increase in the number of species pin‐pointed per transect was found in the drought plots at the SP site, where the plant community was still in a process of recovering from a forest fire in 1994. No changes in species richness were found at the other sites, which were at a more mature and stable state of succession and, thus less liable to recruitment of new species. The relationship between annual biomass accumulation and temperature of the growing season was positive at the coldest site and negative at the warmest site. The warming treatment tended to increase the aboveground net primary productivity (ANPP) at the northern sites. The relationship between annual biomass accumulation and soil moisture during the growing season was not significant at the wettest sites, but was positive at the driest sites. The drought treatment tended to reduce the ANPP in the NL, HU, IT, and SP sites. The responses to warming were very strongly related to the Gaussen aridity index (stronger responses the lower the aridity), whereas the responses to drought were not. Changes in the annual aboveground biomass accumulation, litterfall, and, thus, the ANPP, mirrored the interannual variation in climate conditions: the most outstanding change was a decrease in biomass accumulation and an increase in litterfall at most sites during the abnormally hot year of 2003. Species richness also tended to decrease in 2003 at all sites except the cold and wet UK site. Species‐specific responses to warming were found in shoot growth: at the SP site, Globularia alypum was not affected, while the other dominant species, Erica multiflora, grew 30% more; at the UK site, Calluna vulgaris tended to grow more in the warming plots, while Empetrum nigrum tended to grow less. Drought treatment decreased plant growth in several studied species, although there were some species such as Pinus halepensis at the SP site or C. vulgaris at the UK site that were not affected. The magnitude of responses to warming and drought thus depended greatly on the differences between sites, years, and species and these multiple plant responses may be expected to have consequences at ecosystem and community level. Decreases in biodiversity and the increase in E. multiflora growth at the SP site as a response to warming challenge the assumption that sensitivity to warming may be less well developed at more southerly latitudes; likewise, the fact that one of the studied shrublands presented negative ANPP as a response to the 2003 heat wave also challenges the hypothesis that future climate warming will lead to an enhancement of plant growth and carbon sequestration in temperate ecosystems. Extreme events may thus change the general trend of increased productivity in response to warming in the colder sites.  相似文献   

18.
通过UV辐照和NTG诱变处理杜氏盐藻野生型藻株得到一株杜氏盐藻高产玉米黄素突变株Zea1,以此突变藻株为实验材料,系统研究了光照强度、盐浓度、碳源、氮源、磷源等对Zea1生长和玉米黄素积累合成的影响。葡萄糖在10mmol/L时既适合Zea1生长,又有利于其玉米黄素的积累。KNO3浓度为1mmol/L时最适合突变株藻细胞生长,而(NH4)2SO4浓度为1mmol/L最有利于藻细胞内玉米黄素的积累。综合来看,1mmol/L(NH4)2SO4为最优氮源。KH2PO4浓度为0.1mmol/L时Zea1藻细胞积累玉米黄素含量最高,同时在此浓度下也最适宜藻细胞的生长。讨论了此结果的机理和意义,为利用杜氏盐藻大规模生产玉米黄素提供了理论依据。  相似文献   

19.
Vegetation in water‐limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species‐specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long‐term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long‐term experimental drought shifted water uptake toward deeper (10–35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought‐affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.  相似文献   

20.
吴福忠  包维楷  吴宁 《生态学报》2008,28(8):3817-3824
干旱气候条件下改善土壤养分能否提高植物抗旱能力,促进植物生长一直是一个争论性的问题.为了解外源施N是否可提高岷江上游干旱河谷优势灌木白刺花(Sophora davidii)幼苗适应干旱贫瘠环境的能力,研究了不同施N(0、92 mg N · kg-1土和184 mg N · kg-1土)处理下一个生长季节内白刺花幼苗生长、生物生产量、C、N和P的积累与分配特性,以及N和P利用效率.研究结果表明:轻度施N(92 mg N ·kg-1土)处理促进了植物生长,增加了生物生产量,强化了C的固定和N、P等资源的吸收和积累,提高了其它受限资源的利用效率(如P),降低了N利用效率;但并不显著改变幼苗生物生产量及C、N和P等资源的分配格局,从而维持了资源的吸收、分配与利用的相对平衡,可能改善白刺花幼苗适应干旱贫瘠环境能力.而重度施N(184 mg N · kg-1土)处理虽然也相对于对照增加了叶片数目、生物生产量和C、N、P的积累量,但显著降低了幼苗根系的长度,抑制了根系的生长,并导致生物量及资源(生物量、C、N、P)较多地分配给地上部分(主要是叶片),不利于干旱环境下水分的吸收和利用,因而可能会加重幼苗受胁迫伤害的程度.综合分析表明,适当施加N肥可以促进白刺花幼苗的生长,一定程度上提高幼苗抗旱能力,改善幼苗定居,但也应避免过度施N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号